Limitations of monogamy, Tsirelson-type bounds, and other SDPs in quantum information

Aram W. Harrow¹, Anand Natarajan¹, Xiaodi Wu²

¹MIT Center for Theoretical Physics ²University of Oregon

QMA(2) Workshop, UMD

SDPs in Quantum Information

Semidefinite Programmings (SDPs) admit *polynomial time* solvers and plays an important role in quantum information.

- Consistency of reduced states, Quantum conditional min-entropy, local Hamiltonians
- QIP=PSPACE, QRG=EXP,

This talk is, however, about its limitation in

- Separability or entanglement detection,
- Approximation of Bell-violation (non-local game values).

Result: unconditional limitations of SOS/SDPs comparable to existing computational hardness.

SDPs in Quantum Information

Semidefinite Programmings (SDPs) admit *polynomial time* solvers and plays an important role in quantum information.

- Consistency of reduced states, Quantum conditional min-entropy, local Hamiltonians
- QIP=PSPACE, QRG=EXP,

This talk is, however, about its limitation in

- Separability or entanglement detection,
- Approximation of Bell-violation (non-local game values).

Result: unconditional limitations of SOS/SDPs comparable to existing computational hardness.

SDPs in Quantum Information

Semidefinite Programmings (SDPs) admit *polynomial time* solvers and plays an important role in quantum information.

- Consistency of reduced states, Quantum conditional min-entropy, local Hamiltonians
- QIP=PSPACE, QRG=EXP,

This talk is, however, about its limitation in

- Separability or entanglement detection,
- Approximation of Bell-violation (non-local game values).

Result: unconditional limitations of SOS/SDPs comparable to existing computational hardness.

Problem 1: Separability

Definition (Separable and Entangled States)

A bi-partitie state $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$ is *separable* if \exists dist. $\{p_i\}$,

$$\rho = \sum p_{i}\sigma_{X}^{i}\otimes\sigma_{Y}^{i}, \text{ s.t. } \sigma_{X}^{i}\in \mathrm{D}\left(\mathcal{X}\right), \sigma_{Y}^{i}\in \mathrm{D}\left(\mathcal{Y}\right).$$

Otherwise, ρ is *entangled*. Let Sep $\stackrel{\text{def}}{=}$ { separable states }.

Definition (Entanglement Detection

A KEY problem: given the description of $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$, decide

Either $ho\in\mathsf{Sep}$, or ho is far away from Sep .

Problem 1: Separability

Definition (Separable and Entangled States)

A bi-partitie state $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$ is *separable* if \exists dist. $\{p_i\}$,

$$\rho = \sum p_{i}\sigma_{X}^{i}\otimes\sigma_{Y}^{i}, \text{ s.t. } \sigma_{X}^{i}\in \mathrm{D}\left(\mathcal{X}\right), \sigma_{Y}^{i}\in \mathrm{D}\left(\mathcal{Y}\right).$$

Otherwise, ρ is *entangled*. Let $Sep \stackrel{\text{def}}{=} \{ \text{ separable states } \}$.

Definition (Entanglement Detection)

A KEY problem: given the description of $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$, decide

Either $\rho \in \text{Sep}$, or ρ is far away from Sep.

Alternative Formulation

Definition (Weak Membership)

WMem $(\epsilon, \|\cdot\|)$: for any $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$, decide either $\rho \in Sep$ or $\|\rho - Sep\| \ge \epsilon$.

Via standard techniques in convex optimization, equivalent to

Definition (Weak Optimization)

 $\mathsf{WOpt}(M, \epsilon)$: for any $M \in \mathsf{Herm}\,(\mathcal{X} \otimes \mathcal{Y})$, estimate the value of

$$h_{\mathsf{Sep}(d,d)}(\mathit{M}) := \max_{
ho \in \mathsf{Sep}} \left\langle \mathit{M},
ho
ight
angle,$$

with additive error ϵ .

$h_{\text{Sep}(d,d)}(M)$

$$h_{\mathsf{Sep}(d,d)}(M) := \max_{\substack{x,y \in \mathbb{C}^d \\ \|x\|_2 = \|y\|_2 = 1}} \sum_{i,j,k,l \in [d]} M_{ij,kl} x_i^* x_j y_k^* y_l. \tag{1}$$

REMARK: this is an instance of *polynomial optimization* problems with a homogenous degree 4 objective polynomial and a degree 2 constraint polynomial.

Quantum Information:

- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels
- Data hiding, Channel capacities, Privacy,
- 17 more examples in quantum information in [HM10].

Quantum Complexity:

Quantum Merlin-Arthur Game with Two-Provers (QMA(2))

Classical Complexity:

• Unique Game Conjecture and Small-set Expansion. $(\ell_2 \rightarrow \ell_4 \text{ norm})$

Quantum Information:

- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- Data hiding, Channel capacities, Privacy,
- 17 more examples in quantum information in [HM10]

Quantum Complexity

Quantum Merlin-Arthur Game with Two-Provers (QMA(2))

Classical Complexity:

• Unique Game Conjecture and Small-set Expansion $(\ell_2 \to \ell_4 \text{ norm})$

Quantum Information:

- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- Data hiding, Channel capacities, Privacy,
- 17 more examples in quantum information in [HM10]

Quantum Complexity

Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:

Unique Game Conjecture and Small-set Expansion.
 (ℓ₂ → ℓ₄ norm)

Quantum Information:

- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- Data hiding, Channel capacities, Privacy,
- 17 more examples in quantum information in [HM10].

Quantum Complexity

Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity

• Unique Game Conjecture and Small-set Expansion $(\ell_2 \to \ell_4 \text{ norm})$

Quantum Information:

- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- Data hiding, Channel capacities, Privacy,
- 17 more examples in quantum information in [HM10].

Quantum Complexity:

Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:

• Unique Game Conjecture and Small-set Expansion. $(\ell_2 \rightarrow \ell_4 \text{ norm})$

Quantum Information:

- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- Data hiding, Channel capacities, Privacy,
- 17 more examples in quantum information in [HM10].

Quantum Complexity:

Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:

• Unique Game Conjecture and Small-set Expansion. $(\ell_2 \rightarrow \ell_4 \text{ norm})$

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_y} = \rho$? [PH]
- Reduction Criterions: $I_X \otimes \rho_Y \geq \rho$? [HH]
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

• ρ is k-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$, $\forall i, \rho = \sigma_{XY}$.

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_y} = \rho$? [PH]
- Reduction Criterions: $I_{\mathcal{X}} \otimes \rho_{\mathcal{Y}} \geq \rho$? [HH]
- FAILURE: any such test has arbitrarily large error. [BS

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

• ρ is k-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$. $\forall i, \rho = \sigma_{XY_i}$.

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_y} = \rho$? [PH]
- Reduction Criterions: $I_X \otimes \rho_Y \geq \rho$? [HH]
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

• ρ is k-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$, $\forall i, \rho = \sigma_{XY_i}$.

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_y} = \rho$? [PH]
- Reduction Criterions: $I_X \otimes \rho_Y \geq \rho$? [HH]
- FAILURE: any such test has arbitrarily large error. [BS]

- ρ is k-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$, $\forall i, \rho = \sigma_{XY_i}$.
- $\rho \in \text{Sep if and only if } \rho \text{ is } k\text{-extendible for any } k \geq 0.$

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_y} = \rho$? [PH]
- Reduction Criterions: $I_X \otimes \rho_Y \geq \rho$? [HH]
- FAILURE: any such test has arbitrarily large error. [BS]

- ρ is k-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$, $\forall i, \rho = \sigma_{XY_i}$.
- $\rho \in \text{Sep}$ if and only if ρ is k-extendible for any $k \geq 0$.
- Semidefinite program (SDP): size exponential in k

Separability Criterions:

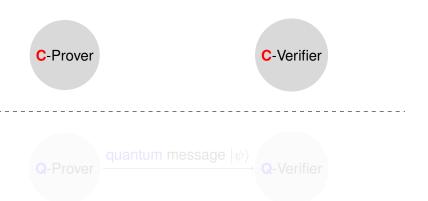
- Positive Partial Transpose (PPT) : $\rho^{T_y} = \rho$? [PH]
- Reduction Criterions: $I_X \otimes \rho_Y \geq \rho$? [HH]
- FAILURE: any such test has arbitrarily large error. [BS]

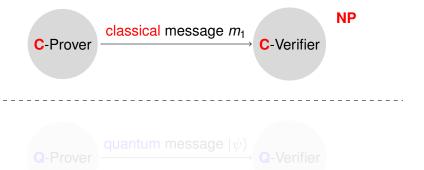
- ρ is k-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$, $\forall i, \rho = \sigma_{XY_i}$.
- $\rho \in \text{Sep if and only if } \rho \text{ is } k\text{-extendible for any } k \geq 0.$
- Semidefinite program (SDP): size exponential in k

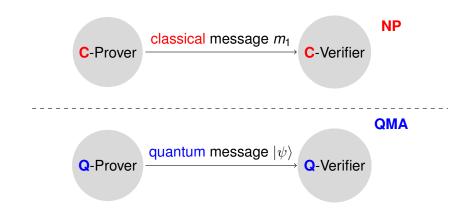
Separability Criterions:

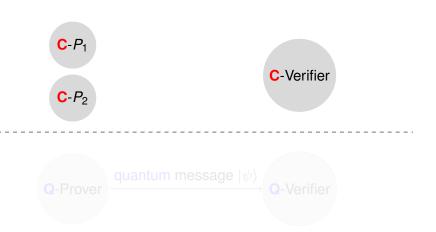
- Positive Partial Transpose (PPT) : $\rho^{T_y} = \rho$? [PH]
- Reduction Criterions: $I_X \otimes \rho_Y \geq \rho$? [HH]
- FAILURE: any such test has arbitrarily large error. [BS]

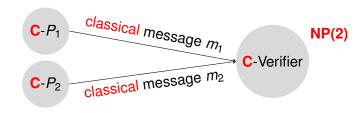
- ρ is k-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$, $\forall i, \rho = \sigma_{XY_i}$.
- $\rho \in \text{Sep if and only if } \rho \text{ is } k\text{-extendible for any } k \geq 0.$
- Semidefinite program (SDP): size exponential in k.

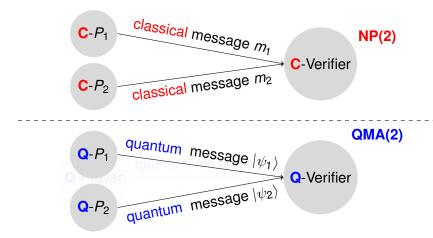


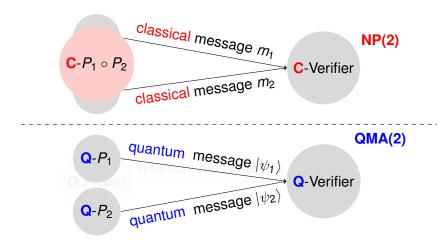


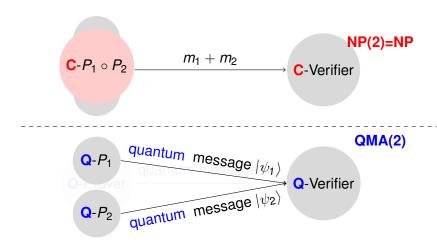


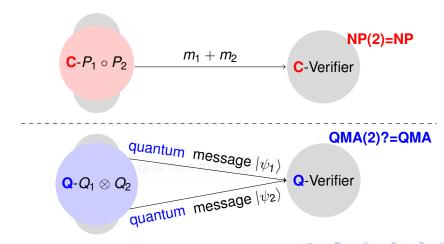












- First study in [KMY01, KMY03]. Surprising: NP
 ⊆ QMA(2)_{log} [BT09, GNN] v.s. QMA_{log} = BQP [MW05].
- QMA(2) solves 3SAT (constant gaps) with $O(\sqrt{n})$ -qubit proofs [ABD+, CD].
- QMA(2)=QMA(poly) [HM10].
- "Separable Hamiltonian Problem" (QMA(2)-complete)
 [CS12]. Tuesday
- Attacking QMA(2) by the perturbation method [Sch15]
 Tuesday

It suffices to solve $h_{\text{Sep}(d)}(M_{\text{acc}})$ with M_{acc} the POVM from QMA(2) protocols.

- First study in [KMY01, KMY03]. Surprising: NP \subseteq QMA(2)_{log} [BT09, GNN] v.s. QMA_{log} = BQP [MW05].
- QMA(2) solves 3SAT (constant gaps) with $\tilde{O}(\sqrt{n})$ -qubit proofs [ABD+, CD].
- QMA(2)=QMA(poly) [HM10].
- "Separable Hamiltonian Problem" (QMA(2)-complete)
 [CS12]. Tuesday
- Attacking QMA(2) by the perturbation method [Sch15]
 Tuesday

It suffices to solve $h_{\text{Sep}(d)}(M_{\text{acc}})$ with M_{acc} the POVM from QMA(2) protocols.

- First study in [KMY01, KMY03]. Surprising: NP \subseteq QMA(2)_{log} [BT09, GNN] v.s. QMA_{log} = BQP [MW05].
- QMA(2) solves 3SAT (constant gaps) with $\tilde{O}(\sqrt{n})$ -qubit proofs [ABD+, CD].
- QMA(2)=QMA(poly) [HM10].
- "Separable Hamiltonian Problem" (QMA(2)-complete)
 [CS12]. Tuesday
- Attacking QMA(2) by the perturbation method [Sch15].
 Tuesday

It suffices to solve $h_{\text{Sep}(d)}(M_{\text{acc}})$ with M_{acc} the POVM from QMA(2) protocols.

- First study in [KMY01, KMY03]. Surprising: NP \subseteq QMA(2)_{log} [BT09, GNN] v.s. QMA_{log} = BQP [MW05].
- QMA(2) solves 3SAT (constant gaps) with $\tilde{O}(\sqrt{n})$ -qubit proofs [ABD+, CD].
- QMA(2)=QMA(poly) [HM10].
- "Separable Hamiltonian Problem" (QMA(2)-complete)
 [CS12]. Tuesday
- Attacking QMA(2) by the perturbation method [Sch15]
 Tuesday

It suffices to solve $h_{Sep(d)}(M_{acc})$ with M_{acc} the POVM from QMA(2) protocols.

- First study in [KMY01, KMY03]. Surprising: NP \subseteq QMA(2)_{log} [BT09, GNN] v.s. QMA_{log} = BQP [MW05].
- QMA(2) solves 3SAT (constant gaps) with $\tilde{O}(\sqrt{n})$ -qubit proofs [ABD+, CD].
- QMA(2)=QMA(poly) [HM10].
- "Separable Hamiltonian Problem" (QMA(2)-complete)
 [CS12]. Tuesday
- Attacking QMA(2) by the perturbation method [Sch15].
 Tuesday

It suffices to solve $h_{Sep(d)}(M_{acc})$ with M_{acc} the POVM from QMA(2) protocols.

History about QMA(2)

- First study in [KMY01, KMY03]. Surprising: NP \subseteq QMA(2)_{log} [BT09, GNN] v.s. QMA_{log} = BQP [MW05].
- QMA(2) solves 3SAT (constant gaps) with $\tilde{O}(\sqrt{n})$ -qubit proofs [ABD+, CD].
- QMA(2)=QMA(poly) [HM10].
- "Separable Hamiltonian Problem" (QMA(2)-complete)
 [CS12]. Tuesday
- Attacking QMA(2) by the perturbation method [Sch15].
 Tuesday

It suffices to solve $h_{Sep(d)}(M_{acc})$ with M_{acc} the POVM from QMA(2) protocols.

reference	k	С	s	n
GNN12	2	1	$1 - \frac{1}{d \cdot \operatorname{poly} \log(d)}$	<i>O</i> (<i>d</i>)
Per12	2	1	$1-\frac{1}{\operatorname{poly}(d)}$	O(d)
AB+08	\sqrt{d} · poly log(d)	1	0.99	O(d)
CD10	\sqrt{d} · poly log(d)	$1 - 2^{-d}$	0.99	O(d)
HM13	2	1	0.01	$\frac{\log^2(d)}{\text{poly log}(d)}$

Table: Hardness results for $h_{Sep^k(d)}$ (k-partitle $h_{Sep(d,d)}$).

Hardness: determining satisfiability of 3-SAT instances with n variables and O(n) clauses can be reduced to distinguishing between $h_{\operatorname{Sep}^k(d)} \geq c$ and $\leq s$ as above.

Exponential Time Hypothesis (ETH)

The 3-SAT problem with *n* variables requires $2^{\Omega(n)}$ time to solve.

 $h_{\text{Sen}(d)}$ with constant precision requires $d^{\Omega(\log(d))}$ time.

• A matching upper bound: DPS to $O(log(d)/c^2)$ level for $1.1 \, OCC \, M$; time $dO(log(d)/c^2) = dO(log(d))$

Exponential Time Hypothesis (ETH)

The 3-SAT problem with *n* variables requires $2^{\Omega(n)}$ time to solve.

- Combine with [HM13] hardness result \Rightarrow approximation of $h_{\text{Sep}(d)}$ with constant precision requires $d^{\Omega(\log(d))}$ time.
- A matching upper bound: DPS to $O(log(d)/\epsilon^2)$ level for **1-LOCC** M: time $d^{O(log(d)/\epsilon^2)} \rightarrow d^{O(log(d))}$. [BYC, BH]

Exponential Time Hypothesis (ETH)

The 3-SAT problem with *n* variables requires $2^{\Omega(n)}$ time to solve.

- Combine with [HM13] hardness result \Rightarrow approximation of $h_{\text{Sep}(d)}$ with constant precision requires $d^{\Omega(\log(d))}$ time.
- A matching upper bound: DPS to $O(log(d)/\epsilon^2)$ level for **1-LOCC** M: time $d^{O(log(d)/\epsilon^2)} \rightarrow d^{O(log(d))}$. [BYC, BH]

Exponential Time Hypothesis (ETH)

The 3-SAT problem with *n* variables requires $2^{\Omega(n)}$ time to solve.

- Combine with [HM13] hardness result \Rightarrow approximation of $h_{\text{Sep}(d)}$ with constant precision requires $d^{\Omega(\log(d))}$ time.
- A matching upper bound: DPS to $O(log(d)/\epsilon^2)$ level for **1-LOCC** M: time $d^{O(log(d)/\epsilon^2)} \rightarrow d^{O(log(d))}$. [BYC, BH]

Will the hardness of $h_{Sep(d)}$ for const ϵ hold w/o ETH?

Theorem (Main I.1)

The DPS hierarchy (or general Sum-of-Squares SDP) requires $\Omega(\log(d))$ levels to solve $h_{\text{Sep}(d)}$ with constant precision.

Theorem (Main I.2)

Any SDP relaxation that estimates $h_{Sep(d)}(M)$ with $O(1/d^2)$ errors requires size $d^{\overline{\Omega}(\log(d))}$.

Will the hardness of $h_{Sep(d)}$ for const ϵ hold w/o ETH?

Theorem (Main I.1)

The DPS hierarchy (or general Sum-of-Squares SDP) requires $\Omega(\log(d))$ levels to solve $h_{\text{Sep}(d)}$ with constant precision.

Theorem (Main I.2)

Any SDP relaxation that estimates $h_{Sep(d)}(M)$ with $O(1/d^2)$ errors requires size $d^{\tilde{\Omega}(\log(d))}$.

Will the hardness of $h_{Sep(d)}$ for const ϵ hold w/o ETH?

Theorem (Main I.1)

The DPS hierarchy (or general Sum-of-Squares SDP) requires $\Omega(\log(d))$ levels to solve $h_{\text{Sep}(d)}$ with constant precision.

Theorem (Main I.2)

Any SDP relaxation that estimates $h_{Sep(d)}(M)$ with $O(1/d^2)$ errors requires size $d^{\tilde{\Omega}(\log(d))}$.

Will the hardness of $h_{Sep(d)}$ for const ϵ hold w/o ETH?

Theorem (Main I.1)

The DPS hierarchy (or general Sum-of-Squares SDP) requires $\Omega(\log(d))$ levels to solve $h_{\text{Sep}(d)}$ with constant precision.

Theorem (Main I.2)

Any SDP relaxation that estimates $h_{Sep(d)}(M)$ with $O(1/d^2)$ errors requires size $d^{\tilde{\Omega}(\log(d))}$.

Hardness applies to QMA(2)

- Our explicit hard instance $M_{\rm acc}$ is from a QMA(2) instance.
- de Finetti theorem of 1-LOCC [BCY, BH]: best possible parameters.

Hardness applies to QMA(2)

- Our explicit hard instance $M_{\rm acc}$ is from a QMA(2) instance.
- de Finetti theorem of 1-LOCC [BCY, BH]: best possible parameters.

- Dis-entangler: a hypothetical channel that a) its output is always ϵ -close to a separable state, and b) its image is δ -close to any separable state, both in trace distance.
- Input dimension $\dim(\mathcal{H}) = \infty$ for $\epsilon = \delta = 0$ [AB+09]
- $\forall \epsilon + \delta < 1/\text{poly}(d), \dim(\mathcal{H}) \geq \Omega(d^{\log(d)/\text{poly}\log\log(d)})$

Hardness applies to QMA(2)

- Our explicit hard instance $M_{\rm acc}$ is from a QMA(2) instance.
- de Finetti theorem of 1-LOCC [BCY, BH]: best possible parameters.

- Dis-entangler: a hypothetical channel that a) its output is always ε-close to a separable state, and b) its image is δ-close to any separable state, both in trace distance.
- Input dimension $\dim(\mathcal{H}) = \infty$ for $\epsilon = \delta = 0$ [AB+09].
- $\forall \epsilon + \delta < 1/\text{poly}(d)$, $\dim(\mathcal{H}) \geq \Omega(d^{\log(d)/\text{poly}\log\log\log(d)})$

Hardness applies to QMA(2)

- Our explicit hard instance $M_{\rm acc}$ is from a QMA(2) instance.
- de Finetti theorem of 1-LOCC [BCY, BH]: best possible parameters.

- Dis-entangler: a hypothetical channel that a) its output is always ε-close to a separable state, and b) its image is δ-close to any separable state, both in trace distance.
- Input dimension dim(\mathcal{H}) = ∞ for $\epsilon = \delta = 0$ [AB+09].
- $\forall \epsilon + \delta < 1/\text{poly}(d)$, $\dim(\mathcal{H}) \geq \Omega(d^{\log(d)/\text{poly}\log\log(d)})$.

Non-local Game (denoted G):

- Two physically separated players Alice and Bob. No communication once the game starts.
- Sets of questions S, T and answers A, B and a distribution
 π : S × T → [0, 1].
- Sample $(s, t) \in S \times T \sim \pi$ and ask Alice and Bob respectively. Obtain answers $a \in A, b \in B$.
- Determine win or lose by a predicate $V(a, b|s, t) \in \{0, 1\}$

Non-local Game (denoted *G*):

- Two physically separated players Alice and Bob. No communication once the game starts.
- Sets of questions S, T and answers A, B and a distribution
 π : S × T → [0, 1].
- Sample $(s,t) \in S \times T \sim \pi$ and ask Alice and Bob respectively. Obtain answers $a \in A, b \in B$.
- Determine win or lose by a predicate $V(a, b|s, t) \in \{0, 1\}$

Non-local Game (denoted G):

- Two physically separated players Alice and Bob. No communication once the game starts.
- Sets of questions S, T and answers A, B and a distribution $\pi: S \times T \rightarrow [0, 1]$.
- Sample $(s, t) \in S \times T \sim \pi$ and ask Alice and Bob respectively. Obtain answers $a \in A$, $b \in B$.
- Determine win or lose by a predicate $V(a, b|s, t) \in \{0, 1\}$

Non-local Game (denoted *G*):

- Two physically separated players Alice and Bob. No communication once the game starts.
- Sets of questions S, T and answers A, B and a distribution $\pi: S \times T \rightarrow [0, 1]$.
- Sample $(s, t) \in S \times T \sim \pi$ and ask Alice and Bob respectively. Obtain answers $a \in A$, $b \in B$.
- Determine win or lose by a predicate $V(a, b|s, t) \in \{0, 1\}$.

Non-local Game (denoted *G*):

- Two physically separated players Alice and Bob. No communication once the game starts.
- Sets of questions S, T and answers A, B and a distribution $\pi: S \times T \rightarrow [0, 1]$.
- Sample $(s, t) \in S \times T \sim \pi$ and ask Alice and Bob respectively. Obtain answers $a \in A, b \in B$.
- Determine win or lose by a predicate $V(a, b|s, t) \in \{0, 1\}$.

Problem 2: Non-local Games (cont'd)

Strategies:

- Denote by P[a, b|s, t] the probability of answering (a, b) upon receiving (s, t).
- Quantum strategies: share a quantum state $|\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_E$ and answer w.r.t measurements $\{A_s^a\}$ and $\{B_t^b\}$,

$$P[a, b|s, t] = \langle \psi | A_s^a \otimes B_t^b | \psi \rangle$$

Problem 2: Non-local Games (cont'd)

Strategies:

- Denote by P[a, b|s, t] the probability of answering (a, b) upon receiving (s, t).
- Quantum strategies: share a quantum state $|\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B$ and answer w.r.t measurements $\{A_s^a\}$ and $\{B_t^b\}$,

$$P[a,b|s,t] = \langle \psi | A_s^a \otimes B_t^b | \psi \rangle$$
.

Definition (Game Value)

$$\omega(G) = \max_{P} \sum_{a.b.s.t} \pi(s,t) V(a,b|s,t) P(a,b|s,t).$$

Example: CHSH game

•
$$A = B = S = T = \{0, 1\}$$
 and $\pi(s, t) = 1/4, \forall (s, t) \in S \times T$.

• V(a,b|s,t) = 1 iff $a \oplus b = s \wedge t$

Definition (Game Value)

$$\omega(G) = \max_{P} \sum_{a,b,s,t} \pi(s,t) V(a,b|s,t) P(a,b|s,t).$$

Example: CHSH game:

- $A = B = S = T = \{0, 1\}$ and $\pi(s, t) = 1/4, \forall (s, t) \in S \times T$.
- V(a,b|s,t) = 1 iff $a \oplus b = s \wedge t$
- Classical strategies: $\omega(CHSH) = 3/4$. Quantum strategies: $\omega^*(CHSH) = \cos^2(\pi/8) \approx 0.85$.
- Quantum strategies are strictly more powerful.

Definition (Game Value)

$$\omega(G) = \max_{P} \sum_{a,b,s,t} \pi(s,t) V(a,b|s,t) P(a,b|s,t).$$

Example: CHSH game:

- $A = B = S = T = \{0, 1\}$ and $\pi(s, t) = 1/4, \forall (s, t) \in S \times T$.
- V(a,b|s,t) = 1 iff $a \oplus b = s \wedge t$.
- Classical strategies: $\omega(CHSH) = 3/4$. Quantum strategies: $\omega^*(CHSH) = \cos^2(\pi/8) \approx 0.85$.
- Quantum strategies are strictly more powerful

Definition (Game Value)

$$\omega(G) = \max_{P} \sum_{a,b,s,t} \pi(s,t) V(a,b|s,t) P(a,b|s,t).$$

Example: CHSH game:

- $A = B = S = T = \{0, 1\}$ and $\pi(s, t) = 1/4, \forall (s, t) \in S \times T$.
- V(a,b|s,t) = 1 iff $a \oplus b = s \wedge t$.
- Classical strategies: $\omega(CHSH) = 3/4$. Quantum strategies: $\omega^*(CHSH) = \cos^2(\pi/8) \approx 0.85$.
- Quantum strategies are strictly more powerful

Definition (Game Value)

$$\omega(G) = \max_{P} \sum_{a,b,s,t} \pi(s,t) V(a,b|s,t) P(a,b|s,t).$$

Example: CHSH game:

- $A = B = S = T = \{0, 1\}$ and $\pi(s, t) = 1/4, \forall (s, t) \in S \times T$.
- V(a,b|s,t) = 1 iff $a \oplus b = s \wedge t$.
- Classical strategies: $\omega(CHSH) = 3/4$. Quantum strategies: $\omega^*(CHSH) = \cos^2(\pi/8) \approx 0.85$.
- Quantum strategies are strictly more powerful.

Definition (Game Value)

$$\omega(G) = \max_{P} \sum_{a,b,s,t} \pi(s,t) V(a,b|s,t) P(a,b|s,t).$$

Example: CHSH game:

- $A = B = S = T = \{0, 1\}$ and $\pi(s, t) = 1/4, \forall (s, t) \in S \times T$.
- V(a,b|s,t) = 1 iff $a \oplus b = s \wedge t$.
- Classical strategies: $\omega(CHSH) = 3/4$. Quantum strategies: $\omega^*(CHSH) = \cos^2(\pi/8) \approx 0.85$.
- Quantum strategies are strictly more powerful.

 $\omega^*(G)$ for quantum strategies: an optimization problem!

$$\omega^*(\textit{G}) = \lim_{\textit{d} \to \infty} \max_{|\psi\rangle \in \mathbb{C}^{\textit{d} \times \textit{d}}} \max_{\textit{A}_{\textit{s}}^{\textit{a}}, \textit{B}_{t}^{\textit{b}}} \sum_{\textit{a},\textit{b},\textit{s},\textit{t}} \pi(\textit{s},\textit{t}) \textit{V}(\textit{a},\textit{b}|\textit{s},\textit{t}) \left\langle \psi \right| \textit{A}_{\textit{s}}^{\textit{a}} \otimes \textit{B}_{t}^{\textit{b}} \left| \psi \right\rangle.$$

• $\omega^*(G)$ is not known to be **computable**.

 $\omega^*(G)$ for quantum strategies: an optimization problem!

$$\omega^*(G) = \lim_{d \to \infty} \max_{|\psi\rangle \in \mathbb{C}^{d imes d}} \max_{A_s^a, B_t^b} \sum_{a, b, s, t} \pi(s, t) V(a, b|s, t) \left\langle \psi \middle| A_s^a \otimes B_t^b \middle| \psi \right\rangle.$$

- $\omega^*(G)$ is not known to be **computable**.
- A SDP hierarchy proposed by Navascues-Pironio-Acin (NPA) approximates $\omega^*(G)$ from above and converges at infinity.
- Converging rate only known for special cases: XOR, Unique games. No general upper or lower bounds known about the NPA hierarchy.

 $\omega^*(G)$ for quantum strategies: an optimization problem!

$$\omega^*(\textit{G}) = \lim_{d \to \infty} \max_{|\psi\rangle \in \mathbb{C}^{d \times d}} \max_{\textit{A}_{s}^{a}, \textit{B}_{t}^{b}} \sum_{\textit{a,b,s,t}} \pi(\textit{s},\textit{t}) \textit{V}(\textit{a},\textit{b}|\textit{s},\textit{t}) \left\langle \psi \right| \textit{A}_{s}^{a} \otimes \textit{B}_{t}^{b} \left| \psi \right\rangle.$$

- $\omega^*(G)$ is not known to be **computable**.
- A SDP hierarchy proposed by Navascues-Pironio-Acin (NPA) approximates $\omega^*(G)$ from above and converges at infinity.
- Converging rate only known for special cases: XOR, Unique games. No general upper or lower bounds known about the NPA hierarchy.

 $\omega^*(G)$ for quantum strategies: an optimization problem!

$$\omega^*(\textit{G}) = \lim_{d \to \infty} \max_{|\psi\rangle \in \mathbb{C}^{d \times d}} \max_{\textit{A}_{s}^{a}, \textit{B}_{t}^{b}} \sum_{\textit{a,b,s,t}} \pi(\textit{s},\textit{t}) \textit{V}(\textit{a},\textit{b}|\textit{s},\textit{t}) \left\langle \psi \right| \textit{A}_{s}^{a} \otimes \textit{B}_{t}^{b} \left| \psi \right\rangle.$$

- $\omega^*(G)$ is not known to be **computable**.
- A SDP hierarchy proposed by Navascues-Pironio-Acin (NPA) approximates $\omega^*(G)$ from above and converges at infinity.
- Converging rate only known for special cases: XOR, Unique games. No general upper or lower bounds known about the NPA hierarchy.

reference	k	С	s	n
KK+11	3	1	$1 - \frac{1}{\operatorname{poly}(Q)}$	O(Q)
IKM09	2	1	$1 - \frac{1}{\operatorname{poly}(Q)}$ $2^{-Q^{\Omega(1)}}$	O(Q)
IV12	4	1	$2^{-Q^{\Omega(1)}}$	$Q^{\Omega(1)}$
Vid13	3	1	$2^{-Q^{\Omega(1)}}$	$Q^{\Omega(1)}$

Table: Hardness results for $\omega^*(G)$ where G is a one-round k-prover interactive proof protocol with question alphabet size Q. Hardness in the following sense: determining satisfiability of 3-SAT instances with n variables and O(n) clauses can be reduced to distinguishing between $\omega^*(G) \geq c$ and $\leq s$ as above.

Will the hardness of $\omega^*(G)$ hold w/o ETH?

Theorem (Main II.1)

There exists a family of games $\{G_n\}$ s.t. the NPA hierarchy requires $\Omega(n)$ levels to distinguish $\omega^*(G) = 1$ from $\omega^*(G) = 1 - \Omega(1/n^2)$.

Theorem (Main II.2)

Any SDP relaxation that estimates $\omega^*(G)$ with precision $O(1/n^2)$ requires size $(n/\log(n))^{\Omega(n)}$.

Will the hardness of $\omega^*(G)$ hold w/o ETH?

Theorem (Main II.1)

There exists a family of games $\{G_n\}$ s.t. the NPA hierarchy requires $\Omega(n)$ levels to distinguish $\omega^*(G) = 1$ from $\omega^*(G) = 1 - \Omega(1/n^2)$.

Theorem (Main II.2)

Any SDP relaxation that estimates $\omega^*(G)$ with precision $O(1/n^2)$ requires size $(n/\log(n))^{\Omega(n)}$.

Will the hardness of $\omega^*(G)$ hold w/o ETH?

Theorem (Main II.1)

There exists a family of games $\{G_n\}$ s.t. the NPA hierarchy requires $\Omega(n)$ levels to distinguish $\omega^*(G) = 1$ from $\omega^*(G) = 1 - \Omega(1/n^2)$.

Theorem (Main II.2)

Any SDP relaxation that estimates $\omega^*(G)$ with precision $O(1/n^2)$ requires size $(n/\log(n))^{\Omega(n)}$.

Will the hardness of $\omega^*(G)$ hold w/o ETH?

Theorem (Main II.1)

There exists a family of games $\{G_n\}$ s.t. the NPA hierarchy requires $\Omega(n)$ levels to distinguish $\omega^*(G) = 1$ from $\omega^*(G) = 1 - \Omega(1/n^2)$.

Theorem (Main II.2)

Any SDP relaxation that estimates $\omega^*(G)$ with precision $O(1/n^2)$ requires size $(n/\log(n))^{\Omega(n)}$.

Technical Target

- Introduce hardness of SDPs/SoS into quantum problems.
 - Deal with their limitations, such as boolean domains, pattern matrices, and non-commutative problems.

Technical Contributions

Formulate a framework of reductions for this purpose.
 Other applications, e.g., Nash's equilibria [HNW16].

Technical Target

- Introduce hardness of SDPs/SoS into quantum problems.
- Deal with their limitations, such as boolean domains, pattern matrices, and non-commutative problems.

Technical Target

- Introduce hardness of SDPs/SoS into quantum problems.
- Deal with their limitations, such as boolean domains, pattern matrices, and non-commutative problems.

- Formulate a framework of reductions for this purpose.
 Other applications, e.g., Nash's equilibria [HNW16].
- Design low-degree reductions in this framework.
- Special techniques to handle general domains and non-commutative problems.

Technical Target

- Introduce hardness of SDPs/SoS into quantum problems.
- Deal with their limitations, such as boolean domains, pattern matrices, and non-commutative problems.

- Formulate a framework of reductions for this purpose.
 Other applications, e.g., Nash's equilibria [HNW16].
- Design low-degree reductions in this framework.
- Special techniques to handle general domains and non-commutative problems.

Technical Target

- Introduce hardness of SDPs/SoS into quantum problems.
- Deal with their limitations, such as boolean domains, pattern matrices, and non-commutative problems.

- Formulate a framework of reductions for this purpose.
 Other applications, e.g., Nash's equilibria [HNW16].
- Design low-degree reductions in this framework.
- Special techniques to handle general domains and non-commutative problems.

Principle of Sum-of-Squares

One way to show that a polynomial f(x) is *nonnegative* could be

$$f(x)=\sum a_i(x)^2\geq 0.$$

Example

$$f(x) = 2x^2 - 6x + 5$$

= $(x^2 - 2x + 1) + (x^2 - 4x + 4)$
= $(x - 1)^2 + (x - 2)^2 \ge 0$.

Such a decomposition is called a *sum of squares (SOS)* certificate for the non-negativity of f. The min degree, deg_{sos} .

Principle of SoS: constrained domain

Definition (Variety)

A set $V \subseteq \mathbb{C}^n$ is called an *algebraic variety* if $V = \{x \in \mathbb{C}^n : g_1(x) = \dots = g_k(x) = 0\}.$

Non-negativity of f(x) on V could be shown by

$$f(x) = \sum a_i(x)^2 + \sum b_j(x)g_j(x) \ge 0.$$

Question: whether all nonnegative polynomials on certain variety have a SOS certificate? Hilbert 17th problem!

Principle of SoS: constrained domain

Definition (Variety)

A set $V \subseteq \mathbb{C}^n$ is called an *algebraic variety* if $V = \{x \in \mathbb{C}^n : g_1(x) = \dots = g_k(x) = 0\}.$

Non-negativity of f(x) on V could be shown by

$$f(x) = \sum a_i(x)^2 + \sum b_j(x)g_j(x) \ge 0.$$

Question: whether all nonnegative polynomials on certain variety have a SOS certificate? Hilbert 17th problem!

Principle of SoS: constrained domain

Definition (Variety)

A set $V \subseteq \mathbb{C}^n$ is called an *algebraic variety* if $V = \{x \in \mathbb{C}^n : g_1(x) = \dots = g_k(x) = 0\}.$

Non-negativity of f(x) on V could be shown by

$$f(x) = \sum a_i(x)^2 + \sum b_j(x)g_j(x) \ge 0.$$

Question: whether all nonnegative polynomials on certain variety have a SOS certificate? Hilbert 17th problem!

SoS in Optimization

is equivalent to (justified by *Positivstellensatz*)

min
$$\nu$$
 such that $\nu - f(x) = \sigma(x) + \sum_{i} b_i(x)g_i(x)$, (3)

where $\sigma(x)$ is SOS and $b_i(x)$ is any polynomial.

Pseudo-distribution

Dual of the SOS cone

- Let $\Sigma_{n,2D}$ be the cone of all PSD matrices representing SOS polynomials with degree up to 2D.
- The dual cone $\Sigma_{n,2D}^*$ is moment $M_D(x) \geq 0$, where entry (α,β) of $M_D(x)$ is $\int x^{\alpha+\beta}\mu(dx), |\alpha|, |\beta| \leq D$.

Pseudo-distributrion/expectation

- Moment $M_D(x)$ gives rise to *pseudo-distribution*. Expectation on it is *pseudo-expectation*.
- Behave similarly to expectation for low-degree polynomials

Pseudo-distribution

Dual of the SOS cone

- Let $\Sigma_{n,2D}$ be the cone of all PSD matrices representing SOS polynomials with degree up to 2D.
- The dual cone $\Sigma_{n,2D}^*$ is moment $M_D(x) \geq 0$, where entry (α,β) of $M_D(x)$ is $\int x^{\alpha+\beta}\mu(dx), |\alpha|, |\beta| \leq D$.

Pseudo-distributrion/expectation

- Moment $M_D(x)$ gives rise to *pseudo-distribution*. Expectation on it is *pseudo-expectation*.
- Behave similarly to expectation for low-degree polynomials.

Pseudo-expectation

A degree-2*d* pseudo-expectation $\tilde{\mathbb{E}}$ is an element of $\mathcal{R}[x]_{2d}^*$ (i.e. a linear map from $\mathcal{R}[x]_{2d}$ to \mathcal{R}) satisfying

- Normalization. $\tilde{\mathbb{E}}[1] = 1$.
- **Positivity**. $\tilde{\mathbb{E}}[p^2] \geq 0$ for any $p \in \mathcal{R}[x]_d$.

 $ilde{\mathbb{E}}$ satisfies the constraints g_1,\ldots,g_m if $ilde{\mathbb{E}}[g_iq]=0$ for all $i\in[n]$ and all $q\in\mathcal{R}[x]_{2d-\deg(g_i)}.$

$$f_{SoS}^{2d} = \max\{\tilde{\mathbb{E}}[f] : \tilde{\mathbb{E}} \text{ of degree-} 2d \text{ satisfying } g_1, \dots, g_m\}.$$
 (4)

Pseudo-expectation

A degree-2d pseudo-expectation $\tilde{\mathbb{E}}$ is an element of $\mathcal{R}[x]_{2d}^*$ (i.e. a linear map from $\mathcal{R}[x]_{2d}$ to \mathcal{R}) satisfying

- Normalization. $\tilde{\mathbb{E}}[1] = 1$.
- **Positivity**. $\tilde{\mathbb{E}}[p^2] \geq 0$ for any $p \in \mathcal{R}[x]_d$.

 $\tilde{\mathbb{E}}$ satisfies the constraints g_1, \ldots, g_m if $\tilde{\mathbb{E}}[g_i q] = 0$ for all $i \in [n]$ and all $q \in \mathcal{R}[x]_{2d-\deg(g_i)}$.

$$f_{\text{SoS}}^{2d} = \max\{\tilde{\mathbb{E}}[f] : \tilde{\mathbb{E}} \text{ of degree-2} d \text{ satisfying } g_1, \dots, g_m\}.$$
 (4)

Pseudo-expectation

A degree-2d pseudo-expectation $\tilde{\mathbb{E}}$ is an element of $\mathcal{R}[x]_{2d}^*$ (i.e. a linear map from $\mathcal{R}[x]_{2d}$ to \mathcal{R}) satisfying

- Normalization. $\tilde{\mathbb{E}}[1] = 1$.
- **Positivity**. $\tilde{\mathbb{E}}[p^2] \ge 0$ for any $p \in \mathcal{R}[x]_d$.

 $\tilde{\mathbb{E}}$ satisfies the constraints g_1, \ldots, g_m if $\tilde{\mathbb{E}}[g_i q] = 0$ for all $i \in [n]$ and all $q \in \mathcal{R}[x]_{2d-\deg(g_i)}$.

$$f_{SoS}^{2d} = \max\{\tilde{\mathbb{E}}[f] : \tilde{\mathbb{E}} \text{ of degree-2} d \text{ satisfying } g_1, \dots, g_m\}.$$
 (4)

By bounding the degrees in (4), we get the (dual)
 Lasserre/Parrilo hierarchy, which is a SDP hierarchy.

```
\max_{\mathbf{E}[f]} \quad \mathbb{E}[g_i q] = 0, \quad \forall i \in [n], q \in \mathcal{R}[x]_{2d - \deg(g_i)}, where \mathbb{E}[f] is a degree 2d pseudo-distribution. (5)
```

Remark: degree 2*d* pseudo-distributions $\tilde{\mathbb{E}}[f]$ can be efficiently searched by SDP of size of $O(n^d)$.

By bounding the degrees in (4), we get the (dual)
 Lasserre/Parrilo hierarchy, which is a SDP hierarchy.

max
$$\tilde{\mathbb{E}}[f]$$
 such that $\tilde{\mathbb{E}}[g_iq] = 0$, $\forall i \in [n], q \in \mathcal{R}[x]_{2d-\deg(g_i)}$, (5)

where $\hat{\mathbb{E}}[f]$ is a degree 2d pseudo-distribution.

Remark: degree 2*d* pseudo-distributions $\mathbb{E}[f]$ can be efficiently searched by SDP of size of $O(n^d)$.

By bounding the degrees in (4), we get the (dual)
 Lasserre/Parrilo hierarchy, which is a SDP hierarchy.

$$\max_{\substack{\tilde{\mathbb{E}}[f]\\\text{such that}}} \quad \tilde{\mathbb{E}}[g_iq] = 0, \quad \forall i \in [n], q \in \mathcal{R}[x]_{2d-\deg(g_i)},$$
 where $\tilde{\mathbb{E}}[f]$ is a degree $2d$ pseudo-distribution. (5)

Remark: degree 2*d* pseudo-distributions $\tilde{\mathbb{E}}[f]$ can be efficiently searched by SDP of size of $O(n^d)$.

By bounding the degrees in (4), we get the (dual)
 Lasserre/Parrilo hierarchy, which is a SDP hierarchy.

$$\max_{\tilde{\mathbb{E}}[f]} \quad \tilde{\mathbb{E}}[g_iq] = 0, \quad \forall i \in [n], q \in \mathcal{R}[x]_{2d-\deg(g_i)},$$
 (5)

where $\tilde{\mathbb{E}}[f]$ is a degree 2*d* pseudo-distribution.

Remark: degree 2*d* pseudo-distributions $\tilde{\mathbb{E}}[f]$ can be efficiently searched by SDP of size of $O(n^d)$.

Recall $h_{Sep(d,d)}(M)$

$$h_{\text{Sep}(d,d)}(M) := \max_{\substack{x,y \in \mathbb{C}^d \\ \|x\|_2 = \|y\|_2 = 1}} \sum_{i,j,k,l \in [d]} M_{ij,kl} x_i^* x_j y_k^* y_l.$$
 (6)

Its SOS hierarchy is the DPS hierarchy with full symmetry.

$$\rho \propto \sum_{\substack{i_1 i_2 \dots i_d \\ i_1 i_2 \dots i_d}} \tilde{\mathbb{E}}_{x}[x_{i_1} \dots x_{i_d} x_{j_1} \dots x_{j_d}] |i_1 \dots i_d\rangle \langle j_1 \dots j_d|.$$

- The DPS and NPA hierarchies are just SoS and ncSoS SDP hierarchies.
- Thus, lower bounds for deg_{sos} ⇒ lower bounds for DPS and NPA.
- How about general SDPs?

- The DPS and NPA hierarchies are just SoS and ncSoS SDP hierarchies.
- \bullet Thus, lower bounds for deg $_{sos} \Rightarrow$ lower bounds for DPS and NPA.
- How about general SDPs?

Lee-Raghavendra-Steurer

Any deg_{sos} lower bound on {0, 1}ⁿ ⇒ a lower bound on SDP relaxations.

- The DPS and NPA hierarchies are just SoS and ncSoS SDP hierarchies.
- \bullet Thus, lower bounds for deg $_{sos} \Rightarrow$ lower bounds for DPS and NPA.
- How about general SDPs?

- Any \deg_{sos} lower bound on $\{0,1\}^n \Rightarrow$ a lower bound on
 - SDP relaxation: $\forall x \in \{0,1\}^n$. \exists relaxed X'. s.t..
 - f(x) = F(X'). Embedding!

- The DPS and NPA hierarchies are just SoS and ncSoS SDP hierarchies.
- \bullet Thus, lower bounds for deg $_{sos} \Rightarrow$ lower bounds for DPS and NPA.
- How about general SDPs?

- Any \deg_{sos} lower bound on $\{0,1\}^n \Rightarrow$ a lower bound on SDP relaxations.
- SDP relaxation: $\forall x \in \{0,1\}^n$, \exists relaxed X', s.t., f(x) = F(X'). **Embedding!**
- Subtleties: $\{0,1\}^n$, embedding, problem structure

- The DPS and NPA hierarchies are just SoS and ncSoS SDP hierarchies.
- \bullet Thus, lower bounds for deg $_{sos} \Rightarrow$ lower bounds for DPS and NPA.
- How about general SDPs?

- Any \deg_{sos} lower bound on $\{0,1\}^n \Rightarrow$ a lower bound on SDP relaxations.
- SDP relaxation: $\forall x \in \{0,1\}^n$, \exists relaxed X', s.t., f(x) = F(X'). **Embedding!**
- Subtleties: {0,1}ⁿ, embedding, problem structure

- The DPS and NPA hierarchies are just SoS and ncSoS SDP hierarchies.
- \bullet Thus, lower bounds for deg $_{sos} \Rightarrow$ lower bounds for DPS and NPA.
- How about general SDPs?

- Any \deg_{sos} lower bound on $\{0,1\}^n \Rightarrow$ a lower bound on SDP relaxations.
- SDP relaxation: $\forall x \in \{0,1\}^n$, \exists relaxed X', s.t., f(x) = F(X'). **Embedding!**
- Subtleties: $\{0,1\}^n$, embedding, problem structure.

Integrality Gaps

What constitutes an integrality gap?

- An instance Φ that has $f_{\text{opt}}(\Phi)$ is small.
- But $f_{SoS}^d(\Phi)$ is large for some $d \Rightarrow$ lower bound at level d.

Example

- 3XOR: O(n) clauses on n boolean variables:
 X: A X: A XI = C::.
- A random instance satisfies $1/2 + \epsilon$ of clauses while an $\Omega(n)$ pseudo-solution believes it satisfies all clauses.

Integrality Gaps

What constitutes an integrality gap?

- An instance Φ that has $f_{\text{opt}}(\Phi)$ is small.
- But $f_{SoS}^d(\Phi)$ is large for some $d \Rightarrow$ lower bound at level d.

Example

- 3XOR: O(n) clauses on n boolean variables:
 - $x_i \oplus x_j \oplus x_k = C_{ijk}$.
- A random instance satisfies $1/2 + \epsilon$ of clauses while an $\Omega(n)$ pseudo-solution believes it satisfies all clauses.

Reduction from A to B

- Reduction is an instance-mapping $\Phi^A \to \Phi^B$.
- Soundness: $f_{\text{opt}}^A(\Phi^A)$ small $\Rightarrow f_{\text{opt}}^B(\Phi^B)$
- Pseudo-completeness: $f_{SoS}^{d_A}(\Phi^A)$ large $\Rightarrow f_{SoS}^{d_B}(\Phi^B)$ large, d_B is not too smaller than d_A .

Reduction from A to B

- Reduction is an instance-mapping $\Phi^A \to \Phi^B$.
- Soundness: $f_{\text{opt}}^A(\Phi^A)$ small $\Rightarrow f_{\text{opt}}^B(\Phi^B)$
- Pseudo-completeness: $f_{SoS}^{d_A}(\Phi^A)$ large $\Rightarrow f_{SoS}^{d_B}(\Phi^B)$ large d_B is not too smaller than d_A .

Reduction from A to B

- Reduction is an instance-mapping $\Phi^A \to \Phi^B$.
- Soundness: $f_{\text{opt}}^A(\Phi^A)$ small $\Rightarrow f_{\text{opt}}^B(\Phi^B)$
- Pseudo-completeness: $f_{SoS}^{d_A}(\Phi^A)$ large $\Rightarrow f_{SoS}^{d_B}(\Phi^B)$ large, d_B is not too smaller than d_A .

Reduction from A to B

- Reduction is an instance-mapping $\Phi^A \to \Phi^B$.
- Soundness: $f_{\text{opt}}^A(\Phi^A)$ small $\Rightarrow f_{\text{opt}}^B(\Phi^B)$
- Pseudo-completeness: $f_{SoS}^{d_A}(\Phi^A)$ large $\Rightarrow f_{SoS}^{d_B}(\Phi^B)$ large, d_B is not too smaller than d_A .

Reduction from A to B

- Reduction is an instance-mapping $\Phi^A \to \Phi^B$.
- Soundness: $f_{\text{opt}}^A(\Phi^A)$ small $\Rightarrow f_{\text{opt}}^B(\Phi^B)$
- **Pseudo-completeness**: $f_{SoS}^{d_A}(\Phi^A)$ large $\Rightarrow f_{SoS}^{d_B}(\Phi^B)$ large, d_B is not too smaller than d_A .

- Let $\mu_A(\tilde{\mathbb{E}}_A)$ be the pseudo-solution for Φ^A . One needs to construct a $\mu_B(\tilde{\mathbb{E}}_B)$ for Φ^B .
- Sufficient condition: a low-degree polynomial that maps $\mu_A \to \mu_B$.

Reduction from A to B

- Reduction is an instance-mapping $\Phi^A \to \Phi^B$.
- Soundness: $f_{\text{opt}}^{A}(\Phi^{A})$ small $\Rightarrow f_{\text{opt}}^{B}(\Phi^{B})$
- Pseudo-completeness: $f_{SoS}^{d_A}(\Phi^A)$ large $\Rightarrow f_{SoS}^{d_B}(\Phi^B)$ large, d_B is not too smaller than d_A .

- Let $\mu_A(\tilde{\mathbb{E}}_A)$ be the pseudo-solution for Φ^A . One needs to construct a $\mu_B(\tilde{\mathbb{E}}_B)$ for Φ^B .
- Sufficient condition: a low-degree polynomial that maps $\mu_A \rightarrow \mu_B$.

More on the low-degree reduction

Lemma

Let $A \subset \mathbb{R}^n$, $B \subset \mathbb{R}^m$ be algebraic varieties, meaning that

$$A = \{x \in \mathbb{R}^n : g_1(x) = \cdots = g_{n'}(x) = 0\}$$

$$B = \{x \in \mathbb{R}^m : h_1(x) = \cdots = h_{m'}(x) = 0\},\$$

for some polynomials $\{g_i\}, \{h_i\}.$

Suppose that p is a degree- $\frac{d}{d}$ polynomial map from $\mathbb{R}^n \to \mathbb{R}^m$ such that $p(A) \subseteq B$.

Let $\tilde{\mathbb{E}}_A \in \mathbb{R}[x_1, \dots, x_n]_\ell^*$ be a degree- ℓ pseudo-expectation (compatible with the constraints $g_1, \dots, g_{n'}$) \Rightarrow a degree- ℓ/d pseudo-expectation $\tilde{\mathbb{E}}_B \in \mathbb{R}[y_1, \dots, y_m]_{\ell/d}^*$ (compatible with the constraints $h_1, \dots, h_{m'}$).

A reduction with *pseudo-completeness* and *soundness* leads to an integrality gap of degree d_B for Φ^B .

SDP lower bounds (LRS)

A reduction with *pseudo-completeness* and *soundness* leads to an integrality gap of degree d_B for Φ^B .

- Only apply to $\{0,1\}^n \Rightarrow$ no direct application on h_{Sep} or $\omega^*(G)$.
- Additional condition: embedding, "self-symmetry"

A reduction with *pseudo-completeness* and *soundness* leads to an integrality gap of degree d_B for Φ^B .

- Only apply to $\{0,1\}^n \Rightarrow$ no direct application on h_{Sep} or $\omega^*(G)$.
- Additional condition: embedding, "self-symmetry"
 - Assume $A \Rightarrow B$ and apply LRS on A that is on $\{0,1\}^n$.
 - Then

 needs to be embedded as well as its composition with SDP relaxations.
 - A tricky condition on the structure of the problem.

A reduction with *pseudo-completeness* and *soundness* leads to an integrality gap of degree d_B for Φ^B .

- Only apply to $\{0,1\}^n \Rightarrow$ no direct application on h_{Sep} or $\omega^*(G)$.
- Additional condition: embedding, "self-symmetry"
 - Assume $A \Rightarrow B$ and apply LRS on A that is on $\{0,1\}^n$.
 - Then

 needs to be embedded as well as its composition with SDP relaxations.
 - A tricky condition on the structure of the problem.

A reduction with *pseudo-completeness* and *soundness* leads to an integrality gap of degree d_B for Φ^B .

- Only apply to $\{0,1\}^n \Rightarrow$ no direct application on h_{Sep} or $\omega^*(G)$.
- Additional condition: embedding, "self-symmetry"
 - Assume $A \Rightarrow B$ and apply LRS on A that is on $\{0,1\}^n$.
 - Then ⇒ needs to be embedded as well as its composition with SDP relaxations.
 - A tricky condition on the structure of the problem.

A reduction with *pseudo-completeness* and *soundness* leads to an integrality gap of degree d_B for Φ^B .

- Only apply to $\{0,1\}^n \Rightarrow$ no direct application on h_{Sep} or $\omega^*(G)$.
- Additional condition: embedding, "self-symmetry"
 - Assume $A \Rightarrow B$ and apply LRS on A that is on $\{0,1\}^n$.
 - Then ⇒ needs to be embedded as well as its composition with SDP relaxations.
 - A tricky condition on the structure of the problem.

$$3\mathsf{XOR} \underset{R_1}{\Longrightarrow} \cdots \underset{R_2}{\Longrightarrow} \mathsf{A} \ \mathsf{over} \ \{0,1\}^n \underset{R_3}{\Longrightarrow} \cdots \underset{R_4}{\Longrightarrow} \mathsf{Final} \ \mathsf{Problem}$$

- Reductions R₁, · · · , R₂ lead to an SoS integrality gap at the problem A.
- Apply LRS on the problem A over boolean domains.
- Reductions R₃, · · · , R₄ are embedding reductions.
- Extend LRS results without redoing their analysis

$$3\mathsf{XOR} \underset{R_1}{\Longrightarrow} \cdots \underset{R_2}{\Longrightarrow} \mathsf{A} \ \mathsf{over} \ \{0,1\}^n \underset{R_3}{\Longrightarrow} \cdots \underset{R_4}{\Longrightarrow} \mathsf{Final} \ \mathsf{Problem}$$

- Reductions R₁, · · · , R₂ lead to an SoS integrality gap at the problem A.
- Apply LRS on the problem A over boolean domains.
- Reductions R₃, · · · , R₄ are embedding reductions.
- Extend LRS results without redoing their analysis

$$3\mathsf{XOR} \underset{R_1}{\Longrightarrow} \cdots \underset{R_2}{\Longrightarrow} \mathsf{A} \ \mathsf{over} \ \{0,1\}^n \underset{R_3}{\Longrightarrow} \cdots \underset{R_4}{\Longrightarrow} \mathsf{Final} \ \mathsf{Problem}$$

- Reductions R₁, · · · , R₂ lead to an SoS integrality gap at the problem A.
- Apply LRS on the problem A over boolean domains.
- Reductions R_3, \dots, R_4 are embedding reductions.
- Extend LRS results without redoing their analysis.

$$3\mathsf{XOR} \underset{R_1}{\Longrightarrow} \cdots \underset{R_2}{\Longrightarrow} \underset{R_2}{A \text{ over }} \{0,1\}^n \underset{R_3}{\Longrightarrow} \cdots \underset{R_4}{\Longrightarrow} \mathsf{Final Problem}$$

- Reductions R₁, · · · , R₂ lead to an SoS integrality gap at the problem A.
- Apply LRS on the problem A over boolean domains.
- Reductions R_3, \dots, R_4 are embedding reductions.
- Extend LRS results without redoing their analysis.

Real reductions for h_{Sep} and $\omega^*(G)$

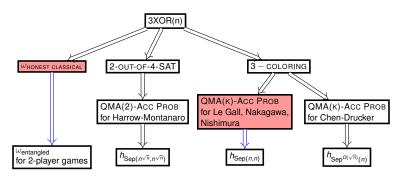


Figure: All our results are derived from the integrality gaps of 3XOR. **Red nodes:** problems over the boolean cube and LRS is applied. **Blue arrows** are "embedding reductions".

Reduction for h_{Sep} : Inspired by Aaronson et al.

$$3SAT \underset{R_1}{\Longrightarrow} 2$$
-OUT-OF-4-SAT $\underset{R_2}{\Longrightarrow} QMA(2)$ -ACC PROB $\underset{R_3}{\Longrightarrow} h_{Sep}$

- R₁: a classical step done by PCP. Not a low-degree reduction: (!
- R₂: a quantum step. Tests in the QMA(2) protocol refer to low-degree polynomials of entries of quantum proofs.
 Soundness inhered from the above protocol.
- R₃: embedding by construction. Not always satisfy the "self-symmetry" condition.

Reduction for h_{Sep} : Inspired by Aaronson et al.

$$3SAT \underset{R_1}{\Longrightarrow} 2$$
-OUT-OF-4-SAT $\underset{R_2}{\Longrightarrow} QMA(2)$ -ACC PROB $\underset{R_3}{\Longrightarrow} h_{Sep}$

- R₁: a classical step done by PCP. Not a low-degree reduction: (!
- R₂: a quantum step. Tests in the QMA(2) protocol refer to low-degree polynomials of entries of quantum proofs.
 Soundness inhered from the above protocol.
- R₃: embedding by construction. Not always satisfy the "self-symmetry" condition.

Reduction for h_{Sep} : Inspired by Aaronson et al.

$$3SAT \underset{R_1}{\Longrightarrow} 2$$
-OUT-OF-4-SAT $\underset{R_2}{\Longrightarrow} QMA(2)$ -ACC PROB $\underset{R_3}{\Longrightarrow} h_{Sep}$

- R₁: a classical step done by PCP. Not a low-degree reduction: (!
- R₂: a quantum step. Tests in the QMA(2) protocol refer to low-degree polynomials of entries of quantum proofs.
 Soundness inhered from the above protocol.
- R₃: embedding by construction. Not always satisfy the "self-symmetry" condition.

$$3XOR \Longrightarrow_{R_1} 2$$
-OUT-OF-4-SAT-EQ $\Longrightarrow_{R_2} QMA(2)$ -ACC $PROB \Longrightarrow_{R_3} h_{Sep}$

- Start with the 3XOR integrity gap (true value $\frac{1}{2} + \epsilon$, fools $\Omega(n)$ -degree).
- R₁: a classical step. Replacing 3SAT by 3XOR. Achieve PCP's effect by using some steps in Dinur's PCP proof.
- R₂: a quantum step. 2-OUT-OF-4-SAT-EQ replaces 2-OUT-OF-4-SAT. Slightly change QMA(2) protocol.
- A constant integrity gap: $\Omega(\sqrt{n})$ -degree pseudo-distribution over proofs of dimension $d = n^{\sqrt{n}}$. That is $\tilde{\Omega}(\log(d))$.

$$3XOR \Longrightarrow_{R_1} 2$$
-OUT-OF-4-SAT-EQ $\Longrightarrow_{R_2} QMA(2)$ -ACC $PROB \Longrightarrow_{R_3} h_{Sep}$

- Start with the 3XOR integrity gap (true value $\frac{1}{2} + \epsilon$, fools $\Omega(n)$ -degree).
- R₁: a classical step. Replacing 3SAT by 3XOR. Achieve PCP's effect by using some steps in Dinur's PCP proof.
- R₂: a quantum step. 2-OUT-OF-4-SAT-EQ replaces
 2-OUT-OF-4-SAT. Slightly change QMA(2) protocol.
- A constant integrity gap: $\Omega(\sqrt{n})$ -degree pseudo-distribution over proofs of dimension $d = n^{\sqrt{n}}$. That is $\tilde{\Omega}(\log(d))$.

$$3XOR \Longrightarrow_{R_1} 2$$
-OUT-OF-4-SAT-EQ $\Longrightarrow_{R_2} QMA(2)$ -ACC $PROB \Longrightarrow_{R_3} h_{Sep}$

- Start with the 3XOR integrity gap (true value $\frac{1}{2} + \epsilon$, fools $\Omega(n)$ -degree).
- R₁: a classical step. Replacing 3SAT by 3XOR. Achieve PCP's effect by using some steps in Dinur's PCP proof.
- R₂: a quantum step. 2-OUT-OF-4-SAT-EQ replaces
 2-OUT-OF-4-SAT. Slightly change QMA(2) protocol.
- A constant integrity gap: $\Omega(\sqrt{n})$ -degree pseudo-distribution over proofs of dimension $d = n^{\sqrt{n}}$. That is $\tilde{\Omega}(\log(d))$.

$$3\mathsf{XOR} \underset{R_1}{\Longrightarrow} 2\text{-}\mathsf{OUT}\text{-}\mathsf{OF}\text{-}4\text{-}\mathsf{SAT}\text{-}\mathsf{EQ} \underset{R_2}{\Longrightarrow} \mathsf{QMA(2)}\text{-}\mathsf{ACC} \overset{\mathsf{PROB}}{\Longrightarrow} h_{\mathsf{Sep}}$$

- Start with the 3XOR integrity gap (true value $\frac{1}{2} + \epsilon$, fools $\Omega(n)$ -degree).
- R₁: a classical step. Replacing 3SAT by 3XOR. Achieve PCP's effect by using some steps in Dinur's PCP proof.
- R₂: a quantum step. 2-OUT-OF-4-SAT-EQ replaces
 2-OUT-OF-4-SAT. Slightly change QMA(2) protocol.
- A constant integrity gap: $\Omega(\sqrt{n})$ -degree pseudo-distribution over proofs of dimension $d = n^{\sqrt{n}}$. That is $\tilde{\Omega}(\log(d))$.

SDP lower bound: the tricky condition

LRS core technical object: the pattern matrix

$$M_f^n : [n]^m \times \{0,1\}^n \mapsto \mathbb{R}_{\geq 0}, M_f^n(S,x) = c - f(x_S).$$

Lemma (Theorem 3.8 of LRS)

Suppose Φ is an instance of an optimization problem over m variables, and $\deg_{SoS}(c-f_{\Phi}(x)) \geq d$. Then for $n \geq m^{d/4}$, $\operatorname{rk}_{psd}(M_f^n) \geq \Omega(m^{d^2/8})$.

Make M_f^n a sub-matrix of the slack-matrix of your optimization problem. The tricky condition.

Real reductions for h_{Sep} and $\omega^*(G)$

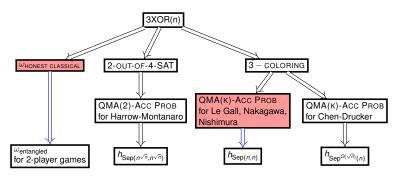


Figure: All our results are derived from the integrality gaps of 3XOR. **Red nodes:** problems over the boolean cube and LRS is applied. **Blue arrows** are "embedding reductions".

Summary

Results

- First unconditional SoS/SDP lower bounds for h_{Sep} and $\omega^*(G)$.
- Match ETH-based bounds for h_{Sep}.
- Implication on QMA(2) and Watrous's dis-entangler conjecture.

Technical Contribution

- A reduction framework. Already find an application to the Nash equilibria.
- Reductions for general domains and non-commutative problems.

Summary

Results

- First unconditional SoS/SDP lower bounds for h_{Sep} and $\omega^*(G)$.
- Match ETH-based bounds for h_{Sep}.
- Implication on QMA(2) and Watrous's dis-entangler conjecture.

Technical Contribution

- A reduction framework. Already find an application to the Nash equilibria.
- Reductions for general domains and non-commutative problems.

- Prove stronger hardness for general SDPs.
- Prove stronger SoS lower bounds than ETH bounds.
- Prove hardness for 1-LOCC instances or so.
- Consider general convex programming for h_{Sep}.
- Other applications of the techniques here.

- Prove stronger hardness for general SDPs.
- Prove stronger SoS lower bounds than ETH bounds.
- Prove hardness for 1-LOCC instances or so.
- Consider general convex programming for h_{Sep}.
- Other applications of the techniques here.

- Prove stronger hardness for general SDPs.
- Prove stronger SoS lower bounds than ETH bounds.
- Prove hardness for 1-LOCC instances or so.
- Consider general convex programming for h_{Sep}.
- Other applications of the techniques here.

- Prove stronger hardness for general SDPs.
- Prove stronger SoS lower bounds than ETH bounds.
- Prove hardness for 1-LOCC instances or so.
- Consider general convex programming for h_{Sep}.
- Other applications of the techniques here.

- Prove stronger hardness for general SDPs.
- Prove stronger SoS lower bounds than ETH bounds.
- Prove hardness for 1-LOCC instances or so.
- Consider general convex programming for h_{Sep}.
- Other applications of the techniques here.

Question And Answer

Thank you! Q & A

- If $\sigma(x)$, $b_i(x)$ have any degrees (or $\deg_{sos}(v-f)$), then problem (3) is equivalent to problem (2).
- By bounding the degrees, we get the Lasserre/Parrilc hierarchy.

min
$$u$$
 such that $u - f(x) = \sigma(x) + \sum_{i} b_i(x)g_i(x),$ (7)

- If $\sigma(x)$, $b_i(x)$ have any degrees (or $\deg_{sos}(v-f)$), then problem (3) is equivalent to problem (2).
- By bounding the degrees, we get the Lasserre/Parrilo hierarchy.

min
$$\nu$$
 such that $\nu - f(x) = \sigma(x) + \sum_{i} b_{i}(x)g_{i}(x),$ (7)

- If $\sigma(x)$, $b_i(x)$ have any degrees (or $\deg_{sos}(v-f)$), then problem (3) is equivalent to problem (2).
- By bounding the degrees, we get the Lasserre/Parrilo hierarchy.

min
$$\nu$$
 such that $\nu - f(x) = \sigma(x) + \sum_{i} b_{i}(x)g_{i}(x),$ (7)

- If $\sigma(x)$, $b_i(x)$ have any degrees (or $\deg_{sos}(v-f)$), then problem (3) is equivalent to problem (2).
- By bounding the degrees, we get the Lasserre/Parrilo hierarchy.

min
$$\nu$$
 such that $\nu - f(x) = \sigma(x) + \sum_{i} b_{i}(x)g_{i}(x),$ (7)

Why it is a SDP?

Observation

- Any p(x) (of degree 2D) = $m^T Qm$, where m is the vector of monomials of degree up to 2D and Q is the coefficients.
- p(x) is a SOS iff $Q \ge 0$.

$$\min_{\nu,b_{i\alpha}\in\mathbb{R}} \nu$$
 such that
$$\nu A_0 - F - \sum_{i\alpha} b_{i\alpha} G_{i\alpha} \ge 0.$$
 (8)

Complexity: poly(m) poly log($1/\epsilon$), where $m = \binom{n+D}{D}$.

Why it is a SDP?

Observation

- Any p(x) (of degree 2D) = $m^T Qm$, where m is the vector of monomials of degree up to 2D and Q is the coefficients.
- p(x) is a SOS iff $Q \ge 0$.

$$\min_{\substack{\nu,b_{i\alpha}\in\mathbb{R}}} \quad \nu$$
 such that
$$\nu A_0 - F - \sum_{i\alpha} b_{i\alpha} G_{i\alpha} \ge 0.$$
 (8)

Complexity: poly(m) poly log(1/ ϵ), where $m = \binom{n+D}{D}$.

Why it is a SDP?

Observation

- Any p(x) (of degree 2D) = $m^T Qm$, where m is the vector of monomials of degree up to 2D and Q is the coefficients.
- p(x) is a SOS iff $Q \ge 0$.

$$\min_{\substack{\nu,b_{i\alpha}\in\mathbb{R}}} \quad \nu$$
 such that
$$\nu A_0 - F - \sum_{i\alpha} b_{i\alpha} G_{i\alpha} \geq 0.$$
 (8)

Complexity: poly(m) poly log($1/\epsilon$), where $m = \binom{n+D}{D}$.

