On the Principles of Differentiable Quantum Programming Languages

Shaopeng Zhu Shih-Han Hung

PLDI 2020 - Language Design I

Shouvanik Chakrabarti

Xiaodi Wu

OINT CENTER FOR **QUANTUM INFORMATION** AND COMPUTER SCIENCE

A Tale of Two Emerging Programming Languages

Heard of Quantum Programming Languages?

$$\frac{\partial}{\partial x} \llbracket P(x) \rrbracket$$
 Heard of Dif

This talk is about the happy marriage of both:

 $|0\rangle, |1\rangle, \rho$

ferentiable Programming Languages?

Differentiable Quantum Programming Languages

However, it is not just a brain teaser but with strong practical motivation! With the establishment of Quantum Supremacy,

IBM will soon launch a 53-qubit quantum computer

Frederic Lardinois @fredericl / 8:00 am EDT • September 18, 2019

Google has reached quantum Variational Quantum Circuits (VQC) supremacy – here's what it should do next

TECHNOLOGY | ANALYSIS 26 September 2019

By Chelsea Whyt

Thus,

Using quantum programs to compute the gradients of quantum programs

Is crítical for the scalability of gradient-based quantum applications!

Its training requires gradient-computation Infeasible for classical computation power

Classical vs Quantum 101

classical:

e.g.
$$M \equiv v_3 = v_1 \times v_2$$

 $\frac{\partial}{\partial \theta} M \equiv v_3 = v_1 \times v_2;$
 $\dot{v}_3 = \dot{v}_1 \times v_2 + v_1 \times \dot{v}_2$

observations:

- actual state (v_i) = representation (v_i)
- all v_i are reals, thus differentiable
- store $v_1, v_2, v_3, \dot{v_1}, \dot{v_2}, \dot{v_3}$ at the same time

• chain-rule:
$$\frac{\partial v_3}{\partial \theta} = \frac{\partial v_3}{\partial v_1} \frac{\partial v_1}{\partial \theta} + \frac{\partial v_3}{\partial v_2} \frac{\partial v_2}{\partial \theta}$$

key differences:

- actual state ρ is a quantum state; its classical representation is an exponential (in # of qbits) matrix.
- Unit operation U_1 takes 1 unit time on q. machines; classically simulating $U_1 \rho U_1^{\dagger}$ takes exponential time.
- a priori unclear $\frac{\partial \rho}{\partial \theta}$ for both ρ and θ part
- cannot store all intermediate ρ due to **no-cloning**
- hard to make sense of chain-rules

Classical vs Quantum 101: cont'd

Contributions

"Deep Learning est mort. Vive Differentiable Programming!"

• Formal Formulation of Differentiable Quantum Programming Languages:

- basic concepts: parameterized quantum programs, semantics of differentiation
- code-transformation: two-stage code-transformation, a logic proving its correctness
- features: support controls, compositions, also w/ resource efficiency
- **Implementation** of a prototype in OCaml and benchmark tests on representative cases
 - quantum neuro-symbolic application: parameterized quantum programs in machine learning
 - resource efficiency: empirically demonstrated efficiency for representative cases

----- Yann LeCun

Differentiable Quantum Prog-Lang: github:/LibertasSpZ/adcompile

Formal Formulations:

 Use parameterized quantum while-language to formulate $P(\theta)$ with classically parameterized Pauli rotation gates: e.g.,

 $e^{i\theta Z}, e^{i\theta X\otimes X}$

which forms a *universal* gate set and can be readily implemented on near-term quantum machines.

• Model quantum observable on $P(\theta)$ by **Observable Semantics**

$$\llbracket (O_y, \rho_x) \to P(\theta) \rrbracket \equiv \operatorname{Tr}(O_y \llbracket P(\theta))$$

Note that it will serve as (1) the target to differentiate; and (2) the read-out of any quantum programs.

• Make sense of $\frac{\partial}{\partial \theta} P(\theta)$ computing the derivative of $P(\theta)$ (Differential Semantics)

$$\llbracket (O_y, \rho_x) \to \frac{\partial}{\partial \theta} P(\theta) \rrbracket = \frac{\partial}{\partial \theta} \llbracket (O_y, \rho_x) \to P$$

Variational Quantum Circuits (VQCs)

) (ρ_x) matches exactly the observable quantum output

strong requirement: achievable and critical

Formal Formulations: cont'd

classical "+": run both $\dot{v}_1 \times v_2$ and $v_1 \times \dot{v}_2$ on the **input**, and then sum the outputs Thus, $\frac{d}{\partial \theta} P(\theta)$ needs to be a collection of programs running on copies of the input state -> complication!

- quantum "+": hope to do the same. However, the input cannot be cloned, and will be consumed for each
- Ideally, (1) hope to have a similar code-transformation like classical for intuition and implementation, but still able to keep track of the right collection of programs in an efficient way.
 - (2) hope to control the size of the collection -> # of copies of the input state for efficiency.

Two-stage Code-Transformation

compilation

Output a collection of quantum programs while keeping the size small

$$\begin{split} \frac{\partial}{\partial \theta} P(\theta) &\equiv \frac{\partial}{\partial \theta} U_1(\theta); U_2(\theta); + U_1(\theta); \frac{\partial}{\partial \theta} U_2(\theta); \\ \text{Compile}(\frac{\partial}{\partial \theta} P(\theta)) &\equiv \{ | \frac{\partial}{\partial \theta} U_1(\theta); U_2(\theta);, U_1(\theta); \frac{\partial}{\partial \theta} U_2(\theta); | \}, \text{ size } 2 \} \end{split}$$

general compilation follows the same intuition but more complicated :

Operational Semantics of Sum

$$\frac{(\boldsymbol{\theta}^*)}{(\boldsymbol{\theta}^*)} + \underline{P_2(\boldsymbol{\theta}^*)}, \ \rho \rangle \to \langle \underline{P_1(\boldsymbol{\theta}^*)}, \ \rho \rangle, \\
\underline{(\boldsymbol{\theta}^*)} + \underline{P_2(\boldsymbol{\theta}^*)}, \ \rho \rangle \to \langle \underline{P_2(\boldsymbol{\theta}^*)}, \ \rho \rangle$$

exactly match the intuition of "+" for differential semantics

(Atomic)	$Compile(P(\boldsymbol{\theta})) \equiv \{ P(\boldsymbol{\theta}) \},\$
	if $P(\boldsymbol{\theta}) \equiv \operatorname{abort}[\overline{\upsilon}] \operatorname{skip}[\overline{\upsilon}] q := 0\rangle$
	$ \overline{v} := U(\theta)[\overline{v}].$
(Sequence)	$Compile(P_1(\boldsymbol{\theta}); P_2(\boldsymbol{\theta})) \equiv$
	$\{ abort \}, if Compile(P_1(\boldsymbol{\theta})) = \{ abort \};$
	{ $ abort $ }, if Compile($\overline{P_2(\boldsymbol{\theta})}$) = { $ abort $ };
	$\{ Q_1(\boldsymbol{\theta}); Q_2(\boldsymbol{\theta}) : Q_b(\boldsymbol{\theta}) \in \text{Compile}(P_b(\boldsymbol{\theta})) \}, \}$
	otherwise.
(Case <i>m</i>)	$Compile(case) \equiv FB(case)$, described in Fig.3b.
(While ^{(T)})	Compile($while^{(T)}$): use (Case <i>m</i>) and (Sequen
(Sum)	$Compile(\overline{P_1(\boldsymbol{\theta}) + P_2(\boldsymbol{\theta})}) \equiv$
	(Compile($P_1(\boldsymbol{\theta})$) [Compile($P_2(\boldsymbol{\theta})$), if $\forall b \in \{1, \dots, n\}$
	2 , Compile($\overline{P_b(\theta)}$) \neq { abort
	Compile($P_1(\boldsymbol{\theta})$), if Compile $\overline{(P_2(\boldsymbol{\theta}))} = \{ abor $
	$\{ \qquad \qquad \text{Compile}(P_1(\boldsymbol{\theta})) \neq \{ \textbf{abort} \} \}$
	Compile($P_2(\boldsymbol{\theta})$), if Compile($P_1(\boldsymbol{\theta})$) = { abor
	$\boxed{\qquad} Compile(P_2(\boldsymbol{\theta})) \neq \{ abort \}$
	{ abort }, otherwise

Code-Transformation

We develop a sound logic to prove its correctness.

Similar to classical for the convenience of compiler implementation!

(1) modify existing *phase-shift* rule using two-circuit-difference to one circuit with super-posed control for composition and efficiency.

(2) the proof relies on the strong requirement in differential semantics

$$\begin{bmatrix} (O, \rho) \to \frac{\partial}{\partial \theta} (\underline{S_0(\theta)}; S_1(\theta)) \end{bmatrix} = \begin{bmatrix} (O, \rho) \to \frac{\partial}{\partial \theta} (\underline{S_0(\theta)}); \underline{S_1(\theta)} \end{bmatrix} \\ + \begin{bmatrix} (O, \rho) \to \underline{S_0(\theta)}; \frac{\partial}{\partial \theta} (\underline{S_1(\theta)}) \end{bmatrix}.$$

$$\begin{array}{l} (f_{0}) \rightarrow S_{0}(\boldsymbol{\theta}); \frac{\partial}{\partial \theta}(S_{1}(\boldsymbol{\theta}))] = \llbracket (O, \llbracket S_{0}(\boldsymbol{\theta}) \rrbracket (\rho)) \rightarrow \frac{\partial}{\partial \theta}(S_{1}(\boldsymbol{\theta})) \rrbracket \\ (f_{0}) \rightarrow \frac{\partial}{\partial \theta}(S_{0}(\boldsymbol{\theta})); S_{1}(\boldsymbol{\theta}) \rrbracket = \llbracket (\llbracket S_{1}(\boldsymbol{\theta}) \rrbracket^{*}(O), \rho) \rightarrow \frac{\partial}{\partial \theta}(S_{0}(\boldsymbol{\theta})) \rrbracket \end{aligned}$$

make use of the premises of $\frac{\partial}{\partial \theta} S_0(\theta)$, $\frac{\partial}{\partial \theta} S_1(\theta)$, for **different** (O, ρ) pairs

(3) support **case** unconditionally, better than the classical case support **bounded loop**, matching the classical case [Plotkin, POPL'18]

Formal Formulation of Differentiable Quantum Programming Languages:

- basic concepts: parameterized quantum programs, semantics of differentiation
- code-transformation: two-stage code-transformation, a logic proving its correctness
- features: support controls, compositions, also w/ resource efficiency

- quantum neuro-symbolic application: parameterized quantum programs in machine learning
- resource efficiency: empirically demonstrated efficiency for representative cases

Implementation of a prototype in OCaml and benchmark tests on representative cases

Resource Estimation

Generally **EXP** (in # of "+"s) programs after compilation However, for relevant $\frac{\partial}{\partial \theta} P(\theta)$, we show the # is **bounded** by **occurrence count** of θ which basically counts the # of appearances of θ

 $P(\theta) \equiv U_1(\theta); U_2(\theta);$ occurrence count 2 $\text{Compile}(\frac{\partial}{\partial A}P(\theta)) \equiv \{ | \frac{\partial}{\partial A}U_1(\theta); U_2(\theta); , U_1(\theta); \frac{\partial}{\partial A}U_2(\theta); | \}, \text{ size 2} \}$

Why occurrence could be a reasonable quantity?

- $v_3 = v_1 \times v_2;$ $\dot{v}_3 = \dot{v}_1 \times v_2 + v_1 \times \dot{v}_2$
- occurrence count 2: $v_1(\theta), v_2(\theta)$ in v_3 instead of extra initial states, classically one needs 2 extra registers to store $\dot{v_1}, \dot{v_2}$

Definition 7.1. The "Occurrence Count for θ_i " in $P(\theta)$, denoted $OC_i(P(\boldsymbol{\theta}))$, is defined as follows:

- 1. If $P(\boldsymbol{\theta}) \equiv \operatorname{abort}[\overline{v}]|\operatorname{skip}[\overline{v}]|q := |0\rangle \ (q \in \overline{v})$, then $OC_i(P(\boldsymbol{\theta})) = 0;$
- 2. $P(\boldsymbol{\theta}) \equiv U(\boldsymbol{\theta})$: if $U(\boldsymbol{\theta})$ trivially uses θ_i , then $OC_i(P(\boldsymbol{\theta})) =$ 0; otherwise $OC_i(P(\boldsymbol{\theta})) = 1$.
- 3. If $P(\boldsymbol{\theta}) \equiv U(\boldsymbol{\theta}) = P_1(\boldsymbol{\theta}); P_2(\boldsymbol{\theta})$ then $OC_j(P(\boldsymbol{\theta})) =$ $OC_i(P_1(\boldsymbol{\theta})) + OC_i(P_2(\boldsymbol{\theta})).$
- 4. If $P(\boldsymbol{\theta}) \equiv \operatorname{case} M[\overline{q}] = \overline{m \to P_m(\boldsymbol{\theta})} \text{ end } then \operatorname{OC}_i(P(\boldsymbol{\theta}))$ $= \max_m \operatorname{OC}_i(P_m(\boldsymbol{\theta})).$
- 5. If $P(\boldsymbol{\theta}) \equiv \text{while}^{(T)} M[\overline{q}] = 1 \text{ do } P_1(\boldsymbol{\theta}) \text{ done then}$ $OC_i(P(\boldsymbol{\theta})) = T \cdot OC_i(P_1(\boldsymbol{\theta})).$

	2	-			
	600 B	£773			
$P(\boldsymbol{\theta})$	$OC(\cdot)$	$ \#\frac{\partial}{\partial\theta}(\cdot)$	#gates	#lines	#layers
QNN _{M, i}	24	24	165	189	3
QNN _{M, w}	56	24	231	121	5
$QNN_{L,i}$	48	48	363	414	6
$QNN_{L, w}$	504	48	2079	244	33
VQE _{M, i}	15	15	224	241	3
VQE _{M, w}	35	15	224	112	5
VQE _{L, i}	40	40	576	628	5
VQE _{L, w}	248	40	1984	368	17
QAOA _{M, i}	18	18	120	142	3
QAOA _{M, w}	42	18	168	94	5
QAOA _{L, i}	36	36	264	315	6
QAOA _{L, w}	378	36	1512	190	33
	5 a a 2	2222			

Benchmark tests on **typical** instances

Quantum Neuro-Symbolic Application

"Deep Learning est mort. Vive Differentiable Programming!"

 $Q(\Gamma) \equiv R_X(\gamma_1)[q_1]; R_X(\gamma_2)[q_2]; R_X(\gamma_3)[q_3]; R_X(\gamma_4)[q_4];$ $R_Y(\gamma_5)[q_1]; R_Y(\gamma_6)[q_2]; R_Y(\gamma_7)[q_3]; R_Y(\gamma_8)[q_4];$ $R_{Z}(\gamma_{9})[q_{1}]; R_{Z}(\gamma_{10})[q_{2}]; R_{Z}(\gamma_{11})[q_{3}]; R_{Z}(\gamma_{12})[q_{4}],$

(no control) $P_1(\Theta, \Phi) \equiv Q(\Theta); Q(\Phi).$

(w/ control) $P_2(\Theta, \Phi, \Psi) \equiv Q(\Theta)$; case $M[q_1] = 0 \rightarrow Q(\Theta)$ $Q(\Phi)$ $Q(\Psi).$ $1 \rightarrow$

Note that $P_1(\Theta, \Phi)$ and $P_2(\Theta, \Phi, \Psi)$ run the same # of gates.

Simple classification task w/ ground truth

$$f(z) = \neg(z_1 \oplus z_4), z = z_1 z_2 z_3 z_4 \in \{0, 1\}^4$$

via the following square loss function

loss =
$$\sum_{z \in \{0,1\}^4} 0.5 * (l_{\theta}(z) - f(z))^2$$
.

----- Yann LeCun

Training of P_2 is conducted on our implementation, whereas the training of P_1 is conducted on prior art (e.g., Pennylane).

The use of quantum control could be **significant** for near-term.

Conclusions

even if you are only interested in classical

open questions: functional PL, q. neuro-symbolic apps

As a generalization of both, our findings might provide hints of unifying differentiable and probabilistic programming!

> **Differentiable Quantum Prog-Lang: github:**/LibertasSpZ/adcompile

