## On the Principles of Differentiable Quantum Programming Languages



Shaopeng Zhu


Shih-Han Hung


Shouvanik Chakrabarti

## PLDI 2020 - Language Design I



Joint Center for
QUANTUM INFORMATION
and Computer Science

## A Tale of Two Emerging Programming Languages

Heard of Quantum Programming Languages? $\quad|0\rangle,|1\rangle, \rho$

## $\frac{\partial}{\partial x} \llbracket P(x) \rrbracket \quad$ Heard of Differentiable Programming Languages?

This talk is about the happy marriage of both:

## However, it is not just a brain teaser but with strong practical motivation!

## With the establishment of Quantum Supremacy,

## IBM will soon launch a 53-qubit quantum computer



Google has reached quantum supremacy - here's what it should do next


Variational Quantum Circuits (VQC)


Its training requires gradient-computation Infeasible for classical computation power

Thus,
using quantum programs to compute the gradients of quantum programs
Is critical for the scalability of gradient-based quantum applications!

## Classical vs Quantum 101

## classical:


e.g.

$$
\begin{aligned}
M \equiv v_{3} & =v_{1} \times v_{2} \\
\frac{\partial}{\partial \theta} M \equiv v_{3} & =v_{1} \times v_{2} ; \\
\dot{v_{3}} & =\dot{v}_{1} \times v_{2}+v_{1} \times \dot{v}_{2}
\end{aligned}
$$

## observations:

- actual state $\left(v_{i}\right)=$ representation $\left(v_{i}\right)$
- all $v_{i}$ are reals, thus differentiable
- store $v_{1}, v_{2}, v_{3}, \dot{v}_{1}, \dot{v}_{2}, \dot{v}_{3}$ at the same time
. chain-rule: $\frac{\partial v_{3}}{\partial \theta}=\frac{\partial v_{3}}{\partial v_{1}} \frac{\partial v_{1}}{\partial \theta}+\frac{\partial v_{3}}{\partial v_{2}} \frac{\partial v_{2}}{\partial \theta}$


## quantum:

quantum observables

## Measure

ment
 output

## key differences:

- actual state $\rho$ is a quantum state; its classical representation is an exponential (in \# of qbits) matrix.
- Unit operation $U_{1}$ takes 1 unit time on q. machines; classically simulating $U_{1} \rho U_{1}^{\dagger}$ takes exponential time.
- a priori unclear $\frac{\partial \rho}{\partial \theta}$ for both $\rho$ and $\theta$ part
- cannot store all intermediate $\rho$ due to no-cloning
- hard to make sense of chain-rules


## Classical vs Quantum 101: cont'd

## Classical Neural Networks (CNNs)



Replace $x \rightarrow y$ (classical) by
$x \rightarrow \rho_{x} \rightarrow y$ (quantum) w/ potential speedups


Variational Quantum Circuits (VQCs)

## Variational Quantum Circuits (VQCs)



Training of VQCs, similar to CNNs, will optimize the loss functions

$$
\begin{gathered}
\operatorname{loss}=L(x, y, \theta) \quad \text { for VQC } P(\theta) \mathrm{w} / \mathrm{d} \text {. semantics } \llbracket P(\theta) \rrbracket \\
y(x, \theta)=\operatorname{Tr}\left(O_{y} \llbracket P(\theta) \rrbracket\left(\rho_{\widehat{x})}\right)\right. \text { _quantum } \\
\text { Gradient } \frac{\partial L}{\partial \theta} \text { can be computed from } \frac{\partial y}{\partial \theta} \quad \text { exponential classical cost }
\end{gathered}
$$

$\exists$ q. gadget for simple $P$ w/o formal formulation and program features
conceptual challenges from the beginning and more to come!

## Contributions

"Deep Learning est mort. Vive Differentiable Programming!"
----- Yann LeCun

- Formal Formulation of Differentiable Quantum Programming Languages:
- basic concepts: parameterized quantum programs, semantics of differentiation
- code-transformation: two-stage code-transformation, a logic proving its correctness
- features: support controls, compositions, also w/ resource efficiency
- Implementation of a prototype in OCaml and benchmark tests on representative cases
- quantum neuro-symbolic application: parameterized quantum programs in machine learning
- resource efficiency: empirically demonstrated efficiency for representative cases



## Formal Formulations:

- Use parameterized quantum while-language
to formulate $P(\theta)$ with classically parameterized Pauli rotation gates: e.g.,

$$
e^{i \theta Z}, e^{i \theta X \otimes X}
$$

which forms a universal gate set and can be readily implemented on near-term quantum machines.

## Variational Quantum Circuits (VQCs)



- Model quantum observable on $P(\theta)$ by Observable Semantics

$$
\llbracket\left(O_{y}, \rho_{x}\right) \rightarrow P(\theta) \rrbracket \equiv \operatorname{Tr}\left(O_{y} \llbracket P(\theta) \rrbracket\left(\rho_{x}\right)\right) \quad \text { matches exactly the observable quantum output }
$$

Note that it will serve as (1) the target to differentiate; and (2) the read-out of any quantum programs.

- Make sense of $\frac{\partial}{\partial \theta} P(\theta)$ computing the derivative of $P(\theta)$ (Differential Semantics)

$$
\llbracket\left(O_{y}, \rho_{x}\right) \rightarrow \frac{\partial}{\partial \theta} P(\theta) \rrbracket=\frac{\partial}{\partial \theta} \llbracket\left(O_{y}, \rho_{x}\right) \rightarrow P(\theta) \rrbracket
$$

$$
\text { one } \frac{\partial}{\partial \theta} P(\theta) \text { for any } O_{y} \text { and } \rho_{x}
$$

## Formal Formulations: cont'd

Move to code-transformation and construction of $\frac{\partial}{\partial \theta} P(\theta)$ based on previous formulations

classical " + ": run both $\dot{v}_{1} \times v_{2}$ and $v_{1} \times \dot{v}_{2}$ on the input, and then sum the outputs
quantum "+": hope to do the same. However, the input cannot be cloned, and will be consumed for each
Thus, $\frac{\partial}{\partial \theta} P(\theta)$ needs to be a collection of programs running on copies of the input state $->$ complication!
Ideally, (1) hope to have a similar code-transformation like classical for intuition and implementation, but still able to keep track of the right collection of programs in an efficient way.
(2) hope to control the size of the collection $->$ \# of copies of the input state for efficiency.

## Two-stage Code-Transformation



Operational Semantics of Sum

$$
\begin{aligned}
& \left.\underline{\left\langle P_{1}\left(\boldsymbol{\theta}^{*}\right)\right.}+\underline{P_{2}\left(\boldsymbol{\theta}^{*}\right)}, \rho\right\rangle \rightarrow\left\langle\underline{P_{1}\left(\boldsymbol{\theta}^{*}\right),}, \rho\right\rangle, \\
& \left\langle\underline{P_{1}\left(\boldsymbol{\theta}^{*}\right)}+\underline{P_{2}\left(\boldsymbol{\theta}^{*}\right)}, \rho\right\rangle \rightarrow\left\langle\underline{\left\langle P_{2}\left(\boldsymbol{\theta}^{*}\right)\right.}, \rho\right\rangle
\end{aligned}
$$

exactly match the intuition of "+" for differential semantics

## compilation Output a collection of quantum programs while keeping the size small

$$
\begin{aligned}
& \frac{\partial}{\partial \theta} P(\theta) \equiv \frac{\partial}{\partial \theta} U_{1}(\theta) ; U_{2}(\theta) ;+U_{1}(\theta) ; \frac{\partial}{\partial \theta} U_{2}(\theta) ; \\
& \text { Compile }\left(\frac{\partial}{\partial \theta} P(\theta)\right) \equiv\left\{\left|\frac{\partial}{\partial \theta} U_{1}(\theta) ; U_{2}(\theta) ;, U_{1}(\theta) ; \frac{\partial}{\partial \theta} U_{2}(\theta) ;\right|\right\}, \text { size } 2
\end{aligned}
$$

general compilation follows the same intuition but more complicated :
(Atomic) Compile $(P(\boldsymbol{\theta})) \equiv\{|P(\boldsymbol{\theta})|\}$,
if $\underline{P(\boldsymbol{\theta}) \equiv \operatorname{abort}[\bar{v}]}|\underline{\text { skip }[\bar{v}]}| \underline{q:=|0\rangle}$
$\mid \underline{v}:=U(\boldsymbol{\theta})[\bar{v}]$.
(Sequence) $\quad \operatorname{Compile}\left(P_{1}(\boldsymbol{\theta}) ; P_{2}(\boldsymbol{\theta})\right) \equiv$
( $\{\mid$ abort $\mid\}$, if $\operatorname{Compile}\left(P_{1}(\boldsymbol{\theta})\right)=\{\mid$ abort $\mid\}$ $\{$ abort $\mid\}$, if Compile $\left(\overline{P_{2}(\boldsymbol{\theta})}\right)=\{\mid$ abort $\mid\} ;$ $\left.\left\{\mid Q_{1}(\boldsymbol{\theta}) ; Q_{2}(\boldsymbol{\theta}): Q_{b}(\boldsymbol{\theta}) \overline{\operatorname{Compile}\left(P_{b}(\boldsymbol{\theta})\right.}\right) \mid\right\}$
otherwise.
(Case $m$ ) Compile(case) $\equiv \mathrm{FB}$ (case), described in Fig. 36 .
(While ${ }^{(T)}$ ) Compile $\left(\underline{\text { while }^{(T)}}\right)$ : use (Case $m$ ) and (Sequence). (Sum) Compile $\left.\underline{\left(P_{1}(\boldsymbol{\theta})+P_{2}(\boldsymbol{\theta})\right.}\right) \equiv$

Compile $\left(\underline{P_{1}(\boldsymbol{\theta})}\right)$ UCompile $\left(\underline{P_{2}(\boldsymbol{\theta})}\right)$, if $\forall b \in\{1$,
$2\}$, Compile $\left(\underline{P_{b}(\boldsymbol{\theta})}\right) \neq\{\mid$ abort $\mid\} ;$
Compile $\left(\underline{P_{1}(\boldsymbol{\theta})}\right)$, if Compile $\left(\underline{P_{2}(\boldsymbol{\theta})}\right)=\{\mid$ abort $\mid\}$
Compile $\left(P_{1}(\overline{\boldsymbol{\theta}})\right) \neq\{\mid$ abort $\mid\} ;$
Compile $\left(P_{2}(\boldsymbol{\theta})\right)$, if Compile $\left.\overline{\left(P_{1}(\boldsymbol{\theta})\right.}\right)=\{|a b o r t|\}$ Compile $\left(\underline{P_{2}(\boldsymbol{\theta})}\right) \neq\{\mid$ abort $\mid\} ;$ \{|abort|\}, otherwise

## Code-Transformation

 $\frac{\partial}{\partial \theta} P(\theta):$ code-transformation

## Parameterized

Quantum
Programs


We develop a sound logic to prove its correctness.

## Similar to classical for the convenience of compiler implementation!

(1) modify existing phase-shift rule using two-circuit-difference to one circuit with super-posed control for composition and efficiency.
(2) the proof relies on the strong requirement in differential semantics

$$
\begin{aligned}
\llbracket(O, \rho) \rightarrow \frac{\partial}{\partial \theta}\left(\underline{S_{0}(\boldsymbol{\theta}) ; S_{1}(\boldsymbol{\theta})}\right) \rrbracket & =\llbracket(O, \rho) \rightarrow \frac{\partial}{\partial \theta}\left(\underline{S_{0}(\boldsymbol{\theta})}\right) ; \underline{S_{1}(\boldsymbol{\theta})} \rrbracket \\
& \left.+\llbracket(O, \rho) \rightarrow \underline{S_{0}(\boldsymbol{\theta})} ; \frac{\partial}{\partial \theta} \underline{\left(S_{1}(\boldsymbol{\theta})\right.}\right) \rrbracket .
\end{aligned}
$$

$\llbracket(O, \rho) \rightarrow S_{0}(\boldsymbol{\theta}) ; \frac{\partial}{\partial \theta}\left(S_{1}(\boldsymbol{\theta})\right) \rrbracket=\mathbb{U}\left(O, \llbracket S_{0}(\boldsymbol{\theta}) \rrbracket(\rho)\right) \| \frac{\partial}{\partial \theta}\left(S_{1}(\boldsymbol{\theta})\right) \rrbracket$
make use of the premises of $\frac{\partial}{\partial \theta} S_{0}(\theta)$, $\frac{\partial}{\partial \theta} S_{1}(\theta)$, for different $(O, \rho)$ pairs
(3) support case unconditionally, better than the classical case support bounded loop, matching the classical case [Plotkin, POPL'18]

## Recap



- Formal Formulation of Differentiable Quantum Programming Languages:
- basic concepts: parameterized quantum programs, semantics of differentiation
- code-transformation: two-stage code-transformation, a logic proving its correctness
- features: support controls, compositions, also w/ resource efficiency
- Implementation of a prototype in OCaml and benchmark tests on representative cases
- quantum neuro-symbolic application: parameterized quantum programs in machine learning
- resource efficiency: empirically demonstrated efficiency for representative cases


## Resource Estimation

## compilation

additive
programs

## collection of

programs

Generally EXP (in \# of "+"s) programs after compilation

Definition 7.1. The "Occurrence Count for $\theta_{j}$ " in $P(\boldsymbol{\theta})$, de noted $\mathrm{OC}_{j}(P(\boldsymbol{\theta}))$, is defined as follows:

1. If $P(\boldsymbol{\theta}) \equiv$ abort $[\bar{v}]|\operatorname{skip}[\bar{v}]| q:=|0\rangle(q \in \bar{v})$, then $\mathrm{OC}_{j}(P(\boldsymbol{\theta}))=0$.
2. $P(\boldsymbol{\theta}) \equiv U(\boldsymbol{\theta}):$ if $U(\boldsymbol{\theta})$ trivially uses $\theta_{j}$, then $\mathrm{OC}_{j}(P(\boldsymbol{\theta}))=$ 0 ; otherwise $\mathrm{OC}_{j}(P(\boldsymbol{\theta}))=1$.
3. If $\left.P(\boldsymbol{\theta}) \equiv U(\boldsymbol{\theta})=P_{1}(\boldsymbol{\theta}) ; P_{2}(\boldsymbol{\theta})\right)$ then $\mathrm{OC}_{j}(P(\boldsymbol{\theta}))=$ $\mathrm{OC}_{j}\left(P_{1}(\boldsymbol{\theta})\right)+\mathrm{OC}_{j}\left(P_{2}(\boldsymbol{\theta})\right)$.
4. If $P(\boldsymbol{\theta}) \equiv \operatorname{case} M[\bar{q}]=\overline{m \rightarrow P_{m}(\boldsymbol{\theta})}$ end then $\mathrm{OC}_{j}(P(\boldsymbol{\theta}))$ $=\max _{m} \mathrm{OC}_{j}\left(P_{m}(\boldsymbol{\theta})\right)$.
5. If $P(\boldsymbol{\theta}) \equiv$ while ${ }^{(T)} M[\bar{q}]=1$ do $P_{1}(\boldsymbol{\theta})$ done then $\mathrm{OC}_{j}(P(\boldsymbol{\theta}))=T \cdot \mathrm{OC}_{j}\left(P_{1}(\boldsymbol{\theta})\right)$.

However, for relevant $\frac{\partial}{\partial \theta} P(\theta)$, we show the \# is bounded by occurrence count of $\theta$ which basically counts the \# of appearances of $\theta$

$$
\begin{aligned}
& P(\theta) \equiv U_{1}(\theta) ; U_{2}(\theta) ; \quad \text { occurrence count } 2 \\
& \text { Compile }\left(\frac{\partial}{\partial \theta} P(\theta)\right) \equiv\left\{\left|\frac{\partial}{\partial \theta} U_{1}(\theta) ; U_{2}(\theta) ;, U_{1}(\theta) ; \frac{\partial}{\partial \theta} U_{2}(\theta) ;\right|\right\} \text {, size } 2
\end{aligned}
$$

## Why occurrence could be a reasonable quantity?

$$
\begin{aligned}
& v_{3}=v_{1} \times v_{2} \\
& \dot{v_{3}}=\dot{v_{1}} \times v_{2}+v_{1} \times \dot{v}_{2}
\end{aligned}
$$

occurrence count 2: $v_{1}(\theta), v_{2}(\theta)$ in $v_{3}$ instead of extra initial states, classically one needs 2 extra registers to store $\dot{v}_{1}, \dot{v}_{2}$

| $P(\boldsymbol{\theta})$ | $1 \mathrm{OC}(\cdot)$ | \||\# $\left.\frac{\partial}{\partial \theta}(\cdot) \right\rvert\,$ | \#gates | \#lines | \#layers | \#qb |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{QNN}_{M, i}$ | 124 | 24 | 165 | 189 | 3 | 18 |
| $\mathrm{QNN}_{M, w}$ | ${ }_{1}^{1} 56$ | 124 | 231 | 121 | 5 | 18 |
| $\mathrm{QNN}_{L, i}$ | 148 | 48 | 363 | 414 | 6 | 36 |
| $\mathrm{QNN}_{L, w}$ | 1504 | 48 | 2079 | 244 | 33 | 36 |
| $\mathrm{VQE}_{M, i}$ | 15 | 15 | 224 | 241 | 3 | 12 |
| $\mathrm{VQE}_{M, w}$ | 1 | 15 | 224 | 112 | 5 | 12 |
| $\mathrm{VQE}_{L, i}$ | 140 | 140 | 576 | 628 | 5 | 40 |
| $\mathrm{VQE}_{L, w}$ | 1248 | 40 | 1984 | 368 | 17 | 40 |
| $\mathrm{QAOA}_{M, i}$ | ${ }_{1}^{11} 18$ | ${ }^{18}$ | 120 | 142 | 3 | 18 |
| $\mathrm{QAOA}_{M, w}$ | 142 | 18 | 168 | 94 | 5 | 18 |
| $\mathrm{QAOA}_{L, i}$ | 136 | 36 | 264 | 315 | 6 | 36 |
| $\mathrm{QAOA}_{L, w}$ | ${ }_{1}^{1} 378$ | ${ }^{36}$ | 1512 | 190 | 33 | 36 |
| - \| \| |  |  |  |  |  |  |

Benchmark tests on typical instances

## Quantum Neuro-Symbolic Application

## "Deep Learning est mort. Vive Differentiable Programming!"

$Q(\Gamma) \equiv R_{X}\left(\gamma_{1}\right)\left[q_{1}\right] ; R_{X}\left(\gamma_{2}\right)\left[q_{2}\right] ; R_{X}\left(\gamma_{3}\right)\left[q_{3}\right] ; R_{X}\left(\gamma_{4}\right)\left[q_{4}\right] ;$ $R_{Y}\left(\gamma_{5}\right)\left[q_{1}\right] ; R_{Y}\left(\gamma_{6}\right)\left[q_{2}\right] ; R_{Y}\left(\gamma_{7}\right)\left[q_{3}\right] ; R_{Y}\left(\gamma_{8}\right)\left[q_{4}\right]$; $R_{Z}\left(\gamma_{9}\right)\left[q_{1}\right] ; R_{Z}\left(\gamma_{10}\right)\left[q_{2}\right] ; R_{Z}\left(\gamma_{11}\right)\left[q_{3}\right] ; R_{Z}\left(\gamma_{12}\right)\left[q_{4}\right]$,
(no control) $\quad P_{1}(\Theta, \Phi) \equiv Q(\Theta) ; Q(\Phi)$.
(w/ control) $P_{2}(\Theta, \Phi, \Psi) \equiv Q(\Theta)$; case $M\left[q_{1}\right]=0 \rightarrow \quad Q(\Phi)$
$1 \rightarrow \quad Q(\Psi)$.
Note that $P_{1}(\Theta, \Phi)$ and $P_{2}(\Theta, \Phi, \Psi)$ run the same \# of gates.

Simple classification task w/ ground truth

$$
f(z)=\neg\left(z_{1} \oplus z_{4}\right), z=z_{1} z_{2} z_{3} z_{4} \in\{0,1\}^{4}
$$

via the following square loss function

$$
\text { loss }=\sum_{z \in\{0,1\}^{4}} 0.5 *\left(l_{\boldsymbol{\theta}}(z)-f(z)\right)^{2}
$$

Training of $P_{2}$ is conducted on our implementation, whereas the training of $P_{1}$ is conducted on prior art (e.g., Pennylane).

The use of quantum control could be significant for near-term.

## Conclusions


open questions:
functional PL, q. neuro-symbolic apps


As a generalization of both, our findings might provide hints of unifying differentiable and probabilistic programming!

