Welcome to the CMSC 726 course webpage for Fall 2018.
Review Probability, Linear Algebra and Convex Analysis.
Lecture 1 (8/28): Basic Concepts + Linear Regression
Scribed notes for lecture 1 were sent out (request via email if you did not get it).
Reading: Section 9.2 of the text book + pages 1-3, 8-11 of notes
Lecture 2 (8/30): Linear Algebra Review + Gradient Descent
Lecture 3 (9/4): Gradient Descent Convergence + Maximum Likelihood Estimation
Lecture 4 (9/6): Logistic Regression
Lecture 5 (9/11): Convex Optimization, Lagrange Multipliers, KKT
Lecture 6 (9/13): Support Vector Machines + Hinge Loss
Lecture 7 (9/18): Kernels
Lecture 8 (9/20): Coordinate Block Descent + Project Discussion
Lecture 9 (9/25): Project Discussion
Lecture 10 (9/27): PAC Learning + Uniform Convergence
Lecture 11 (10/2): VC Dimension
Lecture 12 (10/4): Rademacher Complexity
Lecture 13 (10/9): Rademacher Calculus + Neural Networks
Lecture 14 (10/11): Deep Learning + Non-convex Optimization
Lecture 15 (10/16): Backpropagation + Higher Order Derivatives
Lecture 16 (10/18): Midterm Exam
Lecture 17 (10/23): Unsupervised Learning, Clustering
Lecture 18 (10/25): Expectation-Maximization
Lecture 19 (10/30): KL Divergence + Variational AutoEncoders (VAEs)
Lecture 20 (11/1): Variational AutoEncoders (VAEs)
Lecture 21 (11/6): Principal Component Analysis (PCA)
Lecture 22 (11/8): Principal Component Analysis (PCA)
Lecture 23 (11/13): Kernel PCA + AutoEncoders
Lecture 24 (11/15): Reinforcement Learning + Finite Markov Decision Process
Lecture 25 (11/20): Bellman Optimality + Policy Evaluation
Lecture 26 (11/27): Value Iteration + Policy Iteration
Lecture 27 (11/29): Finite Horizon MDPs + LQR setting
Lecture 28 (12/4): Final Project Presentations
Lecture 29 (12/6): Reinforcement Learning Examples