| Classes in this File | Line Coverage | Branch Coverage | Complexity | ||||
| PathItemPlacement |
|
| 2.25;2.25 |
| 1 | /* $Id: PathItemPlacement.java 17865 2010-01-12 20:45:26Z linus $ | |
| 2 | ***************************************************************************** | |
| 3 | * Copyright (c) 2009 Contributors - see below | |
| 4 | * All rights reserved. This program and the accompanying materials | |
| 5 | * are made available under the terms of the Eclipse Public License v1.0 | |
| 6 | * which accompanies this distribution, and is available at | |
| 7 | * http://www.eclipse.org/legal/epl-v10.html | |
| 8 | * | |
| 9 | * Contributors: | |
| 10 | * dthompson | |
| 11 | ***************************************************************************** | |
| 12 | * | |
| 13 | * Some portions of this file was previously release using the BSD License: | |
| 14 | */ | |
| 15 | ||
| 16 | // Copyright (c) 2008 Tom Morris and other contributors. All | |
| 17 | // Rights Reserved. Permission to use, copy, modify, and distribute this | |
| 18 | // software and its documentation without fee, and without a written | |
| 19 | // agreement is hereby granted, provided that the above copyright notice | |
| 20 | // and this paragraph appear in all copies. This software program and | |
| 21 | // documentation are copyrighted by The Contributors. | |
| 22 | // The software program and documentation are supplied "AS | |
| 23 | // IS", without any accompanying services from The Contributors. They | |
| 24 | // do not warrant that the operation of the program will be | |
| 25 | // uninterrupted or error-free. The end-user understands that the program | |
| 26 | // was developed for research purposes and is advised not to rely | |
| 27 | // exclusively on the program for any reason. IN NO EVENT SHALL THE | |
| 28 | // CONTRIBUTORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, | |
| 29 | // SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, | |
| 30 | // ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF | |
| 31 | // THE CONTRIBUTORS HAVE BEEN ADVISED OF THE POSSIBILITY OF | |
| 32 | // SUCH DAMAGE. THE CONTRIBUTORS SPECIFICALLY DISCLAIM ANY | |
| 33 | // WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF | |
| 34 | // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE | |
| 35 | // PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE CONTRIBUTORS | |
| 36 | // HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, | |
| 37 | // UPDATES, ENHANCEMENTS, OR MODIFICATIONS. | |
| 38 | ||
| 39 | package org.argouml.uml.diagram.ui; | |
| 40 | ||
| 41 | import java.awt.Color; | |
| 42 | import java.awt.Dimension; | |
| 43 | import java.awt.Graphics; | |
| 44 | import java.awt.Point; | |
| 45 | import java.awt.Rectangle; | |
| 46 | import java.awt.geom.Line2D; | |
| 47 | ||
| 48 | import org.apache.log4j.Logger; | |
| 49 | import org.tigris.gef.base.Globals; | |
| 50 | import org.tigris.gef.base.PathConv; | |
| 51 | import org.tigris.gef.presentation.Fig; | |
| 52 | import org.tigris.gef.presentation.FigEdge; | |
| 53 | ||
| 54 | /** | |
| 55 | * This class implements the coordinate generation required for GEF's | |
| 56 | * FigEdge.addPathItem. It can be used to place labels at an offset relative to | |
| 57 | * an anchor position along the path described by a FigEdge. For example, a | |
| 58 | * label can be placed in the middle of a FigEdge by using 50% or near an end by | |
| 59 | * using 0% width an offset of +5 or 100% with an offset of -5. | |
| 60 | * <p> | |
| 61 | * The calculated anchor position along the path is then used as a base to which | |
| 62 | * additional offsets are added. This can be either in the form of a | |
| 63 | * displacement vector and distance specified using an angle relative to the | |
| 64 | * angle of the edge at that point or a fixed x,y offset. | |
| 65 | * <p> | |
| 66 | * This class tries to avoid placing the itemFig so that it intersects the | |
| 67 | * pathFig. Note that:<ul> | |
| 68 | * <li>itemFig must return correct size information for this to work properly, | |
| 69 | * which is not currently true of all GEF figs (eg. text figs). | |
| 70 | * <li>Only the path is considered, so you can still get overlaps with the | |
| 71 | * connected nodes on the ends of the edges or other labels on the same edge or | |
| 72 | * other figs in the diagram. Using a displacement angle of 135 or -135 degrees | |
| 73 | * is a good way to help avoid the connected nodes. | |
| 74 | * </ul> | |
| 75 | * | |
| 76 | * @author Tom Morris <tfmorris@gmail.com> | |
| 77 | * @since 0.27.3 | |
| 78 | */ | |
| 79 | public class PathItemPlacement extends PathConv { | |
| 80 | ||
| 81 | 0 | private static final Logger LOG = Logger.getLogger(PathItemPlacement.class); |
| 82 | ||
| 83 | 0 | private boolean useCollisionCheck = true; |
| 84 | ||
| 85 | 0 | private boolean useAngle = true; |
| 86 | ||
| 87 | 0 | private double angle = 90; // default angle is 90 deg. |
| 88 | ||
| 89 | /** | |
| 90 | * the fig to be placed. | |
| 91 | */ | |
| 92 | private Fig itemFig; | |
| 93 | ||
| 94 | /** | |
| 95 | * Percentage of the way along the path to place anchor. | |
| 96 | */ | |
| 97 | private int percent; | |
| 98 | ||
| 99 | /** | |
| 100 | * Fixed delta offset from the computed percentage location. | |
| 101 | */ | |
| 102 | private int pathOffset; | |
| 103 | ||
| 104 | /** | |
| 105 | * Distance along the displacement vector (ie distance from the edge) | |
| 106 | */ | |
| 107 | private int vectorOffset; | |
| 108 | ||
| 109 | /** | |
| 110 | * Fixed offset to use for manual positioning. Coordinates are interpreted | |
| 111 | * as an XY offset. | |
| 112 | */ | |
| 113 | private Point offset; | |
| 114 | ||
| 115 | /** | |
| 116 | * Set true to keep items on same side (top or bottom) of path as | |
| 117 | * it rotates through vertical. | |
| 118 | */ | |
| 119 | 0 | private final boolean swap = true; |
| 120 | ||
| 121 | /** | |
| 122 | * Construct a new path to coordinate conversion object which positions at a | |
| 123 | * percentage along a path with a given distance perpendicular to the path | |
| 124 | * at the anchor point. | |
| 125 | * | |
| 126 | * @param pathFig fig representing the edge which will be used for | |
| 127 | * positioning. | |
| 128 | * @param theItemFig the fig to be placed. | |
| 129 | * @param pathPercent distance in integer percentages along path for anchor | |
| 130 | * point from which the offset is computed.. Beginning of path is | |
| 131 | * 0 and end of path is 100. | |
| 132 | * @param displacement distance from the edge to place the fig. This is | |
| 133 | * computed along the normal. | |
| 134 | */ | |
| 135 | public PathItemPlacement(FigEdge pathFig, Fig theItemFig, int pathPercent, | |
| 136 | int displacement) { | |
| 137 | ||
| 138 | 0 | this(pathFig, theItemFig, pathPercent, 0, 90, displacement); |
| 139 | 0 | } |
| 140 | ||
| 141 | ||
| 142 | /** | |
| 143 | * Construct a new path to coordinate conversion object which positions | |
| 144 | * an anchor point on the path at a percentage along a path with an offset, | |
| 145 | * and from the anchor point at a distance measured at a given angle. | |
| 146 | * | |
| 147 | * @param pathFig fig representing the edge which will be used for | |
| 148 | * positioning. | |
| 149 | * @param theItemFig the fig to be placed. | |
| 150 | * @param pathPercent distance in integer percentages along path for anchor | |
| 151 | * point from which the offset is computed. Beginning of path is | |
| 152 | * 0 and end of path is 100. | |
| 153 | * @param pathDelta delta distance in coordinate space units to add to the | |
| 154 | * computed percentage position | |
| 155 | * @param displacementAngle angle to add to computed line slope when | |
| 156 | * computing the displacement vector | |
| 157 | * @param displacementDistance distance from the edge to place the fig. This | |
| 158 | * is computed along the normal from the anchor position using | |
| 159 | * pathPercent & pathDelta. | |
| 160 | */ | |
| 161 | public PathItemPlacement(FigEdge pathFig, Fig theItemFig, int pathPercent, | |
| 162 | int pathDelta, | |
| 163 | int displacementAngle, | |
| 164 | int displacementDistance) { | |
| 165 | 0 | super(pathFig); |
| 166 | 0 | itemFig = theItemFig; |
| 167 | 0 | setAnchor(pathPercent, pathDelta); |
| 168 | 0 | setDisplacementVector(displacementAngle + 180, displacementDistance); |
| 169 | 0 | } |
| 170 | ||
| 171 | /** | |
| 172 | * Construct a new path to coordinate conversion object which positions | |
| 173 | * an anchor point on the path at a percentage along a path with an offset, | |
| 174 | * and from the anchor point at a distance measured in X, Y coordinates. | |
| 175 | * | |
| 176 | * @param pathFig fig representing the edge which will be used for | |
| 177 | * positioning. | |
| 178 | * @param theItemFig the fig to be placed. | |
| 179 | * @param pathPercent distance in integer percentages along path for anchor | |
| 180 | * point from which the offset is computed. Beginning of path is | |
| 181 | * 0 and end of path is 100. | |
| 182 | * @param pathDelta delta distance in coordinate space units to add to the | |
| 183 | * computed percentage position | |
| 184 | * @param absoluteOffset point representing XY offset from anchor to use for | |
| 185 | * positioning. | |
| 186 | */ | |
| 187 | public PathItemPlacement(FigEdge pathFig, Fig theItemFig, int pathPercent, | |
| 188 | int pathDelta, Point absoluteOffset) { | |
| 189 | 0 | super(pathFig); |
| 190 | 0 | itemFig = theItemFig; |
| 191 | 0 | setAnchor(pathPercent, pathDelta); |
| 192 | 0 | setAbsoluteOffset(absoluteOffset); |
| 193 | 0 | } |
| 194 | ||
| 195 | /** | |
| 196 | * Returns the Fig that this PathItemPlacement places. | |
| 197 | * To get the Fig of the Edge which owns this fig, use use getPathFig() | |
| 198 | * @see org.tigris.gef.base.PathConv#getPathFig() | |
| 199 | * @note Used by PGML.tee. | |
| 200 | * @return The fig that this path item places. | |
| 201 | */ | |
| 202 | public Fig getItemFig() { | |
| 203 | 0 | return itemFig; |
| 204 | } | |
| 205 | ||
| 206 | /** | |
| 207 | * Compute a position. This strangely named method computes a | |
| 208 | * position using the current set of parameters and returns the result | |
| 209 | * by updating the provided Point. | |
| 210 | * | |
| 211 | * @param result Point in which to return result. Not read as input. | |
| 212 | * | |
| 213 | * @see org.tigris.gef.base.PathConv#stuffPoint(java.awt.Point) | |
| 214 | */ | |
| 215 | public void stuffPoint(Point result) { | |
| 216 | 0 | result = getPosition(result); |
| 217 | 0 | } |
| 218 | ||
| 219 | /** | |
| 220 | * Get the computed target position based on the current set of parameters. | |
| 221 | * | |
| 222 | * @return the computed position | |
| 223 | */ | |
| 224 | public Point getPosition() { | |
| 225 | 0 | return getPosition(new Point()); |
| 226 | } | |
| 227 | ||
| 228 | @Override | |
| 229 | public Point getPoint() { | |
| 230 | 0 | return getPosition(); |
| 231 | } | |
| 232 | ||
| 233 | /** | |
| 234 | * Get the anchor position. The represents the point along the path that | |
| 235 | * is used as the starting point for all other calculations. | |
| 236 | * | |
| 237 | * @return the anchor position represented by the current percentage and | |
| 238 | * path offset parameters | |
| 239 | */ | |
| 240 | public Point getAnchorPosition() { | |
| 241 | 0 | int pathDistance = getPathDistance(); |
| 242 | 0 | Point anchor = new Point(); |
| 243 | 0 | _pathFigure.stuffPointAlongPerimeter(pathDistance, anchor); |
| 244 | 0 | return anchor; |
| 245 | } | |
| 246 | ||
| 247 | ||
| 248 | /** | |
| 249 | * Compute distance along the path based on percentage and offset, clamped | |
| 250 | * to the length of the path. | |
| 251 | * | |
| 252 | * @return the distance | |
| 253 | */ | |
| 254 | private int getPathDistance() { | |
| 255 | 0 | int length = _pathFigure.getPerimeterLength(); |
| 256 | 0 | int distance = Math.max(0, (length * percent) / 100 + pathOffset); |
| 257 | // Boundary condition in GEF, make sure this is LESS THAN, not equal | |
| 258 | 0 | if (distance >= length) { |
| 259 | 0 | distance = length - 1; |
| 260 | } | |
| 261 | 0 | return distance; |
| 262 | } | |
| 263 | ||
| 264 | ||
| 265 | /** | |
| 266 | * Get the computed position based on the current set of parameters. | |
| 267 | * | |
| 268 | * @param result Point in which to return result. Not read as input, but it | |
| 269 | * <em>is</em> modified. | |
| 270 | * @return the updated point | |
| 271 | */ | |
| 272 | private Point getPosition(Point result) { | |
| 273 | ||
| 274 | 0 | Point anchor = getAnchorPosition(); |
| 275 | 0 | result.setLocation(anchor); |
| 276 | ||
| 277 | // If we're using a fixed offset, just add it and return | |
| 278 | // No collision detection is done in this case | |
| 279 | 0 | if (!useAngle) { |
| 280 | 0 | result.translate(offset.x, offset.y); |
| 281 | 0 | return result; |
| 282 | } | |
| 283 | ||
| 284 | 0 | double slope = getSlope(); |
| 285 | 0 | result.setLocation(applyOffset(slope, vectorOffset, anchor)); |
| 286 | ||
| 287 | // Check for a collision between our computed position and the edge | |
| 288 | 0 | if (useCollisionCheck) { |
| 289 | 0 | int increment = 2; // increase offset by 2px at a time |
| 290 | ||
| 291 | // TODO: The size of text figs, which is what we care about most, | |
| 292 | // isn't computed correctly by GEF. If we got ambitious, we could | |
| 293 | // recompute a proper size ourselves. | |
| 294 | 0 | Dimension size = new Dimension(itemFig.getWidth(), itemFig |
| 295 | .getHeight()); | |
| 296 | ||
| 297 | // Get the points representing the poly line for our edge | |
| 298 | 0 | FigEdge fp = (FigEdge) _pathFigure; |
| 299 | 0 | Point[] points = fp.getPoints(); |
| 300 | 0 | if (intersects(points, result, size)) { |
| 301 | ||
| 302 | // increase offset by increments until we're clear | |
| 303 | 0 | int scaledOffset = vectorOffset + increment; |
| 304 | ||
| 305 | 0 | int limit = 20; |
| 306 | 0 | int count = 0; |
| 307 | // limit our retries in case its too hard to get free | |
| 308 | 0 | while (intersects(points, result, size) && count++ < limit) { |
| 309 | 0 | result.setLocation( |
| 310 | applyOffset(slope, scaledOffset, anchor)); | |
| 311 | 0 | scaledOffset += increment; |
| 312 | } | |
| 313 | // If we timed out, give it one more try on the other side | |
| 314 | if (false /* count >= limit */) { | |
| 315 | LOG.debug("Retry limit exceeded. Trying other side"); | |
| 316 | result.setLocation(anchor); | |
| 317 | // TODO: This works for 90 degree angles, but is suboptimal | |
| 318 | // for other angles. It should reflect the angle, rather | |
| 319 | // than just using a negative offset along the same vector | |
| 320 | result.setLocation( | |
| 321 | applyOffset(slope, -vectorOffset, anchor)); | |
| 322 | count = 0; | |
| 323 | scaledOffset = -scaledOffset; | |
| 324 | while (intersects(points, result, size) | |
| 325 | && count++ < limit) { | |
| 326 | result.setLocation( | |
| 327 | applyOffset(slope, scaledOffset, anchor)); | |
| 328 | scaledOffset += increment; | |
| 329 | } | |
| 330 | } | |
| 331 | // LOG.debug("Final point #" + count + " " + result | |
| 332 | // + " offset of " + scaledOffset); | |
| 333 | } | |
| 334 | } | |
| 335 | 0 | return result; |
| 336 | } | |
| 337 | ||
| 338 | /** | |
| 339 | * Check for intersection between the segments of a poly line and a | |
| 340 | * rectangle. Unlike FigEdge.intersects(), this only checks the main | |
| 341 | * path, not any associated path items (like ourselves). | |
| 342 | * | |
| 343 | * @param points set of points representing line segments | |
| 344 | * @param center position of center | |
| 345 | * @param size size of bounding box | |
| 346 | * @return true if they intersect | |
| 347 | */ | |
| 348 | private boolean intersects(Point[] points, Point center, Dimension size) { | |
| 349 | // Convert to bounding box | |
| 350 | // Very screwy! GEF sometimes uses center and sometimes upper left | |
| 351 | // TODO: GEF also positions text at the nominal baseline which is | |
| 352 | // well inside the bounding box and gives the overall size incorrectly | |
| 353 | 0 | Rectangle r = new Rectangle(center.x - (size.width / 2), |
| 354 | center.y - (size.height / 2), | |
| 355 | size.width, size.height); | |
| 356 | 0 | Line2D line = new Line2D.Double(); |
| 357 | 0 | for (int i = 0; i < points.length - 1; i++) { |
| 358 | 0 | line.setLine(points[i], points[i + 1]); |
| 359 | 0 | if (r.intersectsLine(line)) { |
| 360 | 0 | return true; |
| 361 | } | |
| 362 | } | |
| 363 | 0 | return false; |
| 364 | } | |
| 365 | ||
| 366 | /** | |
| 367 | * Convenience method to set anchor percentage distance and offset. | |
| 368 | * | |
| 369 | * @param newPercent distance as a percent of total path 0<=percent<=100 | |
| 370 | * @param newOffset offset in drawing coordinate system | |
| 371 | */ | |
| 372 | public void setAnchor(int newPercent, int newOffset) { | |
| 373 | 0 | setAnchorPercent(newPercent); |
| 374 | 0 | setAnchorOffset(newOffset); |
| 375 | 0 | } |
| 376 | ||
| 377 | /** | |
| 378 | * Set distance along path of anchor in integer percentages. | |
| 379 | * @param newPercent distance as a percent of total path 0<=percent<=100 | |
| 380 | */ | |
| 381 | public void setAnchorPercent(int newPercent) { | |
| 382 | 0 | percent = newPercent; |
| 383 | 0 | } |
| 384 | ||
| 385 | /** | |
| 386 | * Set offset along path to be applied to anchor after percentage based | |
| 387 | * location is calculated. Specified in units of the drawing coordinate | |
| 388 | * system. | |
| 389 | * | |
| 390 | * @param newOffset offset in drawing coordinate system | |
| 391 | */ | |
| 392 | public void setAnchorOffset(int newOffset) { | |
| 393 | 0 | pathOffset = newOffset; |
| 394 | 0 | } |
| 395 | ||
| 396 | /** | |
| 397 | * Set a fixed offset from the anchor point. | |
| 398 | * @param newOffset a Point who's x & y coordinates will be used as a | |
| 399 | * displacement from anchor point | |
| 400 | */ | |
| 401 | public void setAbsoluteOffset(Point newOffset) { | |
| 402 | 0 | offset = newOffset; |
| 403 | 0 | useAngle = false; |
| 404 | 0 | } |
| 405 | ||
| 406 | /** | |
| 407 | * Attempts to set a new location for the fig being controlled | |
| 408 | * by this path item. Takes the given Point which represents an x,y | |
| 409 | * position, and calculates the most appropriate angle and displacement | |
| 410 | * to achieve this new position. Used when the user drags a label | |
| 411 | * on the diagram. | |
| 412 | * @override | |
| 413 | * @param newPoint The new target location for the PathItem fig. | |
| 414 | * @see org.tigris.gef.base.PathConv#setPoint(java.awt.Point) | |
| 415 | */ | |
| 416 | public void setPoint(Point newPoint) { | |
| 417 | 0 | int vect[] = computeVector(newPoint); |
| 418 | 0 | setDisplacementAngle(vect[0]); |
| 419 | 0 | setDisplacementDistance(vect[1]); |
| 420 | 0 | } |
| 421 | ||
| 422 | ||
| 423 | /** | |
| 424 | * Compute an angle and distance which is equivalent to the given point. | |
| 425 | * This is a convenience method to help callers get coordinates in a form | |
| 426 | * that can be passed back in using {@link #setDisplacementVector(int, int)} | |
| 427 | * | |
| 428 | * @param point the desired target point | |
| 429 | * @return an array of two integers containing the angle and distance | |
| 430 | */ | |
| 431 | public int[] computeVector(Point point) { | |
| 432 | 0 | Point anchor = getAnchorPosition(); |
| 433 | 0 | int distance = (int) anchor.distance(point); |
| 434 | 0 | int angl = 0; |
| 435 | 0 | double pathSlope = getSlope(); |
| 436 | 0 | double offsetSlope = getSlope(anchor, point); |
| 437 | ||
| 438 | 0 | if (swap && pathSlope > Math.PI / 2 && pathSlope < Math.PI * 3 / 2) { |
| 439 | 0 | angl = -(int) ((offsetSlope - pathSlope) / Math.PI * 180); |
| 440 | } | |
| 441 | else { | |
| 442 | 0 | angl = (int) ((offsetSlope - pathSlope) / Math.PI * 180); |
| 443 | } | |
| 444 | ||
| 445 | 0 | int[] result = new int[] {angl, distance}; |
| 446 | 0 | return result; |
| 447 | } | |
| 448 | ||
| 449 | /** | |
| 450 | * Set the displacement vector to the given angle and distance. | |
| 451 | * | |
| 452 | * @param vectorAngle angle in degrees relative to the edge at the anchor | |
| 453 | * point. | |
| 454 | * @param vectorDistance distance along vector in drawing coordinate units | |
| 455 | */ | |
| 456 | public void setDisplacementVector(int vectorAngle, int vectorDistance) { | |
| 457 | 0 | setDisplacementAngle(vectorAngle); |
| 458 | 0 | setDisplacementDistance(vectorDistance); |
| 459 | 0 | } |
| 460 | ||
| 461 | /** | |
| 462 | * Set the displacement vector to the given angle and distance. | |
| 463 | * | |
| 464 | * @param vectorAngle angle in degrees relative to the edge at the anchor | |
| 465 | * point. | |
| 466 | * @param vectorDistance distance along vector in drawing coordinate units | |
| 467 | */ | |
| 468 | public void setDisplacementVector(double vectorAngle, | |
| 469 | int vectorDistance) { | |
| 470 | 0 | setDisplacementAngle(vectorAngle); |
| 471 | 0 | setDisplacementDistance(vectorDistance); |
| 472 | 0 | } |
| 473 | ||
| 474 | /** | |
| 475 | * @param offsetAngle the new angle for the displacement vector, | |
| 476 | * specified in degrees relative to the edge at the anchor. | |
| 477 | */ | |
| 478 | public void setDisplacementAngle(int offsetAngle) { | |
| 479 | 0 | angle = offsetAngle * Math.PI / 180.0; |
| 480 | 0 | useAngle = true; |
| 481 | 0 | } |
| 482 | ||
| 483 | /** | |
| 484 | * @param offsetAngle the new angle for the displacement vector, | |
| 485 | * specified in degrees relative to the edge at the anchor. | |
| 486 | */ | |
| 487 | public void setDisplacementAngle(double offsetAngle) { | |
| 488 | 0 | angle = offsetAngle * Math.PI / 180.0; |
| 489 | 0 | useAngle = true; |
| 490 | 0 | } |
| 491 | ||
| 492 | /** | |
| 493 | * Set distance along displacement vector to place the figure. | |
| 494 | * @param newDistance distance in units of the drawing coordinate system | |
| 495 | */ | |
| 496 | public void setDisplacementDistance(int newDistance) { | |
| 497 | 0 | vectorOffset = newDistance; |
| 498 | 0 | useAngle = true; |
| 499 | 0 | } |
| 500 | ||
| 501 | ||
| 502 | /** | |
| 503 | * Don't know what this is supposed to do since GEF has no API spec for it, | |
| 504 | * but we don't implement it and it'll throw an | |
| 505 | * UnsupportedOperationException if you try to use it. | |
| 506 | * | |
| 507 | * @param newPoint ignored | |
| 508 | * @see org.tigris.gef.base.PathConv#setClosestPoint(java.awt.Point) | |
| 509 | */ | |
| 510 | public void setClosestPoint(Point newPoint) { | |
| 511 | 0 | throw new UnsupportedOperationException(); |
| 512 | } | |
| 513 | ||
| 514 | ||
| 515 | /** | |
| 516 | * Compute slope of path at the anchor point. Slope is computed using a | |
| 517 | * short segment instead of using the instantaneous slope, so it will give | |
| 518 | * unusual results near discontinuities in the path (ie bends). | |
| 519 | * @return the slope radians in the range 0 < slope < 2PI | |
| 520 | */ | |
| 521 | private double getSlope() { | |
| 522 | ||
| 523 | 0 | final int slopeSegLen = 40; // segment size for computing slope |
| 524 | ||
| 525 | 0 | int pathLength = _pathFigure.getPerimeterLength(); |
| 526 | 0 | int pathDistance = getPathDistance(); |
| 527 | ||
| 528 | // Two points for line segment used to compute slope of path here | |
| 529 | // NOTE that this is the average slope, not instantaneous, so it will | |
| 530 | // give screwy results near bends in the path | |
| 531 | 0 | int d1 = Math.max(0, pathDistance - slopeSegLen / 2); |
| 532 | // If our position was clamped, try to make it up on the other end | |
| 533 | 0 | int d2 = Math.min(pathLength - 1, d1 + slopeSegLen); |
| 534 | // Can't get the slope of a point. Just return an arbitrary point. | |
| 535 | 0 | if (d1 == d2) { |
| 536 | 0 | return 0; |
| 537 | } | |
| 538 | 0 | Point p1 = _pathFigure.pointAlongPerimeter(d1); |
| 539 | 0 | Point p2 = _pathFigure.pointAlongPerimeter(d2); |
| 540 | ||
| 541 | 0 | double theta = getSlope(p1, p2); |
| 542 | 0 | return theta; |
| 543 | } | |
| 544 | ||
| 545 | ||
| 546 | /** | |
| 547 | * Compute the slope in radians of the line between two points. | |
| 548 | * @param p1 first point | |
| 549 | * @param p2 second point | |
| 550 | * @return slope in radians in the range 0<=slope<=2PI | |
| 551 | */ | |
| 552 | private static double getSlope(Point p1, Point p2) { | |
| 553 | // Our angle theta is arctan(opposite/adjacent) | |
| 554 | // Because y increases going down the screen, positive angles are | |
| 555 | // clockwise rather than counterclockwise | |
| 556 | 0 | int opposite = p2.y - p1.y; |
| 557 | 0 | int adjacent = p2.x - p1.x; |
| 558 | double theta; | |
| 559 | 0 | if (adjacent == 0) { |
| 560 | // This shouldn't happen, because of our line segment size check | |
| 561 | 0 | if (opposite == 0) { |
| 562 | 0 | return 0; |
| 563 | } | |
| 564 | // "We're going vertical!" - Goose in "Top Gun" | |
| 565 | 0 | if (opposite < 0) { |
| 566 | 0 | theta = Math.PI * 3 / 2; |
| 567 | } else { | |
| 568 | 0 | theta = Math.PI / 2; |
| 569 | } | |
| 570 | } else { | |
| 571 | // Arctan only returns -PI/2 to PI/2 | |
| 572 | // Handle the other two quadrants and normalize to 0 - 2PI | |
| 573 | 0 | theta = Math.atan((double) opposite / (double) adjacent); |
| 574 | // Quadrant II & III | |
| 575 | 0 | if (adjacent < 0) { |
| 576 | 0 | theta += Math.PI; |
| 577 | } | |
| 578 | // Quadrant IV | |
| 579 | 0 | if (theta < 0) { |
| 580 | 0 | theta += Math.PI * 2; |
| 581 | } | |
| 582 | } | |
| 583 | 0 | return theta; |
| 584 | } | |
| 585 | ||
| 586 | /** | |
| 587 | * Apply an offset for a given distance along the normal vector computed | |
| 588 | * to the line specified by the two points. | |
| 589 | * | |
| 590 | * @param p1 point one of line to use in computing normal vector | |
| 591 | * @param p2 point two of line to use in computing normal vector | |
| 592 | * @param theOffset distance to displace fig along normal vector | |
| 593 | * @param anchor The start point to apply the offset from. Not modified. | |
| 594 | * @return A new computed point describing the location after the offset | |
| 595 | * has been applied to the anchor. | |
| 596 | */ | |
| 597 | private Point applyOffset(double theta, int theOffset, | |
| 598 | Point anchor) { | |
| 599 | ||
| 600 | 0 | Point result = new Point(anchor); |
| 601 | ||
| 602 | // Set the following for some backward compatibility with old algorithm | |
| 603 | 0 | final boolean aboveAndRight = false; |
| 604 | ||
| 605 | // LOG.debug("Slope = " + theta / Math.PI + "PI " | |
| 606 | // + theta / Math.PI * 180.0); | |
| 607 | ||
| 608 | // Add displacement angle to slope | |
| 609 | 0 | if (swap && theta > Math.PI / 2 && theta < Math.PI * 3 / 2) { |
| 610 | 0 | theta = theta - angle; |
| 611 | } else { | |
| 612 | 0 | theta = theta + angle; |
| 613 | } | |
| 614 | ||
| 615 | // Transform to 0 - 2PI range if we've gone all the way around circle | |
| 616 | 0 | if (theta > Math.PI * 2) { |
| 617 | 0 | theta -= Math.PI * 2; |
| 618 | } | |
| 619 | 0 | if (theta < 0) { |
| 620 | 0 | theta += Math.PI * 2; |
| 621 | } | |
| 622 | ||
| 623 | // Compute our deltas | |
| 624 | 0 | int dx = (int) (theOffset * Math.cos(theta)); |
| 625 | 0 | int dy = (int) (theOffset * Math.sin(theta)); |
| 626 | ||
| 627 | // For backward compatibility everything is above and right | |
| 628 | // TODO: Do in polar domain? | |
| 629 | if (aboveAndRight) { | |
| 630 | dx = Math.abs(dx); | |
| 631 | dy = -Math.abs(dy); | |
| 632 | } | |
| 633 | ||
| 634 | 0 | result.x += dx; |
| 635 | 0 | result.y += dy; |
| 636 | ||
| 637 | // LOG.debug(result.x + ", " + result.y | |
| 638 | // + " theta = " + theta * 180 / Math.PI | |
| 639 | // + " dx = " + dx + " dy = " + dy); | |
| 640 | ||
| 641 | 0 | return result; |
| 642 | } | |
| 643 | ||
| 644 | /** | |
| 645 | * Paint the virtual connection from the edge to where the path item | |
| 646 | * is placed according to this path item placement algorithm. | |
| 647 | * | |
| 648 | * @param g the Graphics object | |
| 649 | * @see org.tigris.gef.base.PathConv#paint(java.awt.Graphics) | |
| 650 | */ | |
| 651 | public void paint(Graphics g) { | |
| 652 | 0 | final Point p1 = getAnchorPosition(); |
| 653 | 0 | Point p2 = getPoint(); |
| 654 | 0 | Rectangle r = itemFig.getBounds(); |
| 655 | // Load the standard colour, just add an alpha channel. | |
| 656 | 0 | Color c = Globals.getPrefs().handleColorFor(itemFig); |
| 657 | 0 | c = new Color(c.getRed(), c.getGreen(), c.getBlue(), 100); |
| 658 | 0 | g.setColor(c); |
| 659 | 0 | r.grow(2, 2); |
| 660 | 0 | g.fillRoundRect(r.x, r.y, r.width, r.height, 8, 8); |
| 661 | 0 | if (r.contains(p2)) { |
| 662 | 0 | p2 = getRectLineIntersection(r, p1, p2); |
| 663 | } | |
| 664 | 0 | g.drawLine(p1.x, p1.y, p2.x, p2.y); |
| 665 | 0 | } |
| 666 | ||
| 667 | /** | |
| 668 | * Finds the point where a rectangle and line intersect. | |
| 669 | * Finds the intersection point between the border of a Rectangle r and | |
| 670 | * a line drawn between two Points pOut (outside the rectangle) and pIn | |
| 671 | * (inside the rectangle). | |
| 672 | * If the pIn is not inside the rectangle, or if any other problem occurs, | |
| 673 | * pIn is returned. | |
| 674 | * @param r Rectangle to find the intersection of. | |
| 675 | * @param pOut Point outside the rectangle. | |
| 676 | * @param pIn Point inside the rectangle. | |
| 677 | * @return The intersection between Line(pOut, pIn) and Rectangle r. | |
| 678 | */ | |
| 679 | private Point getRectLineIntersection(Rectangle r, Point pOut, Point pIn) { | |
| 680 | Line2D.Double m, n; | |
| 681 | 0 | m = new Line2D.Double(pOut, pIn); |
| 682 | 0 | n = new Line2D.Double(r.x, r.y, r.x + r.width, r.y); |
| 683 | 0 | if (m.intersectsLine(n)) { |
| 684 | 0 | return intersection(m, n); |
| 685 | } | |
| 686 | 0 | n = new Line2D.Double(r.x + r.width, r.y, r.x + r.width, |
| 687 | r.y + r.height); | |
| 688 | 0 | if (m.intersectsLine(n)) { |
| 689 | 0 | return intersection(m, n); |
| 690 | } | |
| 691 | 0 | n = new Line2D.Double(r.x, r.y + r.height, r.x + r.width, |
| 692 | r.y + r.height); | |
| 693 | 0 | if (m.intersectsLine(n)) { |
| 694 | 0 | return intersection(m, n); |
| 695 | } | |
| 696 | 0 | n = new Line2D.Double(r.x, r.y, r.x, r.y + r.width); |
| 697 | 0 | if (m.intersectsLine(n)) { |
| 698 | 0 | return intersection(m, n); |
| 699 | } | |
| 700 | // Should never get here. If we do, return the inner point. | |
| 701 | 0 | LOG.warn("Could not find rectangle intersection, using inner point."); |
| 702 | 0 | return pIn; |
| 703 | } | |
| 704 | ||
| 705 | /** | |
| 706 | * Finds the intersection point of two lines. | |
| 707 | * It is surprising that this method isn't already available in the base | |
| 708 | * Line2D class of Java. If a stock method exists or is implemented in | |
| 709 | * future, feel free replace this code with it. | |
| 710 | * @param m First line. | |
| 711 | * @param n Second line. | |
| 712 | * @return Intersection point of first and second line. | |
| 713 | */ | |
| 714 | private Point intersection(Line2D m, Line2D n) { | |
| 715 | 0 | double d = (n.getY2() - n.getY1()) * (m.getX2() - m.getX1()) |
| 716 | - (n.getX2() - n.getX1()) * (m.getY2() - m.getY1()); | |
| 717 | 0 | double a = (n.getX2() - n.getX1()) * (m.getY1() - n.getY1()) |
| 718 | - (n.getY2() - n.getY1()) * (m.getX1() - n.getX1()); | |
| 719 | ||
| 720 | 0 | double as = a / d; |
| 721 | ||
| 722 | 0 | double x = m.getX1() + as * (m.getX2() - m.getX1()); |
| 723 | 0 | double y = m.getY1() + as * (m.getY2() - m.getY1()); |
| 724 | 0 | return new Point((int) x, (int) y); |
| 725 | } | |
| 726 | ||
| 727 | /** | |
| 728 | * Returns the value of the percent field - the position of the anchor | |
| 729 | * point as a percentage of the edge. | |
| 730 | * @important Used by PGML.tee. | |
| 731 | * @return The value of the percent field. | |
| 732 | */ | |
| 733 | public int getPercent() { | |
| 734 | 0 | return percent; |
| 735 | } | |
| 736 | ||
| 737 | /** | |
| 738 | * Returns the value of the angle field converted to degrees. | |
| 739 | * The angle of the path item relative to the edge. | |
| 740 | * @important Used by PGML.tee. | |
| 741 | * @return The value of the angle field in degrees. | |
| 742 | */ | |
| 743 | public double getAngle() { | |
| 744 | 0 | return angle * 180 / Math.PI; |
| 745 | } | |
| 746 | ||
| 747 | /** | |
| 748 | * Returns the value of the vectorOffset field. | |
| 749 | * The vectorOffset field is the distance away from the edge, along the | |
| 750 | * path vector that the item Fig is placed. | |
| 751 | * @important Used by PGML.tee. | |
| 752 | * @return The value of the vectorOffset field. | |
| 753 | */ | |
| 754 | public int getVectorOffset() { | |
| 755 | 0 | return vectorOffset; |
| 756 | } | |
| 757 | /** End of methods used by PGML.tee */ | |
| 758 | ||
| 759 | } |