Classes in this File | Line Coverage | Branch Coverage | Complexity | ||||
PathItemPlacement |
|
| 2.25;2.25 |
1 | /* $Id: PathItemPlacement.java 17865 2010-01-12 20:45:26Z linus $ | |
2 | ***************************************************************************** | |
3 | * Copyright (c) 2009 Contributors - see below | |
4 | * All rights reserved. This program and the accompanying materials | |
5 | * are made available under the terms of the Eclipse Public License v1.0 | |
6 | * which accompanies this distribution, and is available at | |
7 | * http://www.eclipse.org/legal/epl-v10.html | |
8 | * | |
9 | * Contributors: | |
10 | * dthompson | |
11 | ***************************************************************************** | |
12 | * | |
13 | * Some portions of this file was previously release using the BSD License: | |
14 | */ | |
15 | ||
16 | // Copyright (c) 2008 Tom Morris and other contributors. All | |
17 | // Rights Reserved. Permission to use, copy, modify, and distribute this | |
18 | // software and its documentation without fee, and without a written | |
19 | // agreement is hereby granted, provided that the above copyright notice | |
20 | // and this paragraph appear in all copies. This software program and | |
21 | // documentation are copyrighted by The Contributors. | |
22 | // The software program and documentation are supplied "AS | |
23 | // IS", without any accompanying services from The Contributors. They | |
24 | // do not warrant that the operation of the program will be | |
25 | // uninterrupted or error-free. The end-user understands that the program | |
26 | // was developed for research purposes and is advised not to rely | |
27 | // exclusively on the program for any reason. IN NO EVENT SHALL THE | |
28 | // CONTRIBUTORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, | |
29 | // SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, | |
30 | // ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF | |
31 | // THE CONTRIBUTORS HAVE BEEN ADVISED OF THE POSSIBILITY OF | |
32 | // SUCH DAMAGE. THE CONTRIBUTORS SPECIFICALLY DISCLAIM ANY | |
33 | // WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF | |
34 | // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE | |
35 | // PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE CONTRIBUTORS | |
36 | // HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, | |
37 | // UPDATES, ENHANCEMENTS, OR MODIFICATIONS. | |
38 | ||
39 | package org.argouml.uml.diagram.ui; | |
40 | ||
41 | import java.awt.Color; | |
42 | import java.awt.Dimension; | |
43 | import java.awt.Graphics; | |
44 | import java.awt.Point; | |
45 | import java.awt.Rectangle; | |
46 | import java.awt.geom.Line2D; | |
47 | ||
48 | import org.apache.log4j.Logger; | |
49 | import org.tigris.gef.base.Globals; | |
50 | import org.tigris.gef.base.PathConv; | |
51 | import org.tigris.gef.presentation.Fig; | |
52 | import org.tigris.gef.presentation.FigEdge; | |
53 | ||
54 | /** | |
55 | * This class implements the coordinate generation required for GEF's | |
56 | * FigEdge.addPathItem. It can be used to place labels at an offset relative to | |
57 | * an anchor position along the path described by a FigEdge. For example, a | |
58 | * label can be placed in the middle of a FigEdge by using 50% or near an end by | |
59 | * using 0% width an offset of +5 or 100% with an offset of -5. | |
60 | * <p> | |
61 | * The calculated anchor position along the path is then used as a base to which | |
62 | * additional offsets are added. This can be either in the form of a | |
63 | * displacement vector and distance specified using an angle relative to the | |
64 | * angle of the edge at that point or a fixed x,y offset. | |
65 | * <p> | |
66 | * This class tries to avoid placing the itemFig so that it intersects the | |
67 | * pathFig. Note that:<ul> | |
68 | * <li>itemFig must return correct size information for this to work properly, | |
69 | * which is not currently true of all GEF figs (eg. text figs). | |
70 | * <li>Only the path is considered, so you can still get overlaps with the | |
71 | * connected nodes on the ends of the edges or other labels on the same edge or | |
72 | * other figs in the diagram. Using a displacement angle of 135 or -135 degrees | |
73 | * is a good way to help avoid the connected nodes. | |
74 | * </ul> | |
75 | * | |
76 | * @author Tom Morris <tfmorris@gmail.com> | |
77 | * @since 0.27.3 | |
78 | */ | |
79 | public class PathItemPlacement extends PathConv { | |
80 | ||
81 | 0 | private static final Logger LOG = Logger.getLogger(PathItemPlacement.class); |
82 | ||
83 | 0 | private boolean useCollisionCheck = true; |
84 | ||
85 | 0 | private boolean useAngle = true; |
86 | ||
87 | 0 | private double angle = 90; // default angle is 90 deg. |
88 | ||
89 | /** | |
90 | * the fig to be placed. | |
91 | */ | |
92 | private Fig itemFig; | |
93 | ||
94 | /** | |
95 | * Percentage of the way along the path to place anchor. | |
96 | */ | |
97 | private int percent; | |
98 | ||
99 | /** | |
100 | * Fixed delta offset from the computed percentage location. | |
101 | */ | |
102 | private int pathOffset; | |
103 | ||
104 | /** | |
105 | * Distance along the displacement vector (ie distance from the edge) | |
106 | */ | |
107 | private int vectorOffset; | |
108 | ||
109 | /** | |
110 | * Fixed offset to use for manual positioning. Coordinates are interpreted | |
111 | * as an XY offset. | |
112 | */ | |
113 | private Point offset; | |
114 | ||
115 | /** | |
116 | * Set true to keep items on same side (top or bottom) of path as | |
117 | * it rotates through vertical. | |
118 | */ | |
119 | 0 | private final boolean swap = true; |
120 | ||
121 | /** | |
122 | * Construct a new path to coordinate conversion object which positions at a | |
123 | * percentage along a path with a given distance perpendicular to the path | |
124 | * at the anchor point. | |
125 | * | |
126 | * @param pathFig fig representing the edge which will be used for | |
127 | * positioning. | |
128 | * @param theItemFig the fig to be placed. | |
129 | * @param pathPercent distance in integer percentages along path for anchor | |
130 | * point from which the offset is computed.. Beginning of path is | |
131 | * 0 and end of path is 100. | |
132 | * @param displacement distance from the edge to place the fig. This is | |
133 | * computed along the normal. | |
134 | */ | |
135 | public PathItemPlacement(FigEdge pathFig, Fig theItemFig, int pathPercent, | |
136 | int displacement) { | |
137 | ||
138 | 0 | this(pathFig, theItemFig, pathPercent, 0, 90, displacement); |
139 | 0 | } |
140 | ||
141 | ||
142 | /** | |
143 | * Construct a new path to coordinate conversion object which positions | |
144 | * an anchor point on the path at a percentage along a path with an offset, | |
145 | * and from the anchor point at a distance measured at a given angle. | |
146 | * | |
147 | * @param pathFig fig representing the edge which will be used for | |
148 | * positioning. | |
149 | * @param theItemFig the fig to be placed. | |
150 | * @param pathPercent distance in integer percentages along path for anchor | |
151 | * point from which the offset is computed. Beginning of path is | |
152 | * 0 and end of path is 100. | |
153 | * @param pathDelta delta distance in coordinate space units to add to the | |
154 | * computed percentage position | |
155 | * @param displacementAngle angle to add to computed line slope when | |
156 | * computing the displacement vector | |
157 | * @param displacementDistance distance from the edge to place the fig. This | |
158 | * is computed along the normal from the anchor position using | |
159 | * pathPercent & pathDelta. | |
160 | */ | |
161 | public PathItemPlacement(FigEdge pathFig, Fig theItemFig, int pathPercent, | |
162 | int pathDelta, | |
163 | int displacementAngle, | |
164 | int displacementDistance) { | |
165 | 0 | super(pathFig); |
166 | 0 | itemFig = theItemFig; |
167 | 0 | setAnchor(pathPercent, pathDelta); |
168 | 0 | setDisplacementVector(displacementAngle + 180, displacementDistance); |
169 | 0 | } |
170 | ||
171 | /** | |
172 | * Construct a new path to coordinate conversion object which positions | |
173 | * an anchor point on the path at a percentage along a path with an offset, | |
174 | * and from the anchor point at a distance measured in X, Y coordinates. | |
175 | * | |
176 | * @param pathFig fig representing the edge which will be used for | |
177 | * positioning. | |
178 | * @param theItemFig the fig to be placed. | |
179 | * @param pathPercent distance in integer percentages along path for anchor | |
180 | * point from which the offset is computed. Beginning of path is | |
181 | * 0 and end of path is 100. | |
182 | * @param pathDelta delta distance in coordinate space units to add to the | |
183 | * computed percentage position | |
184 | * @param absoluteOffset point representing XY offset from anchor to use for | |
185 | * positioning. | |
186 | */ | |
187 | public PathItemPlacement(FigEdge pathFig, Fig theItemFig, int pathPercent, | |
188 | int pathDelta, Point absoluteOffset) { | |
189 | 0 | super(pathFig); |
190 | 0 | itemFig = theItemFig; |
191 | 0 | setAnchor(pathPercent, pathDelta); |
192 | 0 | setAbsoluteOffset(absoluteOffset); |
193 | 0 | } |
194 | ||
195 | /** | |
196 | * Returns the Fig that this PathItemPlacement places. | |
197 | * To get the Fig of the Edge which owns this fig, use use getPathFig() | |
198 | * @see org.tigris.gef.base.PathConv#getPathFig() | |
199 | * @note Used by PGML.tee. | |
200 | * @return The fig that this path item places. | |
201 | */ | |
202 | public Fig getItemFig() { | |
203 | 0 | return itemFig; |
204 | } | |
205 | ||
206 | /** | |
207 | * Compute a position. This strangely named method computes a | |
208 | * position using the current set of parameters and returns the result | |
209 | * by updating the provided Point. | |
210 | * | |
211 | * @param result Point in which to return result. Not read as input. | |
212 | * | |
213 | * @see org.tigris.gef.base.PathConv#stuffPoint(java.awt.Point) | |
214 | */ | |
215 | public void stuffPoint(Point result) { | |
216 | 0 | result = getPosition(result); |
217 | 0 | } |
218 | ||
219 | /** | |
220 | * Get the computed target position based on the current set of parameters. | |
221 | * | |
222 | * @return the computed position | |
223 | */ | |
224 | public Point getPosition() { | |
225 | 0 | return getPosition(new Point()); |
226 | } | |
227 | ||
228 | @Override | |
229 | public Point getPoint() { | |
230 | 0 | return getPosition(); |
231 | } | |
232 | ||
233 | /** | |
234 | * Get the anchor position. The represents the point along the path that | |
235 | * is used as the starting point for all other calculations. | |
236 | * | |
237 | * @return the anchor position represented by the current percentage and | |
238 | * path offset parameters | |
239 | */ | |
240 | public Point getAnchorPosition() { | |
241 | 0 | int pathDistance = getPathDistance(); |
242 | 0 | Point anchor = new Point(); |
243 | 0 | _pathFigure.stuffPointAlongPerimeter(pathDistance, anchor); |
244 | 0 | return anchor; |
245 | } | |
246 | ||
247 | ||
248 | /** | |
249 | * Compute distance along the path based on percentage and offset, clamped | |
250 | * to the length of the path. | |
251 | * | |
252 | * @return the distance | |
253 | */ | |
254 | private int getPathDistance() { | |
255 | 0 | int length = _pathFigure.getPerimeterLength(); |
256 | 0 | int distance = Math.max(0, (length * percent) / 100 + pathOffset); |
257 | // Boundary condition in GEF, make sure this is LESS THAN, not equal | |
258 | 0 | if (distance >= length) { |
259 | 0 | distance = length - 1; |
260 | } | |
261 | 0 | return distance; |
262 | } | |
263 | ||
264 | ||
265 | /** | |
266 | * Get the computed position based on the current set of parameters. | |
267 | * | |
268 | * @param result Point in which to return result. Not read as input, but it | |
269 | * <em>is</em> modified. | |
270 | * @return the updated point | |
271 | */ | |
272 | private Point getPosition(Point result) { | |
273 | ||
274 | 0 | Point anchor = getAnchorPosition(); |
275 | 0 | result.setLocation(anchor); |
276 | ||
277 | // If we're using a fixed offset, just add it and return | |
278 | // No collision detection is done in this case | |
279 | 0 | if (!useAngle) { |
280 | 0 | result.translate(offset.x, offset.y); |
281 | 0 | return result; |
282 | } | |
283 | ||
284 | 0 | double slope = getSlope(); |
285 | 0 | result.setLocation(applyOffset(slope, vectorOffset, anchor)); |
286 | ||
287 | // Check for a collision between our computed position and the edge | |
288 | 0 | if (useCollisionCheck) { |
289 | 0 | int increment = 2; // increase offset by 2px at a time |
290 | ||
291 | // TODO: The size of text figs, which is what we care about most, | |
292 | // isn't computed correctly by GEF. If we got ambitious, we could | |
293 | // recompute a proper size ourselves. | |
294 | 0 | Dimension size = new Dimension(itemFig.getWidth(), itemFig |
295 | .getHeight()); | |
296 | ||
297 | // Get the points representing the poly line for our edge | |
298 | 0 | FigEdge fp = (FigEdge) _pathFigure; |
299 | 0 | Point[] points = fp.getPoints(); |
300 | 0 | if (intersects(points, result, size)) { |
301 | ||
302 | // increase offset by increments until we're clear | |
303 | 0 | int scaledOffset = vectorOffset + increment; |
304 | ||
305 | 0 | int limit = 20; |
306 | 0 | int count = 0; |
307 | // limit our retries in case its too hard to get free | |
308 | 0 | while (intersects(points, result, size) && count++ < limit) { |
309 | 0 | result.setLocation( |
310 | applyOffset(slope, scaledOffset, anchor)); | |
311 | 0 | scaledOffset += increment; |
312 | } | |
313 | // If we timed out, give it one more try on the other side | |
314 | if (false /* count >= limit */) { | |
315 | LOG.debug("Retry limit exceeded. Trying other side"); | |
316 | result.setLocation(anchor); | |
317 | // TODO: This works for 90 degree angles, but is suboptimal | |
318 | // for other angles. It should reflect the angle, rather | |
319 | // than just using a negative offset along the same vector | |
320 | result.setLocation( | |
321 | applyOffset(slope, -vectorOffset, anchor)); | |
322 | count = 0; | |
323 | scaledOffset = -scaledOffset; | |
324 | while (intersects(points, result, size) | |
325 | && count++ < limit) { | |
326 | result.setLocation( | |
327 | applyOffset(slope, scaledOffset, anchor)); | |
328 | scaledOffset += increment; | |
329 | } | |
330 | } | |
331 | // LOG.debug("Final point #" + count + " " + result | |
332 | // + " offset of " + scaledOffset); | |
333 | } | |
334 | } | |
335 | 0 | return result; |
336 | } | |
337 | ||
338 | /** | |
339 | * Check for intersection between the segments of a poly line and a | |
340 | * rectangle. Unlike FigEdge.intersects(), this only checks the main | |
341 | * path, not any associated path items (like ourselves). | |
342 | * | |
343 | * @param points set of points representing line segments | |
344 | * @param center position of center | |
345 | * @param size size of bounding box | |
346 | * @return true if they intersect | |
347 | */ | |
348 | private boolean intersects(Point[] points, Point center, Dimension size) { | |
349 | // Convert to bounding box | |
350 | // Very screwy! GEF sometimes uses center and sometimes upper left | |
351 | // TODO: GEF also positions text at the nominal baseline which is | |
352 | // well inside the bounding box and gives the overall size incorrectly | |
353 | 0 | Rectangle r = new Rectangle(center.x - (size.width / 2), |
354 | center.y - (size.height / 2), | |
355 | size.width, size.height); | |
356 | 0 | Line2D line = new Line2D.Double(); |
357 | 0 | for (int i = 0; i < points.length - 1; i++) { |
358 | 0 | line.setLine(points[i], points[i + 1]); |
359 | 0 | if (r.intersectsLine(line)) { |
360 | 0 | return true; |
361 | } | |
362 | } | |
363 | 0 | return false; |
364 | } | |
365 | ||
366 | /** | |
367 | * Convenience method to set anchor percentage distance and offset. | |
368 | * | |
369 | * @param newPercent distance as a percent of total path 0<=percent<=100 | |
370 | * @param newOffset offset in drawing coordinate system | |
371 | */ | |
372 | public void setAnchor(int newPercent, int newOffset) { | |
373 | 0 | setAnchorPercent(newPercent); |
374 | 0 | setAnchorOffset(newOffset); |
375 | 0 | } |
376 | ||
377 | /** | |
378 | * Set distance along path of anchor in integer percentages. | |
379 | * @param newPercent distance as a percent of total path 0<=percent<=100 | |
380 | */ | |
381 | public void setAnchorPercent(int newPercent) { | |
382 | 0 | percent = newPercent; |
383 | 0 | } |
384 | ||
385 | /** | |
386 | * Set offset along path to be applied to anchor after percentage based | |
387 | * location is calculated. Specified in units of the drawing coordinate | |
388 | * system. | |
389 | * | |
390 | * @param newOffset offset in drawing coordinate system | |
391 | */ | |
392 | public void setAnchorOffset(int newOffset) { | |
393 | 0 | pathOffset = newOffset; |
394 | 0 | } |
395 | ||
396 | /** | |
397 | * Set a fixed offset from the anchor point. | |
398 | * @param newOffset a Point who's x & y coordinates will be used as a | |
399 | * displacement from anchor point | |
400 | */ | |
401 | public void setAbsoluteOffset(Point newOffset) { | |
402 | 0 | offset = newOffset; |
403 | 0 | useAngle = false; |
404 | 0 | } |
405 | ||
406 | /** | |
407 | * Attempts to set a new location for the fig being controlled | |
408 | * by this path item. Takes the given Point which represents an x,y | |
409 | * position, and calculates the most appropriate angle and displacement | |
410 | * to achieve this new position. Used when the user drags a label | |
411 | * on the diagram. | |
412 | * @override | |
413 | * @param newPoint The new target location for the PathItem fig. | |
414 | * @see org.tigris.gef.base.PathConv#setPoint(java.awt.Point) | |
415 | */ | |
416 | public void setPoint(Point newPoint) { | |
417 | 0 | int vect[] = computeVector(newPoint); |
418 | 0 | setDisplacementAngle(vect[0]); |
419 | 0 | setDisplacementDistance(vect[1]); |
420 | 0 | } |
421 | ||
422 | ||
423 | /** | |
424 | * Compute an angle and distance which is equivalent to the given point. | |
425 | * This is a convenience method to help callers get coordinates in a form | |
426 | * that can be passed back in using {@link #setDisplacementVector(int, int)} | |
427 | * | |
428 | * @param point the desired target point | |
429 | * @return an array of two integers containing the angle and distance | |
430 | */ | |
431 | public int[] computeVector(Point point) { | |
432 | 0 | Point anchor = getAnchorPosition(); |
433 | 0 | int distance = (int) anchor.distance(point); |
434 | 0 | int angl = 0; |
435 | 0 | double pathSlope = getSlope(); |
436 | 0 | double offsetSlope = getSlope(anchor, point); |
437 | ||
438 | 0 | if (swap && pathSlope > Math.PI / 2 && pathSlope < Math.PI * 3 / 2) { |
439 | 0 | angl = -(int) ((offsetSlope - pathSlope) / Math.PI * 180); |
440 | } | |
441 | else { | |
442 | 0 | angl = (int) ((offsetSlope - pathSlope) / Math.PI * 180); |
443 | } | |
444 | ||
445 | 0 | int[] result = new int[] {angl, distance}; |
446 | 0 | return result; |
447 | } | |
448 | ||
449 | /** | |
450 | * Set the displacement vector to the given angle and distance. | |
451 | * | |
452 | * @param vectorAngle angle in degrees relative to the edge at the anchor | |
453 | * point. | |
454 | * @param vectorDistance distance along vector in drawing coordinate units | |
455 | */ | |
456 | public void setDisplacementVector(int vectorAngle, int vectorDistance) { | |
457 | 0 | setDisplacementAngle(vectorAngle); |
458 | 0 | setDisplacementDistance(vectorDistance); |
459 | 0 | } |
460 | ||
461 | /** | |
462 | * Set the displacement vector to the given angle and distance. | |
463 | * | |
464 | * @param vectorAngle angle in degrees relative to the edge at the anchor | |
465 | * point. | |
466 | * @param vectorDistance distance along vector in drawing coordinate units | |
467 | */ | |
468 | public void setDisplacementVector(double vectorAngle, | |
469 | int vectorDistance) { | |
470 | 0 | setDisplacementAngle(vectorAngle); |
471 | 0 | setDisplacementDistance(vectorDistance); |
472 | 0 | } |
473 | ||
474 | /** | |
475 | * @param offsetAngle the new angle for the displacement vector, | |
476 | * specified in degrees relative to the edge at the anchor. | |
477 | */ | |
478 | public void setDisplacementAngle(int offsetAngle) { | |
479 | 0 | angle = offsetAngle * Math.PI / 180.0; |
480 | 0 | useAngle = true; |
481 | 0 | } |
482 | ||
483 | /** | |
484 | * @param offsetAngle the new angle for the displacement vector, | |
485 | * specified in degrees relative to the edge at the anchor. | |
486 | */ | |
487 | public void setDisplacementAngle(double offsetAngle) { | |
488 | 0 | angle = offsetAngle * Math.PI / 180.0; |
489 | 0 | useAngle = true; |
490 | 0 | } |
491 | ||
492 | /** | |
493 | * Set distance along displacement vector to place the figure. | |
494 | * @param newDistance distance in units of the drawing coordinate system | |
495 | */ | |
496 | public void setDisplacementDistance(int newDistance) { | |
497 | 0 | vectorOffset = newDistance; |
498 | 0 | useAngle = true; |
499 | 0 | } |
500 | ||
501 | ||
502 | /** | |
503 | * Don't know what this is supposed to do since GEF has no API spec for it, | |
504 | * but we don't implement it and it'll throw an | |
505 | * UnsupportedOperationException if you try to use it. | |
506 | * | |
507 | * @param newPoint ignored | |
508 | * @see org.tigris.gef.base.PathConv#setClosestPoint(java.awt.Point) | |
509 | */ | |
510 | public void setClosestPoint(Point newPoint) { | |
511 | 0 | throw new UnsupportedOperationException(); |
512 | } | |
513 | ||
514 | ||
515 | /** | |
516 | * Compute slope of path at the anchor point. Slope is computed using a | |
517 | * short segment instead of using the instantaneous slope, so it will give | |
518 | * unusual results near discontinuities in the path (ie bends). | |
519 | * @return the slope radians in the range 0 < slope < 2PI | |
520 | */ | |
521 | private double getSlope() { | |
522 | ||
523 | 0 | final int slopeSegLen = 40; // segment size for computing slope |
524 | ||
525 | 0 | int pathLength = _pathFigure.getPerimeterLength(); |
526 | 0 | int pathDistance = getPathDistance(); |
527 | ||
528 | // Two points for line segment used to compute slope of path here | |
529 | // NOTE that this is the average slope, not instantaneous, so it will | |
530 | // give screwy results near bends in the path | |
531 | 0 | int d1 = Math.max(0, pathDistance - slopeSegLen / 2); |
532 | // If our position was clamped, try to make it up on the other end | |
533 | 0 | int d2 = Math.min(pathLength - 1, d1 + slopeSegLen); |
534 | // Can't get the slope of a point. Just return an arbitrary point. | |
535 | 0 | if (d1 == d2) { |
536 | 0 | return 0; |
537 | } | |
538 | 0 | Point p1 = _pathFigure.pointAlongPerimeter(d1); |
539 | 0 | Point p2 = _pathFigure.pointAlongPerimeter(d2); |
540 | ||
541 | 0 | double theta = getSlope(p1, p2); |
542 | 0 | return theta; |
543 | } | |
544 | ||
545 | ||
546 | /** | |
547 | * Compute the slope in radians of the line between two points. | |
548 | * @param p1 first point | |
549 | * @param p2 second point | |
550 | * @return slope in radians in the range 0<=slope<=2PI | |
551 | */ | |
552 | private static double getSlope(Point p1, Point p2) { | |
553 | // Our angle theta is arctan(opposite/adjacent) | |
554 | // Because y increases going down the screen, positive angles are | |
555 | // clockwise rather than counterclockwise | |
556 | 0 | int opposite = p2.y - p1.y; |
557 | 0 | int adjacent = p2.x - p1.x; |
558 | double theta; | |
559 | 0 | if (adjacent == 0) { |
560 | // This shouldn't happen, because of our line segment size check | |
561 | 0 | if (opposite == 0) { |
562 | 0 | return 0; |
563 | } | |
564 | // "We're going vertical!" - Goose in "Top Gun" | |
565 | 0 | if (opposite < 0) { |
566 | 0 | theta = Math.PI * 3 / 2; |
567 | } else { | |
568 | 0 | theta = Math.PI / 2; |
569 | } | |
570 | } else { | |
571 | // Arctan only returns -PI/2 to PI/2 | |
572 | // Handle the other two quadrants and normalize to 0 - 2PI | |
573 | 0 | theta = Math.atan((double) opposite / (double) adjacent); |
574 | // Quadrant II & III | |
575 | 0 | if (adjacent < 0) { |
576 | 0 | theta += Math.PI; |
577 | } | |
578 | // Quadrant IV | |
579 | 0 | if (theta < 0) { |
580 | 0 | theta += Math.PI * 2; |
581 | } | |
582 | } | |
583 | 0 | return theta; |
584 | } | |
585 | ||
586 | /** | |
587 | * Apply an offset for a given distance along the normal vector computed | |
588 | * to the line specified by the two points. | |
589 | * | |
590 | * @param p1 point one of line to use in computing normal vector | |
591 | * @param p2 point two of line to use in computing normal vector | |
592 | * @param theOffset distance to displace fig along normal vector | |
593 | * @param anchor The start point to apply the offset from. Not modified. | |
594 | * @return A new computed point describing the location after the offset | |
595 | * has been applied to the anchor. | |
596 | */ | |
597 | private Point applyOffset(double theta, int theOffset, | |
598 | Point anchor) { | |
599 | ||
600 | 0 | Point result = new Point(anchor); |
601 | ||
602 | // Set the following for some backward compatibility with old algorithm | |
603 | 0 | final boolean aboveAndRight = false; |
604 | ||
605 | // LOG.debug("Slope = " + theta / Math.PI + "PI " | |
606 | // + theta / Math.PI * 180.0); | |
607 | ||
608 | // Add displacement angle to slope | |
609 | 0 | if (swap && theta > Math.PI / 2 && theta < Math.PI * 3 / 2) { |
610 | 0 | theta = theta - angle; |
611 | } else { | |
612 | 0 | theta = theta + angle; |
613 | } | |
614 | ||
615 | // Transform to 0 - 2PI range if we've gone all the way around circle | |
616 | 0 | if (theta > Math.PI * 2) { |
617 | 0 | theta -= Math.PI * 2; |
618 | } | |
619 | 0 | if (theta < 0) { |
620 | 0 | theta += Math.PI * 2; |
621 | } | |
622 | ||
623 | // Compute our deltas | |
624 | 0 | int dx = (int) (theOffset * Math.cos(theta)); |
625 | 0 | int dy = (int) (theOffset * Math.sin(theta)); |
626 | ||
627 | // For backward compatibility everything is above and right | |
628 | // TODO: Do in polar domain? | |
629 | if (aboveAndRight) { | |
630 | dx = Math.abs(dx); | |
631 | dy = -Math.abs(dy); | |
632 | } | |
633 | ||
634 | 0 | result.x += dx; |
635 | 0 | result.y += dy; |
636 | ||
637 | // LOG.debug(result.x + ", " + result.y | |
638 | // + " theta = " + theta * 180 / Math.PI | |
639 | // + " dx = " + dx + " dy = " + dy); | |
640 | ||
641 | 0 | return result; |
642 | } | |
643 | ||
644 | /** | |
645 | * Paint the virtual connection from the edge to where the path item | |
646 | * is placed according to this path item placement algorithm. | |
647 | * | |
648 | * @param g the Graphics object | |
649 | * @see org.tigris.gef.base.PathConv#paint(java.awt.Graphics) | |
650 | */ | |
651 | public void paint(Graphics g) { | |
652 | 0 | final Point p1 = getAnchorPosition(); |
653 | 0 | Point p2 = getPoint(); |
654 | 0 | Rectangle r = itemFig.getBounds(); |
655 | // Load the standard colour, just add an alpha channel. | |
656 | 0 | Color c = Globals.getPrefs().handleColorFor(itemFig); |
657 | 0 | c = new Color(c.getRed(), c.getGreen(), c.getBlue(), 100); |
658 | 0 | g.setColor(c); |
659 | 0 | r.grow(2, 2); |
660 | 0 | g.fillRoundRect(r.x, r.y, r.width, r.height, 8, 8); |
661 | 0 | if (r.contains(p2)) { |
662 | 0 | p2 = getRectLineIntersection(r, p1, p2); |
663 | } | |
664 | 0 | g.drawLine(p1.x, p1.y, p2.x, p2.y); |
665 | 0 | } |
666 | ||
667 | /** | |
668 | * Finds the point where a rectangle and line intersect. | |
669 | * Finds the intersection point between the border of a Rectangle r and | |
670 | * a line drawn between two Points pOut (outside the rectangle) and pIn | |
671 | * (inside the rectangle). | |
672 | * If the pIn is not inside the rectangle, or if any other problem occurs, | |
673 | * pIn is returned. | |
674 | * @param r Rectangle to find the intersection of. | |
675 | * @param pOut Point outside the rectangle. | |
676 | * @param pIn Point inside the rectangle. | |
677 | * @return The intersection between Line(pOut, pIn) and Rectangle r. | |
678 | */ | |
679 | private Point getRectLineIntersection(Rectangle r, Point pOut, Point pIn) { | |
680 | Line2D.Double m, n; | |
681 | 0 | m = new Line2D.Double(pOut, pIn); |
682 | 0 | n = new Line2D.Double(r.x, r.y, r.x + r.width, r.y); |
683 | 0 | if (m.intersectsLine(n)) { |
684 | 0 | return intersection(m, n); |
685 | } | |
686 | 0 | n = new Line2D.Double(r.x + r.width, r.y, r.x + r.width, |
687 | r.y + r.height); | |
688 | 0 | if (m.intersectsLine(n)) { |
689 | 0 | return intersection(m, n); |
690 | } | |
691 | 0 | n = new Line2D.Double(r.x, r.y + r.height, r.x + r.width, |
692 | r.y + r.height); | |
693 | 0 | if (m.intersectsLine(n)) { |
694 | 0 | return intersection(m, n); |
695 | } | |
696 | 0 | n = new Line2D.Double(r.x, r.y, r.x, r.y + r.width); |
697 | 0 | if (m.intersectsLine(n)) { |
698 | 0 | return intersection(m, n); |
699 | } | |
700 | // Should never get here. If we do, return the inner point. | |
701 | 0 | LOG.warn("Could not find rectangle intersection, using inner point."); |
702 | 0 | return pIn; |
703 | } | |
704 | ||
705 | /** | |
706 | * Finds the intersection point of two lines. | |
707 | * It is surprising that this method isn't already available in the base | |
708 | * Line2D class of Java. If a stock method exists or is implemented in | |
709 | * future, feel free replace this code with it. | |
710 | * @param m First line. | |
711 | * @param n Second line. | |
712 | * @return Intersection point of first and second line. | |
713 | */ | |
714 | private Point intersection(Line2D m, Line2D n) { | |
715 | 0 | double d = (n.getY2() - n.getY1()) * (m.getX2() - m.getX1()) |
716 | - (n.getX2() - n.getX1()) * (m.getY2() - m.getY1()); | |
717 | 0 | double a = (n.getX2() - n.getX1()) * (m.getY1() - n.getY1()) |
718 | - (n.getY2() - n.getY1()) * (m.getX1() - n.getX1()); | |
719 | ||
720 | 0 | double as = a / d; |
721 | ||
722 | 0 | double x = m.getX1() + as * (m.getX2() - m.getX1()); |
723 | 0 | double y = m.getY1() + as * (m.getY2() - m.getY1()); |
724 | 0 | return new Point((int) x, (int) y); |
725 | } | |
726 | ||
727 | /** | |
728 | * Returns the value of the percent field - the position of the anchor | |
729 | * point as a percentage of the edge. | |
730 | * @important Used by PGML.tee. | |
731 | * @return The value of the percent field. | |
732 | */ | |
733 | public int getPercent() { | |
734 | 0 | return percent; |
735 | } | |
736 | ||
737 | /** | |
738 | * Returns the value of the angle field converted to degrees. | |
739 | * The angle of the path item relative to the edge. | |
740 | * @important Used by PGML.tee. | |
741 | * @return The value of the angle field in degrees. | |
742 | */ | |
743 | public double getAngle() { | |
744 | 0 | return angle * 180 / Math.PI; |
745 | } | |
746 | ||
747 | /** | |
748 | * Returns the value of the vectorOffset field. | |
749 | * The vectorOffset field is the distance away from the edge, along the | |
750 | * path vector that the item Fig is placed. | |
751 | * @important Used by PGML.tee. | |
752 | * @return The value of the vectorOffset field. | |
753 | */ | |
754 | public int getVectorOffset() { | |
755 | 0 | return vectorOffset; |
756 | } | |
757 | /** End of methods used by PGML.tee */ | |
758 | ||
759 | } |