
Quantum Variational Methods for
Quantum Applications

Shouvanik Chakrabarti Xiaodi WuXuchen You

ICCAD 2021: Special Session on Quantum Machine Learning

based on results published in NeurIPS 19, PLDI 20, ICML 21

Quantum Variational Methods: Short & Long Term
Motivation: (short-term) NISQ with resource constraints

 or (long-term) consider the paradigm shift made by the deep learning

Quantum Variational Methods: Short & Long Term
Motivation: (short-term) NISQ with resource constraints

 or (long-term) consider the paradigm shift made by the deep learning

Quantum Variational Methods: ~ classically parameterized quantum circuits
 - share a lot of similarities w/ classical NNs, also with quantum features

Quantum Variational Methods: Short & Long Term
Motivation: (short-term) NISQ with resource constraints

 or (long-term) consider the paradigm shift made by the deep learning

Quantum Variational Methods: ~ classically parameterized quantum circuits
 - share a lot of similarities w/ classical NNs, also with quantum features

input
x

output
y

Classical Neural Networks (CNNs)

Quantum Variational Methods: Short & Long Term
Motivation: (short-term) NISQ with resource constraints

 or (long-term) consider the paradigm shift made by the deep learning

Quantum Variational Methods: ~ classically parameterized quantum circuits
 - share a lot of similarities w/ classical NNs, also with quantum features

input
x

output
y

Classical Neural Networks (CNNs)

input
x

output
y

quantum
ρx

Measure
ment

Variational Quantum Circuits (VQCs)

Quantum Variational Methods: Short & Long Term
Motivation: (short-term) NISQ with resource constraints

 or (long-term) consider the paradigm shift made by the deep learning

Quantum Variational Methods: ~ classically parameterized quantum circuits
 - share a lot of similarities w/ classical NNs, also with quantum features

input
x

output
y

Classical Neural Networks (CNNs) x → yReplace (classical) by

x → ρx → y (quantum) w/
potential speedups

input
x

output
y

quantum
ρx

Measure
ment

Variational Quantum Circuits (VQCs)

Quantum Variational Methods: Short & Long Term
Motivation: (short-term) NISQ with resource constraints

 or (long-term) consider the paradigm shift made by the deep learning

Quantum Variational Methods: ~ classically parameterized quantum circuits
 - share a lot of similarities w/ classical NNs, also with quantum features

input
x

output
y

Classical Neural Networks (CNNs) x → yReplace (classical) by

x → ρx → y (quantum) w/
potential speedups

input
x

output
y

quantum
ρx

Measure
ment

Variational Quantum Circuits (VQCs)

Promising for:
 (1) quantum physics related problems

 (2) computational tasks with structures
that can be leveraged by quantum
mechanics

Unlike classical NNs, empirical study of q. variational method is limited:

 - due to exponential cost in classical simulation of parameterized q. Circuits

 - due to noisy and size-limited available quantum machines (NISQ)

Quantum Variational Methods: Theory-guided Empirical Study

Unlike classical NNs, empirical study of q. variational method is limited:

 - due to exponential cost in classical simulation of parameterized q. Circuits

 - due to noisy and size-limited available quantum machines (NISQ)

Quantum Variational Methods: Theory-guided Empirical Study

Unboxing Techniques from Machine Learning

not so easy to scale !

Unlike classical NNs, empirical study of q. variational method is limited:

 - due to exponential cost in classical simulation of parameterized q. Circuits

 - due to noisy and size-limited available quantum machines (NISQ)

Quantum Variational Methods: Theory-guided Empirical Study

Unboxing Techniques from Machine Learning

not so easy to scale !

In particular:
 We focus on how to train quantum variational models efficiently !!

 loss function design + variational model design

Landscape in Training Quantum Variational Methods

Landscape in Training Quantum Variational Methods

Exponentially Many Local Minima in Quantum Neural Networks
Xuchen You 1,2 Xiaodi Wu 1,2

1Joint Center for Quantum Information and Computer Science, University of Maryland
2Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland

�ICML 2021

Abstract

Quantum Neural Networks (QNNs), or the so-called variational quantum circuits,
are important quantum applications both because of their similar promises as
classical neural networks and because of the feasibility of their implementation
on near-term intermediate-size noisy quantum machines (NISQ). However, the
training task of QNNs is challenging and much less understood. We conduct a
quantitative investigation on the landscape of loss functions of QNNs and identify
a class of simple yet extremely hard QNN instances for training. Specifically, we
show for typical under-parameterized QNNs, there exists a dataset that induces
a loss function with the number of spurious local minima depending exponen-
tially on the number of parameters. Moreover, we show the optimality of our
construction by providing an almost matching upper bound on such dependence.
While local minima in classical neural networks are due to non-linear activations,
in quantum neural networks local minima appear as a result of the quantum inter-
ference phenomenon. Finally, we empirically confirm that our constructions can
indeed be hard instances in practice with typical gradient-based optimizers, which
demonstrates the practical value of our findings.

Quantum Neural Networks (QNNs)

- QNNs are parameterized quantum circuits with layered structures
Classical NN Quantum NN

U
1,1(◊1,1)

Uent

U
1,2(◊1,2)

UentU
2,1(◊2,1) U

2,2(◊2,2)

U
3,1(◊3,1) U

3,2(◊3,2)

- QNNs are usually trained by delegating optimization to classical computers

Classical Optimizer Quantum Circuit
updates

measurements

- Typical QNN designs resemble linear networks with quadratic activations (Figure 1)

Classical results
- Linear networks and two-layer neural networks with quadratic activation are free

of spurious local minima
- Arbitrary number of local minima can be introduced to a classical neural network,

provided an adequate size of the training set
Our result
- As a result of quantum interference, for typical under-parameterized QNNs,

hard datasets can be constructed such that the number of bad local minima
increase exponentially with the number of parameters;

- The number of local minima that can be introduced to a QNN is bounded

Problem Formulation

Consider a p-parameter d-dimensional QNN instance (S, U, M):
- Dataset S := {(flj, yj)}m

j=1, density matrix flj œ Cd◊d, label yj œ R
- Ansatz U(◊) = Up(◊p)Up≠1(◊p≠1) · · · U1(◊1), with Ul(◊l) := exp(≠i◊lHl)
Û Two-level Hamiltonians Hl: Hl : H2

l
= I, tr(Hl) = 0

Û e.g. Pauli operators X, Z ¢ Z, X ¢ Y ¢ · · · ¢ I
- Output U(◊)flU(◊)†: uniform transformation of the input state fl

- For observable M, the prediction f (◊; flj) = ÈU(◊)fljU†(◊), MÍ
- Minimize the mean square loss

min
◊

L(◊; S) := 1
m

mX

j=1
(f (◊; flj) ≠ yj)2

Figure 1: Comparision of classical and quantum NNs

Informal statements

Theorem 1 (Construction) For almost all p-parameter d-dimensional under-
parameterized QNN designs (U, M) with p = O(log d), there exists a hard dataset
S such that the loss function L(◊; S) has 2p ≠ 1 local minima within each period.

Theorem 2 (Upper bound) The number of strict local minima for p-parameter
QNNs are bounded by (4p)p for non-degenerated cases.

- Our empirical study indicates that,
Û The probability for finding the global minima of the constructed instances de-

cays exponentially (Figure 2)
Û Similar trends hold for more general datasets beyond our specific constructions

Figure 2: Exponential decay of success rate for finding global minimum

Techniques

Construction of hard datasets
We use the classical idea of symmetry breaking to construct hard datasets

L(◊; S0) L(◊; S1) L(◊; S0 fi S1)
- For classical neural networks: permutation of hidden neurons

- For quantum neural networks: the existence (S0) and breaking (S1) of the fi

2-translational
invariance in parameterization

- Expanding the observable in the Heinsenberg’s picture
M(◊) := U†(◊)MU(◊) =

X

›œ{0,1,2}p

�›(M)
Y

l:›l=1
cos 2◊l

Y

lÕ:›
lÕ=2

sin 2◊lÕ

with �›(M) being Hermitians, the form of which depending on the QNN design.

- Datasets S0 and S1 can be constructed by solving a linear system given that
{�›(M)}›œ{0,1,2}p,› ”=0 forms a linearly independent set (L.D. condition)

L.D. condition for almost all under-parameterized QNNs

- Random model: U(◊) = e
≠i◊pWpHW†

p · · · e
≠i◊1W1HW†

1

Û {Wl} drawn i.i.d. with respect to the Haar measure
Û supported on all aforementioned two-level p-parameter QNN instances
Û realizable by polynomially many random two-qubit gates over random qubit pairs.

- Gram matrix of {�›(M)}›œ{0,1,2}p,› ”=0 is full-rank with high probability for p = O(log d)

Upper bound on number of local minima

L(◊; S) =
X

kœK

L̂(k)
pY

l=1

✓
cos kl◊l

Tl

+ i sin kl◊l

Tl

◆

- Support K of Fourier spectrum L̂(k) of the loss function is bounded in ¸1-norm
- Number of minima bounded by number of roots to a polynomial system bounded in degree

Future directions

- Given certain knowledge about the data distribution, can we design a QNN architecture
with a more benign landscape?

- Existing works show that when su�ciently parameterized, the landscape for optimizing
variational quantum ansatz can be benign. Can we have a more fine-grained theory on
how the landscape changes as the number of parameters increases?

- Classically, despite the bad landscape of shallow neural networks, there are algorithms
that can provably find the minimum. Can we design algorithms (beyond local search
methods) to optimize certain QNNs with guarantee?

† Email: xyou@umd.edu, xwu@cs.umd.edu

Exponentially Many Local Minima in Quantum Neural Networks
Xuchen You 1,2 Xiaodi Wu 1,2

1Joint Center for Quantum Information and Computer Science, University of Maryland
2Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland

�ICML 2021

Abstract

Quantum Neural Networks (QNNs), or the so-called variational quantum circuits,
are important quantum applications both because of their similar promises as
classical neural networks and because of the feasibility of their implementation
on near-term intermediate-size noisy quantum machines (NISQ). However, the
training task of QNNs is challenging and much less understood. We conduct a
quantitative investigation on the landscape of loss functions of QNNs and identify
a class of simple yet extremely hard QNN instances for training. Specifically, we
show for typical under-parameterized QNNs, there exists a dataset that induces
a loss function with the number of spurious local minima depending exponen-
tially on the number of parameters. Moreover, we show the optimality of our
construction by providing an almost matching upper bound on such dependence.
While local minima in classical neural networks are due to non-linear activations,
in quantum neural networks local minima appear as a result of the quantum inter-
ference phenomenon. Finally, we empirically confirm that our constructions can
indeed be hard instances in practice with typical gradient-based optimizers, which
demonstrates the practical value of our findings.

Quantum Neural Networks (QNNs)

- QNNs are parameterized quantum circuits with layered structures
Classical NN Quantum NN

U
1,1(◊1,1)

Uent

U
1,2(◊1,2)

UentU
2,1(◊2,1) U

2,2(◊2,2)

U
3,1(◊3,1) U

3,2(◊3,2)

- QNNs are usually trained by delegating optimization to classical computers

Classical Optimizer Quantum Circuit
updates

measurements

- Typical QNN designs resemble linear networks with quadratic activations (Figure 1)

Classical results
- Linear networks and two-layer neural networks with quadratic activation are free

of spurious local minima
- Arbitrary number of local minima can be introduced to a classical neural network,

provided an adequate size of the training set
Our result
- As a result of quantum interference, for typical under-parameterized QNNs,

hard datasets can be constructed such that the number of bad local minima
increase exponentially with the number of parameters;

- The number of local minima that can be introduced to a QNN is bounded

Problem Formulation

Consider a p-parameter d-dimensional QNN instance (S, U, M):
- Dataset S := {(flj, yj)}m

j=1, density matrix flj œ Cd◊d, label yj œ R
- Ansatz U(◊) = Up(◊p)Up≠1(◊p≠1) · · · U1(◊1), with Ul(◊l) := exp(≠i◊lHl)
Û Two-level Hamiltonians Hl: Hl : H2

l
= I, tr(Hl) = 0

Û e.g. Pauli operators X, Z ¢ Z, X ¢ Y ¢ · · · ¢ I
- Output U(◊)flU(◊)†: uniform transformation of the input state fl

- For observable M, the prediction f (◊; flj) = ÈU(◊)fljU†(◊), MÍ
- Minimize the mean square loss

min
◊

L(◊; S) := 1
m

mX

j=1
(f (◊; flj) ≠ yj)2

Figure 1: Comparision of classical and quantum NNs

Informal statements

Theorem 1 (Construction) For almost all p-parameter d-dimensional under-
parameterized QNN designs (U, M) with p = O(log d), there exists a hard dataset
S such that the loss function L(◊; S) has 2p ≠ 1 local minima within each period.

Theorem 2 (Upper bound) The number of strict local minima for p-parameter
QNNs are bounded by (4p)p for non-degenerated cases.

- Our empirical study indicates that,
Û The probability for finding the global minima of the constructed instances de-

cays exponentially (Figure 2)
Û Similar trends hold for more general datasets beyond our specific constructions

Figure 2: Exponential decay of success rate for finding global minimum

Techniques

Construction of hard datasets
We use the classical idea of symmetry breaking to construct hard datasets

L(◊; S0) L(◊; S1) L(◊; S0 fi S1)
- For classical neural networks: permutation of hidden neurons

- For quantum neural networks: the existence (S0) and breaking (S1) of the fi

2-translational
invariance in parameterization

- Expanding the observable in the Heinsenberg’s picture
M(◊) := U†(◊)MU(◊) =

X

›œ{0,1,2}p

�›(M)
Y

l:›l=1
cos 2◊l

Y

lÕ:›
lÕ=2

sin 2◊lÕ

with �›(M) being Hermitians, the form of which depending on the QNN design.

- Datasets S0 and S1 can be constructed by solving a linear system given that
{�›(M)}›œ{0,1,2}p,› ”=0 forms a linearly independent set (L.D. condition)

L.D. condition for almost all under-parameterized QNNs

- Random model: U(◊) = e
≠i◊pWpHW†

p · · · e
≠i◊1W1HW†

1

Û {Wl} drawn i.i.d. with respect to the Haar measure
Û supported on all aforementioned two-level p-parameter QNN instances
Û realizable by polynomially many random two-qubit gates over random qubit pairs.

- Gram matrix of {�›(M)}›œ{0,1,2}p,› ”=0 is full-rank with high probability for p = O(log d)

Upper bound on number of local minima

L(◊; S) =
X

kœK

L̂(k)
pY

l=1

✓
cos kl◊l

Tl

+ i sin kl◊l

Tl

◆

- Support K of Fourier spectrum L̂(k) of the loss function is bounded in ¸1-norm
- Number of minima bounded by number of roots to a polynomial system bounded in degree

Future directions

- Given certain knowledge about the data distribution, can we design a QNN architecture
with a more benign landscape?

- Existing works show that when su�ciently parameterized, the landscape for optimizing
variational quantum ansatz can be benign. Can we have a more fine-grained theory on
how the landscape changes as the number of parameters increases?

- Classically, despite the bad landscape of shallow neural networks, there are algorithms
that can provably find the minimum. Can we design algorithms (beyond local search
methods) to optimize certain QNNs with guarantee?

† Email: xyou@umd.edu, xwu@cs.umd.edu

Construction of Hard Datasets

Exponentially Many Local Minima in Quantum Neural Networks
Xuchen You 1,2 Xiaodi Wu 1,2

1Joint Center for Quantum Information and Computer Science, University of Maryland
2Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland

�ICML 2021

Abstract

Quantum Neural Networks (QNNs), or the so-called variational quantum circuits,
are important quantum applications both because of their similar promises as
classical neural networks and because of the feasibility of their implementation
on near-term intermediate-size noisy quantum machines (NISQ). However, the
training task of QNNs is challenging and much less understood. We conduct a
quantitative investigation on the landscape of loss functions of QNNs and identify
a class of simple yet extremely hard QNN instances for training. Specifically, we
show for typical under-parameterized QNNs, there exists a dataset that induces
a loss function with the number of spurious local minima depending exponen-
tially on the number of parameters. Moreover, we show the optimality of our
construction by providing an almost matching upper bound on such dependence.
While local minima in classical neural networks are due to non-linear activations,
in quantum neural networks local minima appear as a result of the quantum inter-
ference phenomenon. Finally, we empirically confirm that our constructions can
indeed be hard instances in practice with typical gradient-based optimizers, which
demonstrates the practical value of our findings.

Quantum Neural Networks (QNNs)

- QNNs are parameterized quantum circuits with layered structures
Classical NN Quantum NN

U
1,1(◊1,1)

Uent

U
1,2(◊1,2)

UentU
2,1(◊2,1) U

2,2(◊2,2)

U
3,1(◊3,1) U

3,2(◊3,2)

- QNNs are usually trained by delegating optimization to classical computers

Classical Optimizer Quantum Circuit
updates

measurements

- Typical QNN designs resemble linear networks with quadratic activations (Figure 1)

Classical results
- Linear networks and two-layer neural networks with quadratic activation are free

of spurious local minima
- Arbitrary number of local minima can be introduced to a classical neural network,

provided an adequate size of the training set
Our result
- As a result of quantum interference, for typical under-parameterized QNNs,

hard datasets can be constructed such that the number of bad local minima
increase exponentially with the number of parameters;

- The number of local minima that can be introduced to a QNN is bounded

Problem Formulation

Consider a p-parameter d-dimensional QNN instance (S, U, M):
- Dataset S := {(flj, yj)}m

j=1, density matrix flj œ Cd◊d, label yj œ R
- Ansatz U(◊) = Up(◊p)Up≠1(◊p≠1) · · · U1(◊1), with Ul(◊l) := exp(≠i◊lHl)
Û Two-level Hamiltonians Hl: Hl : H2

l
= I, tr(Hl) = 0

Û e.g. Pauli operators X, Z ¢ Z, X ¢ Y ¢ · · · ¢ I
- Output U(◊)flU(◊)†: uniform transformation of the input state fl

- For observable M, the prediction f (◊; flj) = ÈU(◊)fljU†(◊), MÍ
- Minimize the mean square loss

min
◊

L(◊; S) := 1
m

mX

j=1
(f (◊; flj) ≠ yj)2

Figure 1: Comparision of classical and quantum NNs

Informal statements

Theorem 1 (Construction) For almost all p-parameter d-dimensional under-
parameterized QNN designs (U, M) with p = O(log d), there exists a hard dataset
S such that the loss function L(◊; S) has 2p ≠ 1 local minima within each period.

Theorem 2 (Upper bound) The number of strict local minima for p-parameter
QNNs are bounded by (4p)p for non-degenerated cases.

- Our empirical study indicates that,
Û The probability for finding the global minima of the constructed instances de-

cays exponentially (Figure 2)
Û Similar trends hold for more general datasets beyond our specific constructions

Figure 2: Exponential decay of success rate for finding global minimum

Techniques

Construction of hard datasets
We use the classical idea of symmetry breaking to construct hard datasets

L(◊; S0) L(◊; S1) L(◊; S0 fi S1)
- For classical neural networks: permutation of hidden neurons

- For quantum neural networks: the existence (S0) and breaking (S1) of the fi

2-translational
invariance in parameterization

- Expanding the observable in the Heinsenberg’s picture
M(◊) := U†(◊)MU(◊) =

X

›œ{0,1,2}p

�›(M)
Y

l:›l=1
cos 2◊l

Y

lÕ:›
lÕ=2

sin 2◊lÕ

with �›(M) being Hermitians, the form of which depending on the QNN design.

- Datasets S0 and S1 can be constructed by solving a linear system given that
{�›(M)}›œ{0,1,2}p,› ”=0 forms a linearly independent set (L.D. condition)

L.D. condition for almost all under-parameterized QNNs

- Random model: U(◊) = e
≠i◊pWpHW†

p · · · e
≠i◊1W1HW†

1

Û {Wl} drawn i.i.d. with respect to the Haar measure
Û supported on all aforementioned two-level p-parameter QNN instances
Û realizable by polynomially many random two-qubit gates over random qubit pairs.

- Gram matrix of {�›(M)}›œ{0,1,2}p,› ”=0 is full-rank with high probability for p = O(log d)

Upper bound on number of local minima

L(◊; S) =
X

kœK

L̂(k)
pY

l=1

✓
cos kl◊l

Tl

+ i sin kl◊l

Tl

◆

- Support K of Fourier spectrum L̂(k) of the loss function is bounded in ¸1-norm
- Number of minima bounded by number of roots to a polynomial system bounded in degree

Future directions

- Given certain knowledge about the data distribution, can we design a QNN architecture
with a more benign landscape?

- Existing works show that when su�ciently parameterized, the landscape for optimizing
variational quantum ansatz can be benign. Can we have a more fine-grained theory on
how the landscape changes as the number of parameters increases?

- Classically, despite the bad landscape of shallow neural networks, there are algorithms
that can provably find the minimum. Can we design algorithms (beyond local search
methods) to optimize certain QNNs with guarantee?

† Email: xyou@umd.edu, xwu@cs.umd.edu

Construction of Hard Datasets

L.D. condition proven to hold for almost all under-parameterized QNNs.

Generative Models

Or popularly known in deep-fake examples.

Quantum Generative Adversarial Networks (GANs)

Quantum Generative Adversarial Networks (GANs)

Quantum Generative Adversarial Networks (GANs)

Robust Training of Quantum Generative Models

Robust Training of Quantum Generative Models

Compressing Quantum Circuits

Compressing Quantum Circuits

Compressing Quantum Circuits

Compressing Quantum Circuits

Quantum Wasserstein Distance w/ regularization

Quantum Wasserstein Distance w/ regularization

Quantum Wasserstein Distance w/ regularization

Differentiable Quantum Programming
New Variational Constructs:

Resets + Measurements to Save Resources in NISQ machines Measurement induced

Phase Transition

Differentiable Quantum Programming
New Variational Constructs:

Resets + Measurements to Save Resources in NISQ machines Measurement induced

Phase Transition

“Deep Learning est mort. Vive Differentiable Programming!”
 ----- Yann LeCun

Classically,

Neural Networks + Program Features (Control/Loop) -> Differentiable Programming

Differentiable Quantum Programming
New Variational Constructs:

Resets + Measurements to Save Resources in NISQ machines Measurement induced

Phase Transition

“Deep Learning est mort. Vive Differentiable Programming!”
 ----- Yann LeCun

Classically,

Neural Networks + Program Features (Control/Loop) -> Differentiable Programming

Quantumly, build the foundation of differentiable quantum programming [PLDI’20]
 allow efficient training of q. variational models w/ program features

 demonstrate the first quantum neural-symbolic application

Quantum Neuro-Symbolic Application

On the Principles of Di!erentiable"antum Programming Languages PLDI ’20, June 15–20, 2020, London, UK

CT,Seq+Rot
=

caseM[q1] = 0 → (R′
X (θ)[A,q1];
RY (θ)[q1])+
(RX (θ)[q1];
R′

Y (θ)[A,q1]),
1 → R′

Z (θ)[A,q1]

Compile(•)
#−→

{
|
caseM[q1] = 0 → R′

X (θ)[A,q1];
RY (θ)[q1],

1 → R′
Z (θ)[A,q1],

caseM[q1] = 0 → RX (θ)[q1];
R′

Y (θ)[A,q1],
1 → abort.

|
}

7 Execution and Resource Analysis
In this section we illustrate the execution of the entire di!er-
entiation procedure and analyze its resource cost. Consider

any program P(θ) ∈ q-while(T)
v

(θ) and the parameter θ .

Execution. The "rst step in di!erentiation is to apply the
code transformation rules (in Section 6) to P(θ) and obtain
an additive program ∂

∂θ (P(θ)). Then one needs to compile
∂
∂θ (P(θ)) into a multiset {|P ′

i (θ)|}
m
i=1 of normal non-aborting

programs P ′
i (θ). The total count of these programs is given

bym = |# ∂
∂θ (P(θ))|. Note that the above procedure could be

done at the compilation time.
Given any pair of O and ρ, the real execution to compute

the derivative of [[(O, ρ)! P(θ)]] is to approximate the ob-
servable semantics [[(O, ρ) !

∂
∂θ (P(θ))]]. By De"nition 5.2,

we need to approximate

m∑

i=1

tr
((
ZA ⊗ O

)
[[P ′

i (θ)]]((|0〉{A}〈0|) ⊗ ρ)
)
, (7.1)

where each term is the observable ZA ⊗O on the output state
of P ′

i (θ) given input state ρ and the ancilla qubit |0〉.
To approximate the sum in (7.1) to precision δ , one could

"rst treat the sum divided bym as the observable applied on
the program that starts with a uniformly random choice of i
from 1, · · · ,m and then execute P ′

i (θ). By Cherno! bound,
one only needs to repeat this procedure O(m2/δ 2) times.

Resource count.We are only interested in non-trivial (ex-
tra) resource that is something that you wouldn’t need if you
only run the original program. Ancilla qubits count as the
non-trivial resource. However, for our scheme, the number
of required ancillae is 1 qubit per each parameter.

The more non-trivial resource is the number of the copies
of input state (each copy of the input state is to be pre-
pared from scratch), which is directly related to the number
of repetitions in the procedure, which again connects to
m = |# ∂

∂θ (P(θ))|. We argue that our code transformation is
e#cient so thatm is reasonably bounded. To that end, we
show the relation betweenm and a natural quantity de"ned
on the original program P(θ) (i.e., before applying any ∂

∂θ (·)
operator) called the occurrence count of the parameter θ .

De!nition 7.1. The “Occurrence Count for θ j ” in P(θ), de-
noted OCj (P(θ)), is de!ned as follows:

1. If P(θ) ≡ abort[v]|skip[v]|q := |0〉 (q ∈ v), then
OCj (P(θ)) = 0;

2. P(θ) ≡ U (θ): ifU (θ) trivially uses θ j , then OCj (P(θ)) =
0; otherwise OCj (P(θ)) = 1.

3. If P(θ) ≡ U (θ) = P1(θ); P2(θ)) then OCj (P(θ)) =
OCj (P1(θ)) +OCj (P2(θ)).

4. If P(θ) ≡ caseM[q] =m → Pm(θ) end thenOCj (P(θ))
= maxm OCj (Pm(θ)).

5. If P(θ) ≡ while(T) M[q] = 1 do P1(θ) done then
OCj (P(θ)) = T · OCj (P1(θ)).

Intuition of the “Occurrence Count” de"nition is clear:
it basically counts the number of non-trivial occurrences
of θ j in the program, treating case as if it is determinis-
tic. To see why this is a reasonable quantity, consider the
auto-di!erentiation in the classical case. For any non-trivial
variable v (i.e., v has some dependence on the parameter
θ), we will compute both v and ∂

∂θ (v) and store them both
as variables in the new program. Thus, the classical auto-
di!erentiation essentially needs the number of non-trivial
occurrences more space and related resources. As we argued
in the introduction, we cannot directly mimic the classical
case due to the no-cloning theorem. The extra space require-
ment in the classical setting turns into the requirement on
the extra copies of the input state in the quantum setting.
Indeed, we can boundm by the occurrence count.

Proposition 7.2. |# ∂
∂θ j

(P(θ))| ≤ OCj (P(θ)).

Proof. Structural induction. For details, see the full ver-
sion [55]. !

8 Implementation and Case Study
We have built a compiler (written in OCaml) that implements
our code transformation and compilation rules8. We use it
to train one VQC instance with controls and empirically ver-
ify its resource-e#ciency on representative VQC instances.
Complete details can be found in the full version [55]. Exper-
iments are performed on a MacBook Pro with a Dual-Core
Intel Core i5 Processor clocked at 2.7 GHz, and 8GB of RAM.

8.1 Training VQC Instances with Controls

Consider a simple classi"cation problem over 4-bit inputs
z = z1z2z3z4 ∈ {0, 1}4 with true label given by f (z) = ¬(z1 ⊕
z4). We construct two 4-qubit VQCs P1 (no control) and P2
(with control) that consists of a single-qubit Pauli X,Y and Z
rotation gate on each qubit and compare their performance.

For parameters Γ = {γ1, . . . ,γ12} de"ne the program
Q(Γ) ≡ RX (γ1)[q1];RX (γ2)[q2];RX (γ3)[q3];RX (γ4)[q4];

RY (γ5)[q1];RY (γ6)[q2];RY (γ7)[q3];RY (γ8)[q4];
RZ (γ9)[q1];RZ (γ10)[q2];RZ (γ11)[q3];RZ (γ12)[q4],

8Codes are availabe at h#ps://github.com/LibertasSpZ/adcompile.

282

Quantum Neuro-Symbolic Application

On the Principles of Di!erentiable"antum Programming Languages PLDI ’20, June 15–20, 2020, London, UK

CT,Seq+Rot
=

caseM[q1] = 0 → (R′
X (θ)[A,q1];
RY (θ)[q1])+
(RX (θ)[q1];
R′

Y (θ)[A,q1]),
1 → R′

Z (θ)[A,q1]

Compile(•)
#−→

{
|
caseM[q1] = 0 → R′

X (θ)[A,q1];
RY (θ)[q1],

1 → R′
Z (θ)[A,q1],

caseM[q1] = 0 → RX (θ)[q1];
R′

Y (θ)[A,q1],
1 → abort.

|
}

7 Execution and Resource Analysis
In this section we illustrate the execution of the entire di!er-
entiation procedure and analyze its resource cost. Consider

any program P(θ) ∈ q-while(T)
v

(θ) and the parameter θ .

Execution. The "rst step in di!erentiation is to apply the
code transformation rules (in Section 6) to P(θ) and obtain
an additive program ∂

∂θ (P(θ)). Then one needs to compile
∂
∂θ (P(θ)) into a multiset {|P ′

i (θ)|}
m
i=1 of normal non-aborting

programs P ′
i (θ). The total count of these programs is given

bym = |# ∂
∂θ (P(θ))|. Note that the above procedure could be

done at the compilation time.
Given any pair of O and ρ, the real execution to compute

the derivative of [[(O, ρ)! P(θ)]] is to approximate the ob-
servable semantics [[(O, ρ) !

∂
∂θ (P(θ))]]. By De"nition 5.2,

we need to approximate

m∑

i=1

tr
((
ZA ⊗ O

)
[[P ′

i (θ)]]((|0〉{A}〈0|) ⊗ ρ)
)
, (7.1)

where each term is the observable ZA ⊗O on the output state
of P ′

i (θ) given input state ρ and the ancilla qubit |0〉.
To approximate the sum in (7.1) to precision δ , one could

"rst treat the sum divided bym as the observable applied on
the program that starts with a uniformly random choice of i
from 1, · · · ,m and then execute P ′

i (θ). By Cherno! bound,
one only needs to repeat this procedure O(m2/δ 2) times.

Resource count.We are only interested in non-trivial (ex-
tra) resource that is something that you wouldn’t need if you
only run the original program. Ancilla qubits count as the
non-trivial resource. However, for our scheme, the number
of required ancillae is 1 qubit per each parameter.

The more non-trivial resource is the number of the copies
of input state (each copy of the input state is to be pre-
pared from scratch), which is directly related to the number
of repetitions in the procedure, which again connects to
m = |# ∂

∂θ (P(θ))|. We argue that our code transformation is
e#cient so thatm is reasonably bounded. To that end, we
show the relation betweenm and a natural quantity de"ned
on the original program P(θ) (i.e., before applying any ∂

∂θ (·)
operator) called the occurrence count of the parameter θ .

De!nition 7.1. The “Occurrence Count for θ j ” in P(θ), de-
noted OCj (P(θ)), is de!ned as follows:

1. If P(θ) ≡ abort[v]|skip[v]|q := |0〉 (q ∈ v), then
OCj (P(θ)) = 0;

2. P(θ) ≡ U (θ): ifU (θ) trivially uses θ j , then OCj (P(θ)) =
0; otherwise OCj (P(θ)) = 1.

3. If P(θ) ≡ U (θ) = P1(θ); P2(θ)) then OCj (P(θ)) =
OCj (P1(θ)) +OCj (P2(θ)).

4. If P(θ) ≡ caseM[q] =m → Pm(θ) end thenOCj (P(θ))
= maxm OCj (Pm(θ)).

5. If P(θ) ≡ while(T) M[q] = 1 do P1(θ) done then
OCj (P(θ)) = T · OCj (P1(θ)).

Intuition of the “Occurrence Count” de"nition is clear:
it basically counts the number of non-trivial occurrences
of θ j in the program, treating case as if it is determinis-
tic. To see why this is a reasonable quantity, consider the
auto-di!erentiation in the classical case. For any non-trivial
variable v (i.e., v has some dependence on the parameter
θ), we will compute both v and ∂

∂θ (v) and store them both
as variables in the new program. Thus, the classical auto-
di!erentiation essentially needs the number of non-trivial
occurrences more space and related resources. As we argued
in the introduction, we cannot directly mimic the classical
case due to the no-cloning theorem. The extra space require-
ment in the classical setting turns into the requirement on
the extra copies of the input state in the quantum setting.
Indeed, we can boundm by the occurrence count.

Proposition 7.2. |# ∂
∂θ j

(P(θ))| ≤ OCj (P(θ)).

Proof. Structural induction. For details, see the full ver-
sion [55]. !

8 Implementation and Case Study
We have built a compiler (written in OCaml) that implements
our code transformation and compilation rules8. We use it
to train one VQC instance with controls and empirically ver-
ify its resource-e#ciency on representative VQC instances.
Complete details can be found in the full version [55]. Exper-
iments are performed on a MacBook Pro with a Dual-Core
Intel Core i5 Processor clocked at 2.7 GHz, and 8GB of RAM.

8.1 Training VQC Instances with Controls

Consider a simple classi"cation problem over 4-bit inputs
z = z1z2z3z4 ∈ {0, 1}4 with true label given by f (z) = ¬(z1 ⊕
z4). We construct two 4-qubit VQCs P1 (no control) and P2
(with control) that consists of a single-qubit Pauli X,Y and Z
rotation gate on each qubit and compare their performance.

For parameters Γ = {γ1, . . . ,γ12} de"ne the program
Q(Γ) ≡ RX (γ1)[q1];RX (γ2)[q2];RX (γ3)[q3];RX (γ4)[q4];

RY (γ5)[q1];RY (γ6)[q2];RY (γ7)[q3];RY (γ8)[q4];
RZ (γ9)[q1];RZ (γ10)[q2];RZ (γ11)[q3];RZ (γ12)[q4],

8Codes are availabe at h#ps://github.com/LibertasSpZ/adcompile.

282

PLDI ’20, June 15–20, 2020, London, UK Shaopeng Zhu, Shih-Han Hung, Shouvanik Chakrabarti, and Xiaodi Wu

where q1,q2,q3,q4 refer to 4 qubit registers. Given parame-
ters Θ = {θ1, . . . ,θ12},Φ = {ϕ1, . . . ,ϕ12}, de!ne

P1(Θ,Φ) ≡Q(Θ);Q(Φ). (8.1)

Similarly, for parameters Θ = {θ1, . . . ,θ12},Φ =

{ϕ1, . . . ,ϕ12}, Ψ = {ψ1, . . . ,ψ12}, de!ne

P2(Θ,Φ,Ψ) ≡ Q(Θ); caseM[q1] = 0 → Q(Φ)
1 → Q(Ψ). (8.2)

Note that P1 and P2 execute the same number of gates for
each run. To use Pi to perform the classi!cation or in the
training, we !rst initialize q1,q2,q3,q4 to the classical feature
vector z = z1z2z3z4 and then execute Pi . The predicted label
y is given by measuring the 4th qubit q4 in the 0/1 basis.

We conduct a supervised learning by minimizing a loss
function. A natural choice is the average negative log-
likelihood which is commonly used in machine learning to
evaluate classi!ers that assign a certain probability to each
label since quantum outcomes are probabilistic. However,
this loss function is not currently supported by Pennylane.
Denote the output of the classi!er with input z and parame-
ters θ by lθ (z). To enable a direct comparison, we will treat
lθ (z) as the average value of the labels from probabilistic
quantum outcomes, and use the squared loss function as
follows:

loss =
∑

z∈{0,1}4
0.5 ∗ (lθ (z) − f (z))2. (8.3)

Note that loss is a function of θ = (Θ,Φ) (or Θ,Φ.Ψ). More
importantly, for each z, lθ (z) can be represented by the ob-
servable semantics of P1(or P2) with observable |1〉〈1|. Thus,
the gradient of loss can be obtained by using the collection
of ∂

∂α (P1) for α ∈ Θ,Φ (or ∂
∂α (P2) for α ∈ Θ,Φ,Ψ). We classi-

cally simulate the training procedure with gradient descent.
For the training of P1, we use Pennylane for a direct compar-
ison (see Figure 6). After 1000 epochs with some hyperpa-
rameters, the loss for P1 (no control) attains a minimum of
0.5 in less than 100 epochs and subsequently plateaus. The
loss for P2 (with control) continues to decrease and attains
a minimum of 0.016. It demonstrates the advantage of both
controls in quantum machine learning and our scheme to
handle controls, whereas previous schemes (such as Penny-
lane due to its quantum-node design [8]) fail to do so.

8.2 Benchmark Testing on Representative VQCs

We also test our compiler on important VQC candidates such
as quantum neural-networks (QNN) for solving machine
learning tasks [18], quantum approximate optimization algo-
rithms (QAOA) for solving combinatorial optimization [17],
and variational quantum eigensolver (VQE) for approximat-
ing ground state energies in quantum chemsitry [36], all of
which are promising candidates for actual implementation
on near-term quantum machines. These VQCs typically con-
sists of alternating layers of single-qubit gates and two-qubit
coupling gates, such as the 1-qubit, 2-qubit Pauli rotation

Figure 6. Training P1 and P2 to classify inputs according to
the labelling function f (z) = ¬(z1 ⊕ z4).

gates considered in our paper, to represent the alternation
between local interaction and neighboring interaction in real
quantum physics systems.

We enrich these examples, by adding simple controls (the
if/condition statement) or 2-bounded loops (the bounded-
while statement) and increasing the number of qubits to
18∼40, to make them su"ciently sophisticated but yet realis-
tic for near-term quantum applications. For example, we use
QNNM, i to denote an enriched QNN VQC instance of medium
size and with if controls. The size of QNNM,i can also be di-
rectly illustrated by the number of qubits (#qb), the gate
count (#gates), the number of alternating layers (#layers),
and the number of lines to code such instances (#lines). Sim-
ilarly for QNNL,w except that it is an instance of large size
and with while controls.
A selective output performance of our compiler is in Ta-

ble 2, with details in the full version [55]. It is easy to see that
our scheme is also empirically resource-e"cient as |# ∂

∂θ (·)|
is always reasonably bounded.

Table 2. Output on selective examples. {M,L} stands for
“medium, large”; {i,w} stands for including “if, while”.

P(θ) OC(·) |# ∂
∂θ (·)| #gates #lines #layers #qb

QNNM,i 24 24 165 189 3 18
QNNM,w 56 24 231 121 5 18
QNNL,i 48 48 363 414 6 36
QNNL,w 504 48 2079 244 33 36
VQEM,i 15 15 224 241 3 12
VQEM,w 35 15 224 112 5 12
VQEL,i 40 40 576 628 5 40
VQEL,w 248 40 1984 368 17 40
QAOAM,i 18 18 120 142 3 18
QAOAM,w 42 18 168 94 5 18
QAOAL,i 36 36 264 315 6 36
QAOAL,w 378 36 1512 190 33 36

283

(no control)

Quantum Neuro-Symbolic Application

On the Principles of Di!erentiable"antum Programming Languages PLDI ’20, June 15–20, 2020, London, UK

CT,Seq+Rot
=

caseM[q1] = 0 → (R′
X (θ)[A,q1];
RY (θ)[q1])+
(RX (θ)[q1];
R′

Y (θ)[A,q1]),
1 → R′

Z (θ)[A,q1]

Compile(•)
#−→

{
|
caseM[q1] = 0 → R′

X (θ)[A,q1];
RY (θ)[q1],

1 → R′
Z (θ)[A,q1],

caseM[q1] = 0 → RX (θ)[q1];
R′

Y (θ)[A,q1],
1 → abort.

|
}

7 Execution and Resource Analysis
In this section we illustrate the execution of the entire di!er-
entiation procedure and analyze its resource cost. Consider

any program P(θ) ∈ q-while(T)
v

(θ) and the parameter θ .

Execution. The "rst step in di!erentiation is to apply the
code transformation rules (in Section 6) to P(θ) and obtain
an additive program ∂

∂θ (P(θ)). Then one needs to compile
∂
∂θ (P(θ)) into a multiset {|P ′

i (θ)|}
m
i=1 of normal non-aborting

programs P ′
i (θ). The total count of these programs is given

bym = |# ∂
∂θ (P(θ))|. Note that the above procedure could be

done at the compilation time.
Given any pair of O and ρ, the real execution to compute

the derivative of [[(O, ρ)! P(θ)]] is to approximate the ob-
servable semantics [[(O, ρ) !

∂
∂θ (P(θ))]]. By De"nition 5.2,

we need to approximate

m∑

i=1

tr
((
ZA ⊗ O

)
[[P ′

i (θ)]]((|0〉{A}〈0|) ⊗ ρ)
)
, (7.1)

where each term is the observable ZA ⊗O on the output state
of P ′

i (θ) given input state ρ and the ancilla qubit |0〉.
To approximate the sum in (7.1) to precision δ , one could

"rst treat the sum divided bym as the observable applied on
the program that starts with a uniformly random choice of i
from 1, · · · ,m and then execute P ′

i (θ). By Cherno! bound,
one only needs to repeat this procedure O(m2/δ 2) times.

Resource count.We are only interested in non-trivial (ex-
tra) resource that is something that you wouldn’t need if you
only run the original program. Ancilla qubits count as the
non-trivial resource. However, for our scheme, the number
of required ancillae is 1 qubit per each parameter.

The more non-trivial resource is the number of the copies
of input state (each copy of the input state is to be pre-
pared from scratch), which is directly related to the number
of repetitions in the procedure, which again connects to
m = |# ∂

∂θ (P(θ))|. We argue that our code transformation is
e#cient so thatm is reasonably bounded. To that end, we
show the relation betweenm and a natural quantity de"ned
on the original program P(θ) (i.e., before applying any ∂

∂θ (·)
operator) called the occurrence count of the parameter θ .

De!nition 7.1. The “Occurrence Count for θ j ” in P(θ), de-
noted OCj (P(θ)), is de!ned as follows:

1. If P(θ) ≡ abort[v]|skip[v]|q := |0〉 (q ∈ v), then
OCj (P(θ)) = 0;

2. P(θ) ≡ U (θ): ifU (θ) trivially uses θ j , then OCj (P(θ)) =
0; otherwise OCj (P(θ)) = 1.

3. If P(θ) ≡ U (θ) = P1(θ); P2(θ)) then OCj (P(θ)) =
OCj (P1(θ)) +OCj (P2(θ)).

4. If P(θ) ≡ caseM[q] =m → Pm(θ) end thenOCj (P(θ))
= maxm OCj (Pm(θ)).

5. If P(θ) ≡ while(T) M[q] = 1 do P1(θ) done then
OCj (P(θ)) = T · OCj (P1(θ)).

Intuition of the “Occurrence Count” de"nition is clear:
it basically counts the number of non-trivial occurrences
of θ j in the program, treating case as if it is determinis-
tic. To see why this is a reasonable quantity, consider the
auto-di!erentiation in the classical case. For any non-trivial
variable v (i.e., v has some dependence on the parameter
θ), we will compute both v and ∂

∂θ (v) and store them both
as variables in the new program. Thus, the classical auto-
di!erentiation essentially needs the number of non-trivial
occurrences more space and related resources. As we argued
in the introduction, we cannot directly mimic the classical
case due to the no-cloning theorem. The extra space require-
ment in the classical setting turns into the requirement on
the extra copies of the input state in the quantum setting.
Indeed, we can boundm by the occurrence count.

Proposition 7.2. |# ∂
∂θ j

(P(θ))| ≤ OCj (P(θ)).

Proof. Structural induction. For details, see the full ver-
sion [55]. !

8 Implementation and Case Study
We have built a compiler (written in OCaml) that implements
our code transformation and compilation rules8. We use it
to train one VQC instance with controls and empirically ver-
ify its resource-e#ciency on representative VQC instances.
Complete details can be found in the full version [55]. Exper-
iments are performed on a MacBook Pro with a Dual-Core
Intel Core i5 Processor clocked at 2.7 GHz, and 8GB of RAM.

8.1 Training VQC Instances with Controls

Consider a simple classi"cation problem over 4-bit inputs
z = z1z2z3z4 ∈ {0, 1}4 with true label given by f (z) = ¬(z1 ⊕
z4). We construct two 4-qubit VQCs P1 (no control) and P2
(with control) that consists of a single-qubit Pauli X,Y and Z
rotation gate on each qubit and compare their performance.

For parameters Γ = {γ1, . . . ,γ12} de"ne the program
Q(Γ) ≡ RX (γ1)[q1];RX (γ2)[q2];RX (γ3)[q3];RX (γ4)[q4];

RY (γ5)[q1];RY (γ6)[q2];RY (γ7)[q3];RY (γ8)[q4];
RZ (γ9)[q1];RZ (γ10)[q2];RZ (γ11)[q3];RZ (γ12)[q4],

8Codes are availabe at h#ps://github.com/LibertasSpZ/adcompile.

282

PLDI ’20, June 15–20, 2020, London, UK Shaopeng Zhu, Shih-Han Hung, Shouvanik Chakrabarti, and Xiaodi Wu

where q1,q2,q3,q4 refer to 4 qubit registers. Given parame-
ters Θ = {θ1, . . . ,θ12},Φ = {ϕ1, . . . ,ϕ12}, de!ne

P1(Θ,Φ) ≡Q(Θ);Q(Φ). (8.1)

Similarly, for parameters Θ = {θ1, . . . ,θ12},Φ =

{ϕ1, . . . ,ϕ12}, Ψ = {ψ1, . . . ,ψ12}, de!ne

P2(Θ,Φ,Ψ) ≡ Q(Θ); caseM[q1] = 0 → Q(Φ)
1 → Q(Ψ). (8.2)

Note that P1 and P2 execute the same number of gates for
each run. To use Pi to perform the classi!cation or in the
training, we !rst initialize q1,q2,q3,q4 to the classical feature
vector z = z1z2z3z4 and then execute Pi . The predicted label
y is given by measuring the 4th qubit q4 in the 0/1 basis.

We conduct a supervised learning by minimizing a loss
function. A natural choice is the average negative log-
likelihood which is commonly used in machine learning to
evaluate classi!ers that assign a certain probability to each
label since quantum outcomes are probabilistic. However,
this loss function is not currently supported by Pennylane.
Denote the output of the classi!er with input z and parame-
ters θ by lθ (z). To enable a direct comparison, we will treat
lθ (z) as the average value of the labels from probabilistic
quantum outcomes, and use the squared loss function as
follows:

loss =
∑

z∈{0,1}4
0.5 ∗ (lθ (z) − f (z))2. (8.3)

Note that loss is a function of θ = (Θ,Φ) (or Θ,Φ.Ψ). More
importantly, for each z, lθ (z) can be represented by the ob-
servable semantics of P1(or P2) with observable |1〉〈1|. Thus,
the gradient of loss can be obtained by using the collection
of ∂

∂α (P1) for α ∈ Θ,Φ (or ∂
∂α (P2) for α ∈ Θ,Φ,Ψ). We classi-

cally simulate the training procedure with gradient descent.
For the training of P1, we use Pennylane for a direct compar-
ison (see Figure 6). After 1000 epochs with some hyperpa-
rameters, the loss for P1 (no control) attains a minimum of
0.5 in less than 100 epochs and subsequently plateaus. The
loss for P2 (with control) continues to decrease and attains
a minimum of 0.016. It demonstrates the advantage of both
controls in quantum machine learning and our scheme to
handle controls, whereas previous schemes (such as Penny-
lane due to its quantum-node design [8]) fail to do so.

8.2 Benchmark Testing on Representative VQCs

We also test our compiler on important VQC candidates such
as quantum neural-networks (QNN) for solving machine
learning tasks [18], quantum approximate optimization algo-
rithms (QAOA) for solving combinatorial optimization [17],
and variational quantum eigensolver (VQE) for approximat-
ing ground state energies in quantum chemsitry [36], all of
which are promising candidates for actual implementation
on near-term quantum machines. These VQCs typically con-
sists of alternating layers of single-qubit gates and two-qubit
coupling gates, such as the 1-qubit, 2-qubit Pauli rotation

Figure 6. Training P1 and P2 to classify inputs according to
the labelling function f (z) = ¬(z1 ⊕ z4).

gates considered in our paper, to represent the alternation
between local interaction and neighboring interaction in real
quantum physics systems.

We enrich these examples, by adding simple controls (the
if/condition statement) or 2-bounded loops (the bounded-
while statement) and increasing the number of qubits to
18∼40, to make them su"ciently sophisticated but yet realis-
tic for near-term quantum applications. For example, we use
QNNM, i to denote an enriched QNN VQC instance of medium
size and with if controls. The size of QNNM,i can also be di-
rectly illustrated by the number of qubits (#qb), the gate
count (#gates), the number of alternating layers (#layers),
and the number of lines to code such instances (#lines). Sim-
ilarly for QNNL,w except that it is an instance of large size
and with while controls.
A selective output performance of our compiler is in Ta-

ble 2, with details in the full version [55]. It is easy to see that
our scheme is also empirically resource-e"cient as |# ∂

∂θ (·)|
is always reasonably bounded.

Table 2. Output on selective examples. {M,L} stands for
“medium, large”; {i,w} stands for including “if, while”.

P(θ) OC(·) |# ∂
∂θ (·)| #gates #lines #layers #qb

QNNM,i 24 24 165 189 3 18
QNNM,w 56 24 231 121 5 18
QNNL,i 48 48 363 414 6 36
QNNL,w 504 48 2079 244 33 36
VQEM,i 15 15 224 241 3 12
VQEM,w 35 15 224 112 5 12
VQEL,i 40 40 576 628 5 40
VQEL,w 248 40 1984 368 17 40
QAOAM,i 18 18 120 142 3 18
QAOAM,w 42 18 168 94 5 18
QAOAL,i 36 36 264 315 6 36
QAOAL,w 378 36 1512 190 33 36

283

(no control)

PLDI ’20, June 15–20, 2020, London, UK Shaopeng Zhu, Shih-Han Hung, Shouvanik Chakrabarti, and Xiaodi Wu

where q1,q2,q3,q4 refer to 4 qubit registers. Given parame-
ters Θ = {θ1, . . . ,θ12},Φ = {ϕ1, . . . ,ϕ12}, de!ne

P1(Θ,Φ) ≡Q(Θ);Q(Φ). (8.1)

Similarly, for parameters Θ = {θ1, . . . ,θ12},Φ =

{ϕ1, . . . ,ϕ12}, Ψ = {ψ1, . . . ,ψ12}, de!ne

P2(Θ,Φ,Ψ) ≡ Q(Θ); caseM[q1] = 0 → Q(Φ)
1 → Q(Ψ). (8.2)

Note that P1 and P2 execute the same number of gates for
each run. To use Pi to perform the classi!cation or in the
training, we !rst initialize q1,q2,q3,q4 to the classical feature
vector z = z1z2z3z4 and then execute Pi . The predicted label
y is given by measuring the 4th qubit q4 in the 0/1 basis.

We conduct a supervised learning by minimizing a loss
function. A natural choice is the average negative log-
likelihood which is commonly used in machine learning to
evaluate classi!ers that assign a certain probability to each
label since quantum outcomes are probabilistic. However,
this loss function is not currently supported by Pennylane.
Denote the output of the classi!er with input z and parame-
ters θ by lθ (z). To enable a direct comparison, we will treat
lθ (z) as the average value of the labels from probabilistic
quantum outcomes, and use the squared loss function as
follows:

loss =
∑

z∈{0,1}4
0.5 ∗ (lθ (z) − f (z))2. (8.3)

Note that loss is a function of θ = (Θ,Φ) (or Θ,Φ.Ψ). More
importantly, for each z, lθ (z) can be represented by the ob-
servable semantics of P1(or P2) with observable |1〉〈1|. Thus,
the gradient of loss can be obtained by using the collection
of ∂

∂α (P1) for α ∈ Θ,Φ (or ∂
∂α (P2) for α ∈ Θ,Φ,Ψ). We classi-

cally simulate the training procedure with gradient descent.
For the training of P1, we use Pennylane for a direct compar-
ison (see Figure 6). After 1000 epochs with some hyperpa-
rameters, the loss for P1 (no control) attains a minimum of
0.5 in less than 100 epochs and subsequently plateaus. The
loss for P2 (with control) continues to decrease and attains
a minimum of 0.016. It demonstrates the advantage of both
controls in quantum machine learning and our scheme to
handle controls, whereas previous schemes (such as Penny-
lane due to its quantum-node design [8]) fail to do so.

8.2 Benchmark Testing on Representative VQCs

We also test our compiler on important VQC candidates such
as quantum neural-networks (QNN) for solving machine
learning tasks [18], quantum approximate optimization algo-
rithms (QAOA) for solving combinatorial optimization [17],
and variational quantum eigensolver (VQE) for approximat-
ing ground state energies in quantum chemsitry [36], all of
which are promising candidates for actual implementation
on near-term quantum machines. These VQCs typically con-
sists of alternating layers of single-qubit gates and two-qubit
coupling gates, such as the 1-qubit, 2-qubit Pauli rotation

Figure 6. Training P1 and P2 to classify inputs according to
the labelling function f (z) = ¬(z1 ⊕ z4).

gates considered in our paper, to represent the alternation
between local interaction and neighboring interaction in real
quantum physics systems.

We enrich these examples, by adding simple controls (the
if/condition statement) or 2-bounded loops (the bounded-
while statement) and increasing the number of qubits to
18∼40, to make them su"ciently sophisticated but yet realis-
tic for near-term quantum applications. For example, we use
QNNM, i to denote an enriched QNN VQC instance of medium
size and with if controls. The size of QNNM,i can also be di-
rectly illustrated by the number of qubits (#qb), the gate
count (#gates), the number of alternating layers (#layers),
and the number of lines to code such instances (#lines). Sim-
ilarly for QNNL,w except that it is an instance of large size
and with while controls.
A selective output performance of our compiler is in Ta-

ble 2, with details in the full version [55]. It is easy to see that
our scheme is also empirically resource-e"cient as |# ∂

∂θ (·)|
is always reasonably bounded.

Table 2. Output on selective examples. {M,L} stands for
“medium, large”; {i,w} stands for including “if, while”.

P(θ) OC(·) |# ∂
∂θ (·)| #gates #lines #layers #qb

QNNM,i 24 24 165 189 3 18
QNNM,w 56 24 231 121 5 18
QNNL,i 48 48 363 414 6 36
QNNL,w 504 48 2079 244 33 36
VQEM,i 15 15 224 241 3 12
VQEM,w 35 15 224 112 5 12
VQEL,i 40 40 576 628 5 40
VQEL,w 248 40 1984 368 17 40
QAOAM,i 18 18 120 142 3 18
QAOAM,w 42 18 168 94 5 18
QAOAL,i 36 36 264 315 6 36
QAOAL,w 378 36 1512 190 33 36

283

(w/ control)
(measurements in the middle)

Quantum Neuro-Symbolic Application

On the Principles of Di!erentiable"antum Programming Languages PLDI ’20, June 15–20, 2020, London, UK

CT,Seq+Rot
=

caseM[q1] = 0 → (R′
X (θ)[A,q1];
RY (θ)[q1])+
(RX (θ)[q1];
R′

Y (θ)[A,q1]),
1 → R′

Z (θ)[A,q1]

Compile(•)
#−→

{
|
caseM[q1] = 0 → R′

X (θ)[A,q1];
RY (θ)[q1],

1 → R′
Z (θ)[A,q1],

caseM[q1] = 0 → RX (θ)[q1];
R′

Y (θ)[A,q1],
1 → abort.

|
}

7 Execution and Resource Analysis
In this section we illustrate the execution of the entire di!er-
entiation procedure and analyze its resource cost. Consider

any program P(θ) ∈ q-while(T)
v

(θ) and the parameter θ .

Execution. The "rst step in di!erentiation is to apply the
code transformation rules (in Section 6) to P(θ) and obtain
an additive program ∂

∂θ (P(θ)). Then one needs to compile
∂
∂θ (P(θ)) into a multiset {|P ′

i (θ)|}
m
i=1 of normal non-aborting

programs P ′
i (θ). The total count of these programs is given

bym = |# ∂
∂θ (P(θ))|. Note that the above procedure could be

done at the compilation time.
Given any pair of O and ρ, the real execution to compute

the derivative of [[(O, ρ)! P(θ)]] is to approximate the ob-
servable semantics [[(O, ρ) !

∂
∂θ (P(θ))]]. By De"nition 5.2,

we need to approximate

m∑

i=1

tr
((
ZA ⊗ O

)
[[P ′

i (θ)]]((|0〉{A}〈0|) ⊗ ρ)
)
, (7.1)

where each term is the observable ZA ⊗O on the output state
of P ′

i (θ) given input state ρ and the ancilla qubit |0〉.
To approximate the sum in (7.1) to precision δ , one could

"rst treat the sum divided bym as the observable applied on
the program that starts with a uniformly random choice of i
from 1, · · · ,m and then execute P ′

i (θ). By Cherno! bound,
one only needs to repeat this procedure O(m2/δ 2) times.

Resource count.We are only interested in non-trivial (ex-
tra) resource that is something that you wouldn’t need if you
only run the original program. Ancilla qubits count as the
non-trivial resource. However, for our scheme, the number
of required ancillae is 1 qubit per each parameter.

The more non-trivial resource is the number of the copies
of input state (each copy of the input state is to be pre-
pared from scratch), which is directly related to the number
of repetitions in the procedure, which again connects to
m = |# ∂

∂θ (P(θ))|. We argue that our code transformation is
e#cient so thatm is reasonably bounded. To that end, we
show the relation betweenm and a natural quantity de"ned
on the original program P(θ) (i.e., before applying any ∂

∂θ (·)
operator) called the occurrence count of the parameter θ .

De!nition 7.1. The “Occurrence Count for θ j ” in P(θ), de-
noted OCj (P(θ)), is de!ned as follows:

1. If P(θ) ≡ abort[v]|skip[v]|q := |0〉 (q ∈ v), then
OCj (P(θ)) = 0;

2. P(θ) ≡ U (θ): ifU (θ) trivially uses θ j , then OCj (P(θ)) =
0; otherwise OCj (P(θ)) = 1.

3. If P(θ) ≡ U (θ) = P1(θ); P2(θ)) then OCj (P(θ)) =
OCj (P1(θ)) +OCj (P2(θ)).

4. If P(θ) ≡ caseM[q] =m → Pm(θ) end thenOCj (P(θ))
= maxm OCj (Pm(θ)).

5. If P(θ) ≡ while(T) M[q] = 1 do P1(θ) done then
OCj (P(θ)) = T · OCj (P1(θ)).

Intuition of the “Occurrence Count” de"nition is clear:
it basically counts the number of non-trivial occurrences
of θ j in the program, treating case as if it is determinis-
tic. To see why this is a reasonable quantity, consider the
auto-di!erentiation in the classical case. For any non-trivial
variable v (i.e., v has some dependence on the parameter
θ), we will compute both v and ∂

∂θ (v) and store them both
as variables in the new program. Thus, the classical auto-
di!erentiation essentially needs the number of non-trivial
occurrences more space and related resources. As we argued
in the introduction, we cannot directly mimic the classical
case due to the no-cloning theorem. The extra space require-
ment in the classical setting turns into the requirement on
the extra copies of the input state in the quantum setting.
Indeed, we can boundm by the occurrence count.

Proposition 7.2. |# ∂
∂θ j

(P(θ))| ≤ OCj (P(θ)).

Proof. Structural induction. For details, see the full ver-
sion [55]. !

8 Implementation and Case Study
We have built a compiler (written in OCaml) that implements
our code transformation and compilation rules8. We use it
to train one VQC instance with controls and empirically ver-
ify its resource-e#ciency on representative VQC instances.
Complete details can be found in the full version [55]. Exper-
iments are performed on a MacBook Pro with a Dual-Core
Intel Core i5 Processor clocked at 2.7 GHz, and 8GB of RAM.

8.1 Training VQC Instances with Controls

Consider a simple classi"cation problem over 4-bit inputs
z = z1z2z3z4 ∈ {0, 1}4 with true label given by f (z) = ¬(z1 ⊕
z4). We construct two 4-qubit VQCs P1 (no control) and P2
(with control) that consists of a single-qubit Pauli X,Y and Z
rotation gate on each qubit and compare their performance.

For parameters Γ = {γ1, . . . ,γ12} de"ne the program
Q(Γ) ≡ RX (γ1)[q1];RX (γ2)[q2];RX (γ3)[q3];RX (γ4)[q4];

RY (γ5)[q1];RY (γ6)[q2];RY (γ7)[q3];RY (γ8)[q4];
RZ (γ9)[q1];RZ (γ10)[q2];RZ (γ11)[q3];RZ (γ12)[q4],

8Codes are availabe at h#ps://github.com/LibertasSpZ/adcompile.

282

PLDI ’20, June 15–20, 2020, London, UK Shaopeng Zhu, Shih-Han Hung, Shouvanik Chakrabarti, and Xiaodi Wu

where q1,q2,q3,q4 refer to 4 qubit registers. Given parame-
ters Θ = {θ1, . . . ,θ12},Φ = {ϕ1, . . . ,ϕ12}, de!ne

P1(Θ,Φ) ≡Q(Θ);Q(Φ). (8.1)

Similarly, for parameters Θ = {θ1, . . . ,θ12},Φ =

{ϕ1, . . . ,ϕ12}, Ψ = {ψ1, . . . ,ψ12}, de!ne

P2(Θ,Φ,Ψ) ≡ Q(Θ); caseM[q1] = 0 → Q(Φ)
1 → Q(Ψ). (8.2)

Note that P1 and P2 execute the same number of gates for
each run. To use Pi to perform the classi!cation or in the
training, we !rst initialize q1,q2,q3,q4 to the classical feature
vector z = z1z2z3z4 and then execute Pi . The predicted label
y is given by measuring the 4th qubit q4 in the 0/1 basis.

We conduct a supervised learning by minimizing a loss
function. A natural choice is the average negative log-
likelihood which is commonly used in machine learning to
evaluate classi!ers that assign a certain probability to each
label since quantum outcomes are probabilistic. However,
this loss function is not currently supported by Pennylane.
Denote the output of the classi!er with input z and parame-
ters θ by lθ (z). To enable a direct comparison, we will treat
lθ (z) as the average value of the labels from probabilistic
quantum outcomes, and use the squared loss function as
follows:

loss =
∑

z∈{0,1}4
0.5 ∗ (lθ (z) − f (z))2. (8.3)

Note that loss is a function of θ = (Θ,Φ) (or Θ,Φ.Ψ). More
importantly, for each z, lθ (z) can be represented by the ob-
servable semantics of P1(or P2) with observable |1〉〈1|. Thus,
the gradient of loss can be obtained by using the collection
of ∂

∂α (P1) for α ∈ Θ,Φ (or ∂
∂α (P2) for α ∈ Θ,Φ,Ψ). We classi-

cally simulate the training procedure with gradient descent.
For the training of P1, we use Pennylane for a direct compar-
ison (see Figure 6). After 1000 epochs with some hyperpa-
rameters, the loss for P1 (no control) attains a minimum of
0.5 in less than 100 epochs and subsequently plateaus. The
loss for P2 (with control) continues to decrease and attains
a minimum of 0.016. It demonstrates the advantage of both
controls in quantum machine learning and our scheme to
handle controls, whereas previous schemes (such as Penny-
lane due to its quantum-node design [8]) fail to do so.

8.2 Benchmark Testing on Representative VQCs

We also test our compiler on important VQC candidates such
as quantum neural-networks (QNN) for solving machine
learning tasks [18], quantum approximate optimization algo-
rithms (QAOA) for solving combinatorial optimization [17],
and variational quantum eigensolver (VQE) for approximat-
ing ground state energies in quantum chemsitry [36], all of
which are promising candidates for actual implementation
on near-term quantum machines. These VQCs typically con-
sists of alternating layers of single-qubit gates and two-qubit
coupling gates, such as the 1-qubit, 2-qubit Pauli rotation

Figure 6. Training P1 and P2 to classify inputs according to
the labelling function f (z) = ¬(z1 ⊕ z4).

gates considered in our paper, to represent the alternation
between local interaction and neighboring interaction in real
quantum physics systems.

We enrich these examples, by adding simple controls (the
if/condition statement) or 2-bounded loops (the bounded-
while statement) and increasing the number of qubits to
18∼40, to make them su"ciently sophisticated but yet realis-
tic for near-term quantum applications. For example, we use
QNNM, i to denote an enriched QNN VQC instance of medium
size and with if controls. The size of QNNM,i can also be di-
rectly illustrated by the number of qubits (#qb), the gate
count (#gates), the number of alternating layers (#layers),
and the number of lines to code such instances (#lines). Sim-
ilarly for QNNL,w except that it is an instance of large size
and with while controls.
A selective output performance of our compiler is in Ta-

ble 2, with details in the full version [55]. It is easy to see that
our scheme is also empirically resource-e"cient as |# ∂

∂θ (·)|
is always reasonably bounded.

Table 2. Output on selective examples. {M,L} stands for
“medium, large”; {i,w} stands for including “if, while”.

P(θ) OC(·) |# ∂
∂θ (·)| #gates #lines #layers #qb

QNNM,i 24 24 165 189 3 18
QNNM,w 56 24 231 121 5 18
QNNL,i 48 48 363 414 6 36
QNNL,w 504 48 2079 244 33 36
VQEM,i 15 15 224 241 3 12
VQEM,w 35 15 224 112 5 12
VQEL,i 40 40 576 628 5 40
VQEL,w 248 40 1984 368 17 40
QAOAM,i 18 18 120 142 3 18
QAOAM,w 42 18 168 94 5 18
QAOAL,i 36 36 264 315 6 36
QAOAL,w 378 36 1512 190 33 36

283

(no control)

PLDI ’20, June 15–20, 2020, London, UK Shaopeng Zhu, Shih-Han Hung, Shouvanik Chakrabarti, and Xiaodi Wu

where q1,q2,q3,q4 refer to 4 qubit registers. Given parame-
ters Θ = {θ1, . . . ,θ12},Φ = {ϕ1, . . . ,ϕ12}, de!ne

P1(Θ,Φ) ≡Q(Θ);Q(Φ). (8.1)

Similarly, for parameters Θ = {θ1, . . . ,θ12},Φ =

{ϕ1, . . . ,ϕ12}, Ψ = {ψ1, . . . ,ψ12}, de!ne

P2(Θ,Φ,Ψ) ≡ Q(Θ); caseM[q1] = 0 → Q(Φ)
1 → Q(Ψ). (8.2)

Note that P1 and P2 execute the same number of gates for
each run. To use Pi to perform the classi!cation or in the
training, we !rst initialize q1,q2,q3,q4 to the classical feature
vector z = z1z2z3z4 and then execute Pi . The predicted label
y is given by measuring the 4th qubit q4 in the 0/1 basis.

We conduct a supervised learning by minimizing a loss
function. A natural choice is the average negative log-
likelihood which is commonly used in machine learning to
evaluate classi!ers that assign a certain probability to each
label since quantum outcomes are probabilistic. However,
this loss function is not currently supported by Pennylane.
Denote the output of the classi!er with input z and parame-
ters θ by lθ (z). To enable a direct comparison, we will treat
lθ (z) as the average value of the labels from probabilistic
quantum outcomes, and use the squared loss function as
follows:

loss =
∑

z∈{0,1}4
0.5 ∗ (lθ (z) − f (z))2. (8.3)

Note that loss is a function of θ = (Θ,Φ) (or Θ,Φ.Ψ). More
importantly, for each z, lθ (z) can be represented by the ob-
servable semantics of P1(or P2) with observable |1〉〈1|. Thus,
the gradient of loss can be obtained by using the collection
of ∂

∂α (P1) for α ∈ Θ,Φ (or ∂
∂α (P2) for α ∈ Θ,Φ,Ψ). We classi-

cally simulate the training procedure with gradient descent.
For the training of P1, we use Pennylane for a direct compar-
ison (see Figure 6). After 1000 epochs with some hyperpa-
rameters, the loss for P1 (no control) attains a minimum of
0.5 in less than 100 epochs and subsequently plateaus. The
loss for P2 (with control) continues to decrease and attains
a minimum of 0.016. It demonstrates the advantage of both
controls in quantum machine learning and our scheme to
handle controls, whereas previous schemes (such as Penny-
lane due to its quantum-node design [8]) fail to do so.

8.2 Benchmark Testing on Representative VQCs

We also test our compiler on important VQC candidates such
as quantum neural-networks (QNN) for solving machine
learning tasks [18], quantum approximate optimization algo-
rithms (QAOA) for solving combinatorial optimization [17],
and variational quantum eigensolver (VQE) for approximat-
ing ground state energies in quantum chemsitry [36], all of
which are promising candidates for actual implementation
on near-term quantum machines. These VQCs typically con-
sists of alternating layers of single-qubit gates and two-qubit
coupling gates, such as the 1-qubit, 2-qubit Pauli rotation

Figure 6. Training P1 and P2 to classify inputs according to
the labelling function f (z) = ¬(z1 ⊕ z4).

gates considered in our paper, to represent the alternation
between local interaction and neighboring interaction in real
quantum physics systems.

We enrich these examples, by adding simple controls (the
if/condition statement) or 2-bounded loops (the bounded-
while statement) and increasing the number of qubits to
18∼40, to make them su"ciently sophisticated but yet realis-
tic for near-term quantum applications. For example, we use
QNNM, i to denote an enriched QNN VQC instance of medium
size and with if controls. The size of QNNM,i can also be di-
rectly illustrated by the number of qubits (#qb), the gate
count (#gates), the number of alternating layers (#layers),
and the number of lines to code such instances (#lines). Sim-
ilarly for QNNL,w except that it is an instance of large size
and with while controls.
A selective output performance of our compiler is in Ta-

ble 2, with details in the full version [55]. It is easy to see that
our scheme is also empirically resource-e"cient as |# ∂

∂θ (·)|
is always reasonably bounded.

Table 2. Output on selective examples. {M,L} stands for
“medium, large”; {i,w} stands for including “if, while”.

P(θ) OC(·) |# ∂
∂θ (·)| #gates #lines #layers #qb

QNNM,i 24 24 165 189 3 18
QNNM,w 56 24 231 121 5 18
QNNL,i 48 48 363 414 6 36
QNNL,w 504 48 2079 244 33 36
VQEM,i 15 15 224 241 3 12
VQEM,w 35 15 224 112 5 12
VQEL,i 40 40 576 628 5 40
VQEL,w 248 40 1984 368 17 40
QAOAM,i 18 18 120 142 3 18
QAOAM,w 42 18 168 94 5 18
QAOAL,i 36 36 264 315 6 36
QAOAL,w 378 36 1512 190 33 36

283

(w/ control)
(measurements in the middle)

Note that and
 run the same

of gates.

P1(Θ, Φ)
P2(Θ, Φ, Ψ)

Quantum Neuro-Symbolic Application

On the Principles of Di!erentiable"antum Programming Languages PLDI ’20, June 15–20, 2020, London, UK

CT,Seq+Rot
=

caseM[q1] = 0 → (R′
X (θ)[A,q1];
RY (θ)[q1])+
(RX (θ)[q1];
R′

Y (θ)[A,q1]),
1 → R′

Z (θ)[A,q1]

Compile(•)
#−→

{
|
caseM[q1] = 0 → R′

X (θ)[A,q1];
RY (θ)[q1],

1 → R′
Z (θ)[A,q1],

caseM[q1] = 0 → RX (θ)[q1];
R′

Y (θ)[A,q1],
1 → abort.

|
}

7 Execution and Resource Analysis
In this section we illustrate the execution of the entire di!er-
entiation procedure and analyze its resource cost. Consider

any program P(θ) ∈ q-while(T)
v

(θ) and the parameter θ .

Execution. The "rst step in di!erentiation is to apply the
code transformation rules (in Section 6) to P(θ) and obtain
an additive program ∂

∂θ (P(θ)). Then one needs to compile
∂
∂θ (P(θ)) into a multiset {|P ′

i (θ)|}
m
i=1 of normal non-aborting

programs P ′
i (θ). The total count of these programs is given

bym = |# ∂
∂θ (P(θ))|. Note that the above procedure could be

done at the compilation time.
Given any pair of O and ρ, the real execution to compute

the derivative of [[(O, ρ)! P(θ)]] is to approximate the ob-
servable semantics [[(O, ρ) !

∂
∂θ (P(θ))]]. By De"nition 5.2,

we need to approximate

m∑

i=1

tr
((
ZA ⊗ O

)
[[P ′

i (θ)]]((|0〉{A}〈0|) ⊗ ρ)
)
, (7.1)

where each term is the observable ZA ⊗O on the output state
of P ′

i (θ) given input state ρ and the ancilla qubit |0〉.
To approximate the sum in (7.1) to precision δ , one could

"rst treat the sum divided bym as the observable applied on
the program that starts with a uniformly random choice of i
from 1, · · · ,m and then execute P ′

i (θ). By Cherno! bound,
one only needs to repeat this procedure O(m2/δ 2) times.

Resource count.We are only interested in non-trivial (ex-
tra) resource that is something that you wouldn’t need if you
only run the original program. Ancilla qubits count as the
non-trivial resource. However, for our scheme, the number
of required ancillae is 1 qubit per each parameter.

The more non-trivial resource is the number of the copies
of input state (each copy of the input state is to be pre-
pared from scratch), which is directly related to the number
of repetitions in the procedure, which again connects to
m = |# ∂

∂θ (P(θ))|. We argue that our code transformation is
e#cient so thatm is reasonably bounded. To that end, we
show the relation betweenm and a natural quantity de"ned
on the original program P(θ) (i.e., before applying any ∂

∂θ (·)
operator) called the occurrence count of the parameter θ .

De!nition 7.1. The “Occurrence Count for θ j ” in P(θ), de-
noted OCj (P(θ)), is de!ned as follows:

1. If P(θ) ≡ abort[v]|skip[v]|q := |0〉 (q ∈ v), then
OCj (P(θ)) = 0;

2. P(θ) ≡ U (θ): ifU (θ) trivially uses θ j , then OCj (P(θ)) =
0; otherwise OCj (P(θ)) = 1.

3. If P(θ) ≡ U (θ) = P1(θ); P2(θ)) then OCj (P(θ)) =
OCj (P1(θ)) +OCj (P2(θ)).

4. If P(θ) ≡ caseM[q] =m → Pm(θ) end thenOCj (P(θ))
= maxm OCj (Pm(θ)).

5. If P(θ) ≡ while(T) M[q] = 1 do P1(θ) done then
OCj (P(θ)) = T · OCj (P1(θ)).

Intuition of the “Occurrence Count” de"nition is clear:
it basically counts the number of non-trivial occurrences
of θ j in the program, treating case as if it is determinis-
tic. To see why this is a reasonable quantity, consider the
auto-di!erentiation in the classical case. For any non-trivial
variable v (i.e., v has some dependence on the parameter
θ), we will compute both v and ∂

∂θ (v) and store them both
as variables in the new program. Thus, the classical auto-
di!erentiation essentially needs the number of non-trivial
occurrences more space and related resources. As we argued
in the introduction, we cannot directly mimic the classical
case due to the no-cloning theorem. The extra space require-
ment in the classical setting turns into the requirement on
the extra copies of the input state in the quantum setting.
Indeed, we can boundm by the occurrence count.

Proposition 7.2. |# ∂
∂θ j

(P(θ))| ≤ OCj (P(θ)).

Proof. Structural induction. For details, see the full ver-
sion [55]. !

8 Implementation and Case Study
We have built a compiler (written in OCaml) that implements
our code transformation and compilation rules8. We use it
to train one VQC instance with controls and empirically ver-
ify its resource-e#ciency on representative VQC instances.
Complete details can be found in the full version [55]. Exper-
iments are performed on a MacBook Pro with a Dual-Core
Intel Core i5 Processor clocked at 2.7 GHz, and 8GB of RAM.

8.1 Training VQC Instances with Controls

Consider a simple classi"cation problem over 4-bit inputs
z = z1z2z3z4 ∈ {0, 1}4 with true label given by f (z) = ¬(z1 ⊕
z4). We construct two 4-qubit VQCs P1 (no control) and P2
(with control) that consists of a single-qubit Pauli X,Y and Z
rotation gate on each qubit and compare their performance.

For parameters Γ = {γ1, . . . ,γ12} de"ne the program
Q(Γ) ≡ RX (γ1)[q1];RX (γ2)[q2];RX (γ3)[q3];RX (γ4)[q4];

RY (γ5)[q1];RY (γ6)[q2];RY (γ7)[q3];RY (γ8)[q4];
RZ (γ9)[q1];RZ (γ10)[q2];RZ (γ11)[q3];RZ (γ12)[q4],

8Codes are availabe at h#ps://github.com/LibertasSpZ/adcompile.

282

PLDI ’20, June 15–20, 2020, London, UK Shaopeng Zhu, Shih-Han Hung, Shouvanik Chakrabarti, and Xiaodi Wu

where q1,q2,q3,q4 refer to 4 qubit registers. Given parame-
ters Θ = {θ1, . . . ,θ12},Φ = {ϕ1, . . . ,ϕ12}, de!ne

P1(Θ,Φ) ≡Q(Θ);Q(Φ). (8.1)

Similarly, for parameters Θ = {θ1, . . . ,θ12},Φ =

{ϕ1, . . . ,ϕ12}, Ψ = {ψ1, . . . ,ψ12}, de!ne

P2(Θ,Φ,Ψ) ≡ Q(Θ); caseM[q1] = 0 → Q(Φ)
1 → Q(Ψ). (8.2)

Note that P1 and P2 execute the same number of gates for
each run. To use Pi to perform the classi!cation or in the
training, we !rst initialize q1,q2,q3,q4 to the classical feature
vector z = z1z2z3z4 and then execute Pi . The predicted label
y is given by measuring the 4th qubit q4 in the 0/1 basis.

We conduct a supervised learning by minimizing a loss
function. A natural choice is the average negative log-
likelihood which is commonly used in machine learning to
evaluate classi!ers that assign a certain probability to each
label since quantum outcomes are probabilistic. However,
this loss function is not currently supported by Pennylane.
Denote the output of the classi!er with input z and parame-
ters θ by lθ (z). To enable a direct comparison, we will treat
lθ (z) as the average value of the labels from probabilistic
quantum outcomes, and use the squared loss function as
follows:

loss =
∑

z∈{0,1}4
0.5 ∗ (lθ (z) − f (z))2. (8.3)

Note that loss is a function of θ = (Θ,Φ) (or Θ,Φ.Ψ). More
importantly, for each z, lθ (z) can be represented by the ob-
servable semantics of P1(or P2) with observable |1〉〈1|. Thus,
the gradient of loss can be obtained by using the collection
of ∂

∂α (P1) for α ∈ Θ,Φ (or ∂
∂α (P2) for α ∈ Θ,Φ,Ψ). We classi-

cally simulate the training procedure with gradient descent.
For the training of P1, we use Pennylane for a direct compar-
ison (see Figure 6). After 1000 epochs with some hyperpa-
rameters, the loss for P1 (no control) attains a minimum of
0.5 in less than 100 epochs and subsequently plateaus. The
loss for P2 (with control) continues to decrease and attains
a minimum of 0.016. It demonstrates the advantage of both
controls in quantum machine learning and our scheme to
handle controls, whereas previous schemes (such as Penny-
lane due to its quantum-node design [8]) fail to do so.

8.2 Benchmark Testing on Representative VQCs

We also test our compiler on important VQC candidates such
as quantum neural-networks (QNN) for solving machine
learning tasks [18], quantum approximate optimization algo-
rithms (QAOA) for solving combinatorial optimization [17],
and variational quantum eigensolver (VQE) for approximat-
ing ground state energies in quantum chemsitry [36], all of
which are promising candidates for actual implementation
on near-term quantum machines. These VQCs typically con-
sists of alternating layers of single-qubit gates and two-qubit
coupling gates, such as the 1-qubit, 2-qubit Pauli rotation

Figure 6. Training P1 and P2 to classify inputs according to
the labelling function f (z) = ¬(z1 ⊕ z4).

gates considered in our paper, to represent the alternation
between local interaction and neighboring interaction in real
quantum physics systems.

We enrich these examples, by adding simple controls (the
if/condition statement) or 2-bounded loops (the bounded-
while statement) and increasing the number of qubits to
18∼40, to make them su"ciently sophisticated but yet realis-
tic for near-term quantum applications. For example, we use
QNNM, i to denote an enriched QNN VQC instance of medium
size and with if controls. The size of QNNM,i can also be di-
rectly illustrated by the number of qubits (#qb), the gate
count (#gates), the number of alternating layers (#layers),
and the number of lines to code such instances (#lines). Sim-
ilarly for QNNL,w except that it is an instance of large size
and with while controls.
A selective output performance of our compiler is in Ta-

ble 2, with details in the full version [55]. It is easy to see that
our scheme is also empirically resource-e"cient as |# ∂

∂θ (·)|
is always reasonably bounded.

Table 2. Output on selective examples. {M,L} stands for
“medium, large”; {i,w} stands for including “if, while”.

P(θ) OC(·) |# ∂
∂θ (·)| #gates #lines #layers #qb

QNNM,i 24 24 165 189 3 18
QNNM,w 56 24 231 121 5 18
QNNL,i 48 48 363 414 6 36
QNNL,w 504 48 2079 244 33 36
VQEM,i 15 15 224 241 3 12
VQEM,w 35 15 224 112 5 12
VQEL,i 40 40 576 628 5 40
VQEL,w 248 40 1984 368 17 40
QAOAM,i 18 18 120 142 3 18
QAOAM,w 42 18 168 94 5 18
QAOAL,i 36 36 264 315 6 36
QAOAL,w 378 36 1512 190 33 36

283

(no control)

PLDI ’20, June 15–20, 2020, London, UK Shaopeng Zhu, Shih-Han Hung, Shouvanik Chakrabarti, and Xiaodi Wu

where q1,q2,q3,q4 refer to 4 qubit registers. Given parame-
ters Θ = {θ1, . . . ,θ12},Φ = {ϕ1, . . . ,ϕ12}, de!ne

P1(Θ,Φ) ≡Q(Θ);Q(Φ). (8.1)

Similarly, for parameters Θ = {θ1, . . . ,θ12},Φ =

{ϕ1, . . . ,ϕ12}, Ψ = {ψ1, . . . ,ψ12}, de!ne

P2(Θ,Φ,Ψ) ≡ Q(Θ); caseM[q1] = 0 → Q(Φ)
1 → Q(Ψ). (8.2)

Note that P1 and P2 execute the same number of gates for
each run. To use Pi to perform the classi!cation or in the
training, we !rst initialize q1,q2,q3,q4 to the classical feature
vector z = z1z2z3z4 and then execute Pi . The predicted label
y is given by measuring the 4th qubit q4 in the 0/1 basis.

We conduct a supervised learning by minimizing a loss
function. A natural choice is the average negative log-
likelihood which is commonly used in machine learning to
evaluate classi!ers that assign a certain probability to each
label since quantum outcomes are probabilistic. However,
this loss function is not currently supported by Pennylane.
Denote the output of the classi!er with input z and parame-
ters θ by lθ (z). To enable a direct comparison, we will treat
lθ (z) as the average value of the labels from probabilistic
quantum outcomes, and use the squared loss function as
follows:

loss =
∑

z∈{0,1}4
0.5 ∗ (lθ (z) − f (z))2. (8.3)

Note that loss is a function of θ = (Θ,Φ) (or Θ,Φ.Ψ). More
importantly, for each z, lθ (z) can be represented by the ob-
servable semantics of P1(or P2) with observable |1〉〈1|. Thus,
the gradient of loss can be obtained by using the collection
of ∂

∂α (P1) for α ∈ Θ,Φ (or ∂
∂α (P2) for α ∈ Θ,Φ,Ψ). We classi-

cally simulate the training procedure with gradient descent.
For the training of P1, we use Pennylane for a direct compar-
ison (see Figure 6). After 1000 epochs with some hyperpa-
rameters, the loss for P1 (no control) attains a minimum of
0.5 in less than 100 epochs and subsequently plateaus. The
loss for P2 (with control) continues to decrease and attains
a minimum of 0.016. It demonstrates the advantage of both
controls in quantum machine learning and our scheme to
handle controls, whereas previous schemes (such as Penny-
lane due to its quantum-node design [8]) fail to do so.

8.2 Benchmark Testing on Representative VQCs

We also test our compiler on important VQC candidates such
as quantum neural-networks (QNN) for solving machine
learning tasks [18], quantum approximate optimization algo-
rithms (QAOA) for solving combinatorial optimization [17],
and variational quantum eigensolver (VQE) for approximat-
ing ground state energies in quantum chemsitry [36], all of
which are promising candidates for actual implementation
on near-term quantum machines. These VQCs typically con-
sists of alternating layers of single-qubit gates and two-qubit
coupling gates, such as the 1-qubit, 2-qubit Pauli rotation

Figure 6. Training P1 and P2 to classify inputs according to
the labelling function f (z) = ¬(z1 ⊕ z4).

gates considered in our paper, to represent the alternation
between local interaction and neighboring interaction in real
quantum physics systems.

We enrich these examples, by adding simple controls (the
if/condition statement) or 2-bounded loops (the bounded-
while statement) and increasing the number of qubits to
18∼40, to make them su"ciently sophisticated but yet realis-
tic for near-term quantum applications. For example, we use
QNNM, i to denote an enriched QNN VQC instance of medium
size and with if controls. The size of QNNM,i can also be di-
rectly illustrated by the number of qubits (#qb), the gate
count (#gates), the number of alternating layers (#layers),
and the number of lines to code such instances (#lines). Sim-
ilarly for QNNL,w except that it is an instance of large size
and with while controls.
A selective output performance of our compiler is in Ta-

ble 2, with details in the full version [55]. It is easy to see that
our scheme is also empirically resource-e"cient as |# ∂

∂θ (·)|
is always reasonably bounded.

Table 2. Output on selective examples. {M,L} stands for
“medium, large”; {i,w} stands for including “if, while”.

P(θ) OC(·) |# ∂
∂θ (·)| #gates #lines #layers #qb

QNNM,i 24 24 165 189 3 18
QNNM,w 56 24 231 121 5 18
QNNL,i 48 48 363 414 6 36
QNNL,w 504 48 2079 244 33 36
VQEM,i 15 15 224 241 3 12
VQEM,w 35 15 224 112 5 12
VQEL,i 40 40 576 628 5 40
VQEL,w 248 40 1984 368 17 40
QAOAM,i 18 18 120 142 3 18
QAOAM,w 42 18 168 94 5 18
QAOAL,i 36 36 264 315 6 36
QAOAL,w 378 36 1512 190 33 36

283

(w/ control)
(measurements in the middle)

Note that and
 run the same

of gates.

P1(Θ, Φ)
P2(Θ, Φ, Ψ)

Simple classification task w/ ground

f(z) = ¬(z1 ⊕ z4), z = z1z2z3z4 ∈ {0,1}4

via the following square loss

PLDI ’20, June 15–20, 2020, London, UK Shaopeng Zhu, Shih-Han Hung, Shouvanik Chakrabarti, and Xiaodi Wu

where q1,q2,q3,q4 refer to 4 qubit registers. Given parame-
ters Θ = {θ1, . . . ,θ12},Φ = {ϕ1, . . . ,ϕ12}, de!ne

P1(Θ,Φ) ≡Q(Θ);Q(Φ). (8.1)

Similarly, for parameters Θ = {θ1, . . . ,θ12},Φ =

{ϕ1, . . . ,ϕ12}, Ψ = {ψ1, . . . ,ψ12}, de!ne

P2(Θ,Φ,Ψ) ≡ Q(Θ); caseM[q1] = 0 → Q(Φ)
1 → Q(Ψ). (8.2)

Note that P1 and P2 execute the same number of gates for
each run. To use Pi to perform the classi!cation or in the
training, we !rst initialize q1,q2,q3,q4 to the classical feature
vector z = z1z2z3z4 and then execute Pi . The predicted label
y is given by measuring the 4th qubit q4 in the 0/1 basis.

We conduct a supervised learning by minimizing a loss
function. A natural choice is the average negative log-
likelihood which is commonly used in machine learning to
evaluate classi!ers that assign a certain probability to each
label since quantum outcomes are probabilistic. However,
this loss function is not currently supported by Pennylane.
Denote the output of the classi!er with input z and parame-
ters θ by lθ (z). To enable a direct comparison, we will treat
lθ (z) as the average value of the labels from probabilistic
quantum outcomes, and use the squared loss function as
follows:

loss =
∑

z∈{0,1}4
0.5 ∗ (lθ (z) − f (z))2. (8.3)

Note that loss is a function of θ = (Θ,Φ) (or Θ,Φ.Ψ). More
importantly, for each z, lθ (z) can be represented by the ob-
servable semantics of P1(or P2) with observable |1〉〈1|. Thus,
the gradient of loss can be obtained by using the collection
of ∂

∂α (P1) for α ∈ Θ,Φ (or ∂
∂α (P2) for α ∈ Θ,Φ,Ψ). We classi-

cally simulate the training procedure with gradient descent.
For the training of P1, we use Pennylane for a direct compar-
ison (see Figure 6). After 1000 epochs with some hyperpa-
rameters, the loss for P1 (no control) attains a minimum of
0.5 in less than 100 epochs and subsequently plateaus. The
loss for P2 (with control) continues to decrease and attains
a minimum of 0.016. It demonstrates the advantage of both
controls in quantum machine learning and our scheme to
handle controls, whereas previous schemes (such as Penny-
lane due to its quantum-node design [8]) fail to do so.

8.2 Benchmark Testing on Representative VQCs

We also test our compiler on important VQC candidates such
as quantum neural-networks (QNN) for solving machine
learning tasks [18], quantum approximate optimization algo-
rithms (QAOA) for solving combinatorial optimization [17],
and variational quantum eigensolver (VQE) for approximat-
ing ground state energies in quantum chemsitry [36], all of
which are promising candidates for actual implementation
on near-term quantum machines. These VQCs typically con-
sists of alternating layers of single-qubit gates and two-qubit
coupling gates, such as the 1-qubit, 2-qubit Pauli rotation

Figure 6. Training P1 and P2 to classify inputs according to
the labelling function f (z) = ¬(z1 ⊕ z4).

gates considered in our paper, to represent the alternation
between local interaction and neighboring interaction in real
quantum physics systems.

We enrich these examples, by adding simple controls (the
if/condition statement) or 2-bounded loops (the bounded-
while statement) and increasing the number of qubits to
18∼40, to make them su"ciently sophisticated but yet realis-
tic for near-term quantum applications. For example, we use
QNNM, i to denote an enriched QNN VQC instance of medium
size and with if controls. The size of QNNM,i can also be di-
rectly illustrated by the number of qubits (#qb), the gate
count (#gates), the number of alternating layers (#layers),
and the number of lines to code such instances (#lines). Sim-
ilarly for QNNL,w except that it is an instance of large size
and with while controls.
A selective output performance of our compiler is in Ta-

ble 2, with details in the full version [55]. It is easy to see that
our scheme is also empirically resource-e"cient as |# ∂

∂θ (·)|
is always reasonably bounded.

Table 2. Output on selective examples. {M,L} stands for
“medium, large”; {i,w} stands for including “if, while”.

P(θ) OC(·) |# ∂
∂θ (·)| #gates #lines #layers #qb

QNNM,i 24 24 165 189 3 18
QNNM,w 56 24 231 121 5 18
QNNL,i 48 48 363 414 6 36
QNNL,w 504 48 2079 244 33 36
VQEM,i 15 15 224 241 3 12
VQEM,w 35 15 224 112 5 12
VQEL,i 40 40 576 628 5 40
VQEL,w 248 40 1984 368 17 40
QAOAM,i 18 18 120 142 3 18
QAOAM,w 42 18 168 94 5 18
QAOAL,i 36 36 264 315 6 36
QAOAL,w 378 36 1512 190 33 36

283

Quantum Neuro-Symbolic Application

On the Principles of Di!erentiable"antum Programming Languages PLDI ’20, June 15–20, 2020, London, UK

CT,Seq+Rot
=

caseM[q1] = 0 → (R′
X (θ)[A,q1];
RY (θ)[q1])+
(RX (θ)[q1];
R′

Y (θ)[A,q1]),
1 → R′

Z (θ)[A,q1]

Compile(•)
#−→

{
|
caseM[q1] = 0 → R′

X (θ)[A,q1];
RY (θ)[q1],

1 → R′
Z (θ)[A,q1],

caseM[q1] = 0 → RX (θ)[q1];
R′

Y (θ)[A,q1],
1 → abort.

|
}

7 Execution and Resource Analysis
In this section we illustrate the execution of the entire di!er-
entiation procedure and analyze its resource cost. Consider

any program P(θ) ∈ q-while(T)
v

(θ) and the parameter θ .

Execution. The "rst step in di!erentiation is to apply the
code transformation rules (in Section 6) to P(θ) and obtain
an additive program ∂

∂θ (P(θ)). Then one needs to compile
∂
∂θ (P(θ)) into a multiset {|P ′

i (θ)|}
m
i=1 of normal non-aborting

programs P ′
i (θ). The total count of these programs is given

bym = |# ∂
∂θ (P(θ))|. Note that the above procedure could be

done at the compilation time.
Given any pair of O and ρ, the real execution to compute

the derivative of [[(O, ρ)! P(θ)]] is to approximate the ob-
servable semantics [[(O, ρ) !

∂
∂θ (P(θ))]]. By De"nition 5.2,

we need to approximate

m∑

i=1

tr
((
ZA ⊗ O

)
[[P ′

i (θ)]]((|0〉{A}〈0|) ⊗ ρ)
)
, (7.1)

where each term is the observable ZA ⊗O on the output state
of P ′

i (θ) given input state ρ and the ancilla qubit |0〉.
To approximate the sum in (7.1) to precision δ , one could

"rst treat the sum divided bym as the observable applied on
the program that starts with a uniformly random choice of i
from 1, · · · ,m and then execute P ′

i (θ). By Cherno! bound,
one only needs to repeat this procedure O(m2/δ 2) times.

Resource count.We are only interested in non-trivial (ex-
tra) resource that is something that you wouldn’t need if you
only run the original program. Ancilla qubits count as the
non-trivial resource. However, for our scheme, the number
of required ancillae is 1 qubit per each parameter.

The more non-trivial resource is the number of the copies
of input state (each copy of the input state is to be pre-
pared from scratch), which is directly related to the number
of repetitions in the procedure, which again connects to
m = |# ∂

∂θ (P(θ))|. We argue that our code transformation is
e#cient so thatm is reasonably bounded. To that end, we
show the relation betweenm and a natural quantity de"ned
on the original program P(θ) (i.e., before applying any ∂

∂θ (·)
operator) called the occurrence count of the parameter θ .

De!nition 7.1. The “Occurrence Count for θ j ” in P(θ), de-
noted OCj (P(θ)), is de!ned as follows:

1. If P(θ) ≡ abort[v]|skip[v]|q := |0〉 (q ∈ v), then
OCj (P(θ)) = 0;

2. P(θ) ≡ U (θ): ifU (θ) trivially uses θ j , then OCj (P(θ)) =
0; otherwise OCj (P(θ)) = 1.

3. If P(θ) ≡ U (θ) = P1(θ); P2(θ)) then OCj (P(θ)) =
OCj (P1(θ)) +OCj (P2(θ)).

4. If P(θ) ≡ caseM[q] =m → Pm(θ) end thenOCj (P(θ))
= maxm OCj (Pm(θ)).

5. If P(θ) ≡ while(T) M[q] = 1 do P1(θ) done then
OCj (P(θ)) = T · OCj (P1(θ)).

Intuition of the “Occurrence Count” de"nition is clear:
it basically counts the number of non-trivial occurrences
of θ j in the program, treating case as if it is determinis-
tic. To see why this is a reasonable quantity, consider the
auto-di!erentiation in the classical case. For any non-trivial
variable v (i.e., v has some dependence on the parameter
θ), we will compute both v and ∂

∂θ (v) and store them both
as variables in the new program. Thus, the classical auto-
di!erentiation essentially needs the number of non-trivial
occurrences more space and related resources. As we argued
in the introduction, we cannot directly mimic the classical
case due to the no-cloning theorem. The extra space require-
ment in the classical setting turns into the requirement on
the extra copies of the input state in the quantum setting.
Indeed, we can boundm by the occurrence count.

Proposition 7.2. |# ∂
∂θ j

(P(θ))| ≤ OCj (P(θ)).

Proof. Structural induction. For details, see the full ver-
sion [55]. !

8 Implementation and Case Study
We have built a compiler (written in OCaml) that implements
our code transformation and compilation rules8. We use it
to train one VQC instance with controls and empirically ver-
ify its resource-e#ciency on representative VQC instances.
Complete details can be found in the full version [55]. Exper-
iments are performed on a MacBook Pro with a Dual-Core
Intel Core i5 Processor clocked at 2.7 GHz, and 8GB of RAM.

8.1 Training VQC Instances with Controls

Consider a simple classi"cation problem over 4-bit inputs
z = z1z2z3z4 ∈ {0, 1}4 with true label given by f (z) = ¬(z1 ⊕
z4). We construct two 4-qubit VQCs P1 (no control) and P2
(with control) that consists of a single-qubit Pauli X,Y and Z
rotation gate on each qubit and compare their performance.

For parameters Γ = {γ1, . . . ,γ12} de"ne the program
Q(Γ) ≡ RX (γ1)[q1];RX (γ2)[q2];RX (γ3)[q3];RX (γ4)[q4];

RY (γ5)[q1];RY (γ6)[q2];RY (γ7)[q3];RY (γ8)[q4];
RZ (γ9)[q1];RZ (γ10)[q2];RZ (γ11)[q3];RZ (γ12)[q4],

8Codes are availabe at h#ps://github.com/LibertasSpZ/adcompile.

282

PLDI ’20, June 15–20, 2020, London, UK Shaopeng Zhu, Shih-Han Hung, Shouvanik Chakrabarti, and Xiaodi Wu

where q1,q2,q3,q4 refer to 4 qubit registers. Given parame-
ters Θ = {θ1, . . . ,θ12},Φ = {ϕ1, . . . ,ϕ12}, de!ne

P1(Θ,Φ) ≡Q(Θ);Q(Φ). (8.1)

Similarly, for parameters Θ = {θ1, . . . ,θ12},Φ =

{ϕ1, . . . ,ϕ12}, Ψ = {ψ1, . . . ,ψ12}, de!ne

P2(Θ,Φ,Ψ) ≡ Q(Θ); caseM[q1] = 0 → Q(Φ)
1 → Q(Ψ). (8.2)

Note that P1 and P2 execute the same number of gates for
each run. To use Pi to perform the classi!cation or in the
training, we !rst initialize q1,q2,q3,q4 to the classical feature
vector z = z1z2z3z4 and then execute Pi . The predicted label
y is given by measuring the 4th qubit q4 in the 0/1 basis.

We conduct a supervised learning by minimizing a loss
function. A natural choice is the average negative log-
likelihood which is commonly used in machine learning to
evaluate classi!ers that assign a certain probability to each
label since quantum outcomes are probabilistic. However,
this loss function is not currently supported by Pennylane.
Denote the output of the classi!er with input z and parame-
ters θ by lθ (z). To enable a direct comparison, we will treat
lθ (z) as the average value of the labels from probabilistic
quantum outcomes, and use the squared loss function as
follows:

loss =
∑

z∈{0,1}4
0.5 ∗ (lθ (z) − f (z))2. (8.3)

Note that loss is a function of θ = (Θ,Φ) (or Θ,Φ.Ψ). More
importantly, for each z, lθ (z) can be represented by the ob-
servable semantics of P1(or P2) with observable |1〉〈1|. Thus,
the gradient of loss can be obtained by using the collection
of ∂

∂α (P1) for α ∈ Θ,Φ (or ∂
∂α (P2) for α ∈ Θ,Φ,Ψ). We classi-

cally simulate the training procedure with gradient descent.
For the training of P1, we use Pennylane for a direct compar-
ison (see Figure 6). After 1000 epochs with some hyperpa-
rameters, the loss for P1 (no control) attains a minimum of
0.5 in less than 100 epochs and subsequently plateaus. The
loss for P2 (with control) continues to decrease and attains
a minimum of 0.016. It demonstrates the advantage of both
controls in quantum machine learning and our scheme to
handle controls, whereas previous schemes (such as Penny-
lane due to its quantum-node design [8]) fail to do so.

8.2 Benchmark Testing on Representative VQCs

We also test our compiler on important VQC candidates such
as quantum neural-networks (QNN) for solving machine
learning tasks [18], quantum approximate optimization algo-
rithms (QAOA) for solving combinatorial optimization [17],
and variational quantum eigensolver (VQE) for approximat-
ing ground state energies in quantum chemsitry [36], all of
which are promising candidates for actual implementation
on near-term quantum machines. These VQCs typically con-
sists of alternating layers of single-qubit gates and two-qubit
coupling gates, such as the 1-qubit, 2-qubit Pauli rotation

Figure 6. Training P1 and P2 to classify inputs according to
the labelling function f (z) = ¬(z1 ⊕ z4).

gates considered in our paper, to represent the alternation
between local interaction and neighboring interaction in real
quantum physics systems.

We enrich these examples, by adding simple controls (the
if/condition statement) or 2-bounded loops (the bounded-
while statement) and increasing the number of qubits to
18∼40, to make them su"ciently sophisticated but yet realis-
tic for near-term quantum applications. For example, we use
QNNM, i to denote an enriched QNN VQC instance of medium
size and with if controls. The size of QNNM,i can also be di-
rectly illustrated by the number of qubits (#qb), the gate
count (#gates), the number of alternating layers (#layers),
and the number of lines to code such instances (#lines). Sim-
ilarly for QNNL,w except that it is an instance of large size
and with while controls.
A selective output performance of our compiler is in Ta-

ble 2, with details in the full version [55]. It is easy to see that
our scheme is also empirically resource-e"cient as |# ∂

∂θ (·)|
is always reasonably bounded.

Table 2. Output on selective examples. {M,L} stands for
“medium, large”; {i,w} stands for including “if, while”.

P(θ) OC(·) |# ∂
∂θ (·)| #gates #lines #layers #qb

QNNM,i 24 24 165 189 3 18
QNNM,w 56 24 231 121 5 18
QNNL,i 48 48 363 414 6 36
QNNL,w 504 48 2079 244 33 36
VQEM,i 15 15 224 241 3 12
VQEM,w 35 15 224 112 5 12
VQEL,i 40 40 576 628 5 40
VQEL,w 248 40 1984 368 17 40
QAOAM,i 18 18 120 142 3 18
QAOAM,w 42 18 168 94 5 18
QAOAL,i 36 36 264 315 6 36
QAOAL,w 378 36 1512 190 33 36

283

(no control)

PLDI ’20, June 15–20, 2020, London, UK Shaopeng Zhu, Shih-Han Hung, Shouvanik Chakrabarti, and Xiaodi Wu

where q1,q2,q3,q4 refer to 4 qubit registers. Given parame-
ters Θ = {θ1, . . . ,θ12},Φ = {ϕ1, . . . ,ϕ12}, de!ne

P1(Θ,Φ) ≡Q(Θ);Q(Φ). (8.1)

Similarly, for parameters Θ = {θ1, . . . ,θ12},Φ =

{ϕ1, . . . ,ϕ12}, Ψ = {ψ1, . . . ,ψ12}, de!ne

P2(Θ,Φ,Ψ) ≡ Q(Θ); caseM[q1] = 0 → Q(Φ)
1 → Q(Ψ). (8.2)

Note that P1 and P2 execute the same number of gates for
each run. To use Pi to perform the classi!cation or in the
training, we !rst initialize q1,q2,q3,q4 to the classical feature
vector z = z1z2z3z4 and then execute Pi . The predicted label
y is given by measuring the 4th qubit q4 in the 0/1 basis.

We conduct a supervised learning by minimizing a loss
function. A natural choice is the average negative log-
likelihood which is commonly used in machine learning to
evaluate classi!ers that assign a certain probability to each
label since quantum outcomes are probabilistic. However,
this loss function is not currently supported by Pennylane.
Denote the output of the classi!er with input z and parame-
ters θ by lθ (z). To enable a direct comparison, we will treat
lθ (z) as the average value of the labels from probabilistic
quantum outcomes, and use the squared loss function as
follows:

loss =
∑

z∈{0,1}4
0.5 ∗ (lθ (z) − f (z))2. (8.3)

Note that loss is a function of θ = (Θ,Φ) (or Θ,Φ.Ψ). More
importantly, for each z, lθ (z) can be represented by the ob-
servable semantics of P1(or P2) with observable |1〉〈1|. Thus,
the gradient of loss can be obtained by using the collection
of ∂

∂α (P1) for α ∈ Θ,Φ (or ∂
∂α (P2) for α ∈ Θ,Φ,Ψ). We classi-

cally simulate the training procedure with gradient descent.
For the training of P1, we use Pennylane for a direct compar-
ison (see Figure 6). After 1000 epochs with some hyperpa-
rameters, the loss for P1 (no control) attains a minimum of
0.5 in less than 100 epochs and subsequently plateaus. The
loss for P2 (with control) continues to decrease and attains
a minimum of 0.016. It demonstrates the advantage of both
controls in quantum machine learning and our scheme to
handle controls, whereas previous schemes (such as Penny-
lane due to its quantum-node design [8]) fail to do so.

8.2 Benchmark Testing on Representative VQCs

We also test our compiler on important VQC candidates such
as quantum neural-networks (QNN) for solving machine
learning tasks [18], quantum approximate optimization algo-
rithms (QAOA) for solving combinatorial optimization [17],
and variational quantum eigensolver (VQE) for approximat-
ing ground state energies in quantum chemsitry [36], all of
which are promising candidates for actual implementation
on near-term quantum machines. These VQCs typically con-
sists of alternating layers of single-qubit gates and two-qubit
coupling gates, such as the 1-qubit, 2-qubit Pauli rotation

Figure 6. Training P1 and P2 to classify inputs according to
the labelling function f (z) = ¬(z1 ⊕ z4).

gates considered in our paper, to represent the alternation
between local interaction and neighboring interaction in real
quantum physics systems.

We enrich these examples, by adding simple controls (the
if/condition statement) or 2-bounded loops (the bounded-
while statement) and increasing the number of qubits to
18∼40, to make them su"ciently sophisticated but yet realis-
tic for near-term quantum applications. For example, we use
QNNM, i to denote an enriched QNN VQC instance of medium
size and with if controls. The size of QNNM,i can also be di-
rectly illustrated by the number of qubits (#qb), the gate
count (#gates), the number of alternating layers (#layers),
and the number of lines to code such instances (#lines). Sim-
ilarly for QNNL,w except that it is an instance of large size
and with while controls.
A selective output performance of our compiler is in Ta-

ble 2, with details in the full version [55]. It is easy to see that
our scheme is also empirically resource-e"cient as |# ∂

∂θ (·)|
is always reasonably bounded.

Table 2. Output on selective examples. {M,L} stands for
“medium, large”; {i,w} stands for including “if, while”.

P(θ) OC(·) |# ∂
∂θ (·)| #gates #lines #layers #qb

QNNM,i 24 24 165 189 3 18
QNNM,w 56 24 231 121 5 18
QNNL,i 48 48 363 414 6 36
QNNL,w 504 48 2079 244 33 36
VQEM,i 15 15 224 241 3 12
VQEM,w 35 15 224 112 5 12
VQEL,i 40 40 576 628 5 40
VQEL,w 248 40 1984 368 17 40
QAOAM,i 18 18 120 142 3 18
QAOAM,w 42 18 168 94 5 18
QAOAL,i 36 36 264 315 6 36
QAOAL,w 378 36 1512 190 33 36

283

(w/ control)
(measurements in the middle)

Note that and
 run the same

of gates.

P1(Θ, Φ)
P2(Θ, Φ, Ψ)

Simple classification task w/ ground

f(z) = ¬(z1 ⊕ z4), z = z1z2z3z4 ∈ {0,1}4

via the following square loss

PLDI ’20, June 15–20, 2020, London, UK Shaopeng Zhu, Shih-Han Hung, Shouvanik Chakrabarti, and Xiaodi Wu

where q1,q2,q3,q4 refer to 4 qubit registers. Given parame-
ters Θ = {θ1, . . . ,θ12},Φ = {ϕ1, . . . ,ϕ12}, de!ne

P1(Θ,Φ) ≡Q(Θ);Q(Φ). (8.1)

Similarly, for parameters Θ = {θ1, . . . ,θ12},Φ =

{ϕ1, . . . ,ϕ12}, Ψ = {ψ1, . . . ,ψ12}, de!ne

P2(Θ,Φ,Ψ) ≡ Q(Θ); caseM[q1] = 0 → Q(Φ)
1 → Q(Ψ). (8.2)

Note that P1 and P2 execute the same number of gates for
each run. To use Pi to perform the classi!cation or in the
training, we !rst initialize q1,q2,q3,q4 to the classical feature
vector z = z1z2z3z4 and then execute Pi . The predicted label
y is given by measuring the 4th qubit q4 in the 0/1 basis.

We conduct a supervised learning by minimizing a loss
function. A natural choice is the average negative log-
likelihood which is commonly used in machine learning to
evaluate classi!ers that assign a certain probability to each
label since quantum outcomes are probabilistic. However,
this loss function is not currently supported by Pennylane.
Denote the output of the classi!er with input z and parame-
ters θ by lθ (z). To enable a direct comparison, we will treat
lθ (z) as the average value of the labels from probabilistic
quantum outcomes, and use the squared loss function as
follows:

loss =
∑

z∈{0,1}4
0.5 ∗ (lθ (z) − f (z))2. (8.3)

Note that loss is a function of θ = (Θ,Φ) (or Θ,Φ.Ψ). More
importantly, for each z, lθ (z) can be represented by the ob-
servable semantics of P1(or P2) with observable |1〉〈1|. Thus,
the gradient of loss can be obtained by using the collection
of ∂

∂α (P1) for α ∈ Θ,Φ (or ∂
∂α (P2) for α ∈ Θ,Φ,Ψ). We classi-

cally simulate the training procedure with gradient descent.
For the training of P1, we use Pennylane for a direct compar-
ison (see Figure 6). After 1000 epochs with some hyperpa-
rameters, the loss for P1 (no control) attains a minimum of
0.5 in less than 100 epochs and subsequently plateaus. The
loss for P2 (with control) continues to decrease and attains
a minimum of 0.016. It demonstrates the advantage of both
controls in quantum machine learning and our scheme to
handle controls, whereas previous schemes (such as Penny-
lane due to its quantum-node design [8]) fail to do so.

8.2 Benchmark Testing on Representative VQCs

We also test our compiler on important VQC candidates such
as quantum neural-networks (QNN) for solving machine
learning tasks [18], quantum approximate optimization algo-
rithms (QAOA) for solving combinatorial optimization [17],
and variational quantum eigensolver (VQE) for approximat-
ing ground state energies in quantum chemsitry [36], all of
which are promising candidates for actual implementation
on near-term quantum machines. These VQCs typically con-
sists of alternating layers of single-qubit gates and two-qubit
coupling gates, such as the 1-qubit, 2-qubit Pauli rotation

Figure 6. Training P1 and P2 to classify inputs according to
the labelling function f (z) = ¬(z1 ⊕ z4).

gates considered in our paper, to represent the alternation
between local interaction and neighboring interaction in real
quantum physics systems.

We enrich these examples, by adding simple controls (the
if/condition statement) or 2-bounded loops (the bounded-
while statement) and increasing the number of qubits to
18∼40, to make them su"ciently sophisticated but yet realis-
tic for near-term quantum applications. For example, we use
QNNM, i to denote an enriched QNN VQC instance of medium
size and with if controls. The size of QNNM,i can also be di-
rectly illustrated by the number of qubits (#qb), the gate
count (#gates), the number of alternating layers (#layers),
and the number of lines to code such instances (#lines). Sim-
ilarly for QNNL,w except that it is an instance of large size
and with while controls.
A selective output performance of our compiler is in Ta-

ble 2, with details in the full version [55]. It is easy to see that
our scheme is also empirically resource-e"cient as |# ∂

∂θ (·)|
is always reasonably bounded.

Table 2. Output on selective examples. {M,L} stands for
“medium, large”; {i,w} stands for including “if, while”.

P(θ) OC(·) |# ∂
∂θ (·)| #gates #lines #layers #qb

QNNM,i 24 24 165 189 3 18
QNNM,w 56 24 231 121 5 18
QNNL,i 48 48 363 414 6 36
QNNL,w 504 48 2079 244 33 36
VQEM,i 15 15 224 241 3 12
VQEM,w 35 15 224 112 5 12
VQEL,i 40 40 576 628 5 40
VQEL,w 248 40 1984 368 17 40
QAOAM,i 18 18 120 142 3 18
QAOAM,w 42 18 168 94 5 18
QAOAL,i 36 36 264 315 6 36
QAOAL,w 378 36 1512 190 33 36

283

PLDI ’20, June 15–20, 2020, London, UK Shaopeng Zhu, Shih-Han Hung, Shouvanik Chakrabarti, and Xiaodi Wu

where q1,q2,q3,q4 refer to 4 qubit registers. Given parame-
ters Θ = {θ1, . . . ,θ12},Φ = {ϕ1, . . . ,ϕ12}, de!ne

P1(Θ,Φ) ≡Q(Θ);Q(Φ). (8.1)

Similarly, for parameters Θ = {θ1, . . . ,θ12},Φ =

{ϕ1, . . . ,ϕ12}, Ψ = {ψ1, . . . ,ψ12}, de!ne

P2(Θ,Φ,Ψ) ≡ Q(Θ); caseM[q1] = 0 → Q(Φ)
1 → Q(Ψ). (8.2)

Note that P1 and P2 execute the same number of gates for
each run. To use Pi to perform the classi!cation or in the
training, we !rst initialize q1,q2,q3,q4 to the classical feature
vector z = z1z2z3z4 and then execute Pi . The predicted label
y is given by measuring the 4th qubit q4 in the 0/1 basis.

We conduct a supervised learning by minimizing a loss
function. A natural choice is the average negative log-
likelihood which is commonly used in machine learning to
evaluate classi!ers that assign a certain probability to each
label since quantum outcomes are probabilistic. However,
this loss function is not currently supported by Pennylane.
Denote the output of the classi!er with input z and parame-
ters θ by lθ (z). To enable a direct comparison, we will treat
lθ (z) as the average value of the labels from probabilistic
quantum outcomes, and use the squared loss function as
follows:

loss =
∑

z∈{0,1}4
0.5 ∗ (lθ (z) − f (z))2. (8.3)

Note that loss is a function of θ = (Θ,Φ) (or Θ,Φ.Ψ). More
importantly, for each z, lθ (z) can be represented by the ob-
servable semantics of P1(or P2) with observable |1〉〈1|. Thus,
the gradient of loss can be obtained by using the collection
of ∂

∂α (P1) for α ∈ Θ,Φ (or ∂
∂α (P2) for α ∈ Θ,Φ,Ψ). We classi-

cally simulate the training procedure with gradient descent.
For the training of P1, we use Pennylane for a direct compar-
ison (see Figure 6). After 1000 epochs with some hyperpa-
rameters, the loss for P1 (no control) attains a minimum of
0.5 in less than 100 epochs and subsequently plateaus. The
loss for P2 (with control) continues to decrease and attains
a minimum of 0.016. It demonstrates the advantage of both
controls in quantum machine learning and our scheme to
handle controls, whereas previous schemes (such as Penny-
lane due to its quantum-node design [8]) fail to do so.

8.2 Benchmark Testing on Representative VQCs

We also test our compiler on important VQC candidates such
as quantum neural-networks (QNN) for solving machine
learning tasks [18], quantum approximate optimization algo-
rithms (QAOA) for solving combinatorial optimization [17],
and variational quantum eigensolver (VQE) for approximat-
ing ground state energies in quantum chemsitry [36], all of
which are promising candidates for actual implementation
on near-term quantum machines. These VQCs typically con-
sists of alternating layers of single-qubit gates and two-qubit
coupling gates, such as the 1-qubit, 2-qubit Pauli rotation

Figure 6. Training P1 and P2 to classify inputs according to
the labelling function f (z) = ¬(z1 ⊕ z4).

gates considered in our paper, to represent the alternation
between local interaction and neighboring interaction in real
quantum physics systems.

We enrich these examples, by adding simple controls (the
if/condition statement) or 2-bounded loops (the bounded-
while statement) and increasing the number of qubits to
18∼40, to make them su"ciently sophisticated but yet realis-
tic for near-term quantum applications. For example, we use
QNNM, i to denote an enriched QNN VQC instance of medium
size and with if controls. The size of QNNM,i can also be di-
rectly illustrated by the number of qubits (#qb), the gate
count (#gates), the number of alternating layers (#layers),
and the number of lines to code such instances (#lines). Sim-
ilarly for QNNL,w except that it is an instance of large size
and with while controls.
A selective output performance of our compiler is in Ta-

ble 2, with details in the full version [55]. It is easy to see that
our scheme is also empirically resource-e"cient as |# ∂

∂θ (·)|
is always reasonably bounded.

Table 2. Output on selective examples. {M,L} stands for
“medium, large”; {i,w} stands for including “if, while”.

P(θ) OC(·) |# ∂
∂θ (·)| #gates #lines #layers #qb

QNNM,i 24 24 165 189 3 18
QNNM,w 56 24 231 121 5 18
QNNL,i 48 48 363 414 6 36
QNNL,w 504 48 2079 244 33 36
VQEM,i 15 15 224 241 3 12
VQEM,w 35 15 224 112 5 12
VQEL,i 40 40 576 628 5 40
VQEL,w 248 40 1984 368 17 40
QAOAM,i 18 18 120 142 3 18
QAOAM,w 42 18 168 94 5 18
QAOAL,i 36 36 264 315 6 36
QAOAL,w 378 36 1512 190 33 36

283

Quantum Wasserstein GAN:
(NeurIPS 2019) github:/yiminghwang/qWGAN

Differentiable Quantum Prog-Lang:
(PLDI 2020) github:/LibertasSpZ/adcompile

