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SDPs in Quantum Information

Semidefinite Programmings (SDPs) admit polynomial time
solvers and plays an important role in quantum information.

Consistency of reduced states, Quantum conditional
min-entropy, local Hamiltonians
QIP=PSPACE, QRG=EXP, .......

This talk is, however, about its limitation in
Separability or entanglement detection,
Approximation of Bell-violation (non-local game values).

Result: unconditional limitations of SDPs comparing to existing
computational hardness.
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Problem 1: Separability

Definition (Separable and Entangled States)
A bi-partitie state ρ ∈ D (X ⊗ Y) is separable if ∃ dist. {pi},

ρ =
∑

piσ
i
X ⊗ σ

i
Y , s.t. σi

X ∈ D (X ) , σi
Y ∈ D (Y) .

Otherwise, ρ is entangled. Let Sep def
= { separable states }.

Definition (Entanglement Detection)
A KEY problem: given the description of ρ ∈ D (X ⊗ Y), decide

Either ρ ∈ Sep, or ρ is far away from Sep.
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Alternative Formulation

Definition (Weak Membership)
WMem(ε, ‖·‖) : for any ρ ∈ D (X ⊗ Y), decide either ρ ∈ Sep or
‖ρ− Sep‖ ≥ ε.

Via standard techniques in convex optimization, equivalent to

Definition (Weak Optimization)
WOpt(M, ε) : for any M ∈ Herm (X ⊗ Y), estimate the value of

hSep(d ,d)(M) := max
ρ∈Sep

〈M, ρ〉 ,

with additive error ε.
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hSep(d ,d)(M)

hSep(d ,d)(M) := max
x ,y∈Cd

‖x‖2=‖y‖2=1

∑
i,j,k ,l∈[d ]

Mij,klx∗i xjy∗k yl . (1)

REMARK: this is an instance of polynomial optimization
problems with a homogenous degree 4 objective polynomial
and a degree 2 constraint polynomial.
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Connections

Quantum Information:
Mean-field approximation in statistical quantum mechanics.
Positivity test of quantum channels.
Data hiding, Channel capacities, Privacy, ......
17 more examples in quantum information in [HM10].

Quantum Complexity:
Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:
Unique Game Conjecture and Small-set Expansion.
(`2 → `4 norm)

A. Harrow, A. Natarajan, and X. Wu Limitations of monogamy, Tsirelson bounds & SDPs



Introduction
Proof Technique

Conclusions

Motivations
Problems
Main Results & Implications

Connections

Quantum Information:
Mean-field approximation in statistical quantum mechanics.
Positivity test of quantum channels.
Data hiding, Channel capacities, Privacy, ......
17 more examples in quantum information in [HM10].

Quantum Complexity:
Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:
Unique Game Conjecture and Small-set Expansion.
(`2 → `4 norm)

A. Harrow, A. Natarajan, and X. Wu Limitations of monogamy, Tsirelson bounds & SDPs



Introduction
Proof Technique

Conclusions

Motivations
Problems
Main Results & Implications

Connections

Quantum Information:
Mean-field approximation in statistical quantum mechanics.
Positivity test of quantum channels.
Data hiding, Channel capacities, Privacy, ......
17 more examples in quantum information in [HM10].

Quantum Complexity:
Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:
Unique Game Conjecture and Small-set Expansion.
(`2 → `4 norm)

A. Harrow, A. Natarajan, and X. Wu Limitations of monogamy, Tsirelson bounds & SDPs



Introduction
Proof Technique

Conclusions

Motivations
Problems
Main Results & Implications

Connections

Quantum Information:
Mean-field approximation in statistical quantum mechanics.
Positivity test of quantum channels.
Data hiding, Channel capacities, Privacy, ......
17 more examples in quantum information in [HM10].

Quantum Complexity:
Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:
Unique Game Conjecture and Small-set Expansion.
(`2 → `4 norm)

A. Harrow, A. Natarajan, and X. Wu Limitations of monogamy, Tsirelson bounds & SDPs



Introduction
Proof Technique

Conclusions

Motivations
Problems
Main Results & Implications

Connections

Quantum Information:
Mean-field approximation in statistical quantum mechanics.
Positivity test of quantum channels.
Data hiding, Channel capacities, Privacy, ......
17 more examples in quantum information in [HM10].

Quantum Complexity:
Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:
Unique Game Conjecture and Small-set Expansion.
(`2 → `4 norm)

A. Harrow, A. Natarajan, and X. Wu Limitations of monogamy, Tsirelson bounds & SDPs



Introduction
Proof Technique

Conclusions

Motivations
Problems
Main Results & Implications

Connections

Quantum Information:
Mean-field approximation in statistical quantum mechanics.
Positivity test of quantum channels.
Data hiding, Channel capacities, Privacy, ......
17 more examples in quantum information in [HM10].

Quantum Complexity:
Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:
Unique Game Conjecture and Small-set Expansion.
(`2 → `4 norm)

A. Harrow, A. Natarajan, and X. Wu Limitations of monogamy, Tsirelson bounds & SDPs



Introduction
Proof Technique

Conclusions

Motivations
Problems
Main Results & Implications

Heuristics

Separability Criterions:

Positive Partial Transpose (PPT) : ρTY = ρ? [PH]
Reduction Criterions: IX ⊗ ρY ≥ ρ ? [HH]
FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:
ρ is k -extendible if ∃ symmetric σ ∈ D (X ⊗ Y1 ⊗ · · · ⊗ Yk ),
∀i , ρ = σXYi .
ρ ∈ Sep if and only if ρ is k -extendible for any k ≥ 0.
Semidefinite program (SDP): size exponential in k .
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Computational Hardness

reference k c s n

GNN12 2 1 1− 1
d·poly log(d)

O(d)
Per12 2 1 1− 1

poly(d)
O(d)

AB+08
√

d · poly log(d) 1 0.99 O(d)
CD10

√
d · poly log(d) 1− 2−d 0.99 O(d)

HM13 2 1 0.01 log2(d)
poly log(d)

Table: Hardness results for hSepk (d) (extension of hSep(d,d) to k
parties.)
Hardness in the following sense: determining satisfiability of 3-SAT
instances with n variables and O(n) clauses can be reduced to
distinguishing between hSepk (d) ≥ c and ≤ s as above.
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Computational Hardness

Exponential Time Hypothesis (ETH)

The 3-SAT problem with n variables requires 2Ω(n) time to solve.

Combine with [HM13] hardness result⇒ approximation of
hSep(d) with constant precision requires dΩ(log(d)) time.

A matching upper bound: DPS to O(log(d)/ε2) level for
1-LOCC M: time dO(log(d)/ε2) → dO(log(d)). [BYC, BH]

Question: any unconditional lower bounds for DPS or any
SDPs? any matching upper bounds?
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Problem 2: Non-local Games

Non-local Game (denoted G):
Two physically separated players Alice and Bob. No
communication once the game starts.
Sets of questions S,T and answers A,B and a distribution
π : S × T → [0,1].
Sample (s, t) ∈ S × T ∼ π and ask Alice and Bob
respectively. Obtain answers a ∈ A,b ∈ B.
Determine win or lose by a predicate V (a,b|s, t) ∈ {0,1}.

Motivation: Bell-violation (quantum non-locality) in a game
language. Also related to quantum multi-prover interactive
proofs with shared entanglement.
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Problem 2: Non-local Games (cont’d)

Strategies:
Denote by P[a,b|s, t ] the probability of answering (a,b)
upon receiving (s, t).
Quantum strategies: share a quantum state |ψ〉 ∈ HA⊗HB
and answer w.r.t measurements {Aa

s} and {Bb
t },

P[a,b|s, t ] = 〈ψ|Aa
s ⊗ Bb

t |ψ〉 .
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Non-local Games (cont’d)

Definition (Game Value)

ω(G) = max
P

∑
a,b,s,t

π(s, t)V (a,b|s, t)P(a,b|s, t).

Example: CHSH game:
A = B = S = T = {0,1} and π(s, t) = 1/4,∀(s, t) ∈ S × T .
V (a,b|s, t) = 1 iff a⊕ b = s ∧ t .
Classical strategies: ω(CHSH) = 3/4. Quantum
strategies: ω∗(CHSH) = cos2(π/8) ≈ 0.85.
Quantum strategies are strictly more powerful.

Question: calculate ω∗(G) for any given G. How hard is that?

A. Harrow, A. Natarajan, and X. Wu Limitations of monogamy, Tsirelson bounds & SDPs
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Non-local Games (cont’d)

Definition (Game Value)

ω(G) = max
P
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Calculating ω∗(G) for quantum strategies

ω∗(G) for quantum strategies: an optimization problem!

ω∗(G) = lim
d→∞

max
|ψ〉∈Cd×d

max
Aa

s ,Bb
t

∑
a,b,s,t

π(s, t)V (a,b|s, t) 〈ψ|Aa
s⊗Bb

t |ψ〉 .

ω∗(G) is not known to be computable.

A SDP hierarchy proposed by Navascues-Pironio-Acin (NPA)
approximates ω∗(G) from above and converges at infinity.

Converging rate only known for special cases: XOR, Unique
games. No general upper or lower bounds known about the NPA
hierarchy.
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Computational Hardness

reference k c s n

KK+11 3 1 1− 1
poly(Q) O(Q)

IKM09 2 1 1− 1
poly(Q) O(Q)

IV12 4 1 2−QΩ(1)
QΩ(1)

Vid13 3 1 2−QΩ(1)
QΩ(1)

Table: Hardness results for ω∗(G) where G is a one-round k -prover
interactive proof protocol with question alphabet size Q.
Hardness in the following sense: determining satisfiability of 3-SAT
instances with n variables and O(n) clauses can be reduced to
distinguishing between ω∗(G) ≥ c and ≤ s as above.
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Result I: Unconditional Hardness for hSep?

Will the hardness of hSep(d) for const ε hold w/o ETH?

Theorem (Main I.1)
The DPS hierarchy (or general Sum-of-Squares SDP) requires
Ω(log(d)) levels to solve hSep(d) with constant precision.

Theorem (Main I.2)
Any SDP relaxation that estimate hSep(d)(M) with constant
errors requires size dΩ(log(d)).

Remark: Match dΩ(log(d)) time bound when assuming ETH.
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Result II: Unconditional Hardness for ω∗(G)?

Will the hardness of ω∗(G) hold w/o ETH?

Theorem (Main II.1)
There exists a family of games {Gn} s.t. the NPA hierarchy
requires Ω(n) levels to distinguish ω∗(G) = 1 from
ω∗(G) = 1− Ω(1/n2).

Theorem (Main II.2)
Any SDP relaxation that estimates ω∗(G) with precision
O(1/n2) requires size (n/ log(n))Ω(n).

Remark: Match the computational hardness of [IKM].
Open for [IV12, Vid13].
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Unconditional SoS & SDP lower bounds

First unconditional lower bounds (SoS or SDP) for both
hSep and ω∗(G) problems.
Match all bounds from computational hardness for hSep,
especially the DPS hierarchy.
Improve lower bounds from level k ≤ 5 to k = Ω(n) for the
NPA hierarchy.

Consequences
Implication to any resolution of the complexity of QMA(2).
Discussed later.
Hardness extends to the 2→ 4 norm, and thus small-set
expansions (SSE), and potentially the unique game
conjecture (UGC).

A. Harrow, A. Natarajan, and X. Wu Limitations of monogamy, Tsirelson bounds & SDPs



Introduction
Proof Technique

Conclusions

Motivations
Problems
Main Results & Implications

Unconditional SoS & SDP lower bounds

First unconditional lower bounds (SoS or SDP) for both
hSep and ω∗(G) problems.
Match all bounds from computational hardness for hSep,
especially the DPS hierarchy.
Improve lower bounds from level k ≤ 5 to k = Ω(n) for the
NPA hierarchy.

Consequences
Implication to any resolution of the complexity of QMA(2).
Discussed later.
Hardness extends to the 2→ 4 norm, and thus small-set
expansions (SSE), and potentially the unique game
conjecture (UGC).

A. Harrow, A. Natarajan, and X. Wu Limitations of monogamy, Tsirelson bounds & SDPs



Introduction
Proof Technique

Conclusions

Motivations
Problems
Main Results & Implications

Unconditional SoS & SDP lower bounds

First unconditional lower bounds (SoS or SDP) for both
hSep and ω∗(G) problems.
Match all bounds from computational hardness for hSep,
especially the DPS hierarchy.
Improve lower bounds from level k ≤ 5 to k = Ω(n) for the
NPA hierarchy.

Consequences
Implication to any resolution of the complexity of QMA(2).
Discussed later.
Hardness extends to the 2→ 4 norm, and thus small-set
expansions (SSE), and potentially the unique game
conjecture (UGC).

A. Harrow, A. Natarajan, and X. Wu Limitations of monogamy, Tsirelson bounds & SDPs



Introduction
Proof Technique

Conclusions

Motivations
Problems
Main Results & Implications

Unconditional SoS & SDP lower bounds

First unconditional lower bounds (SoS or SDP) for both
hSep and ω∗(G) problems.
Match all bounds from computational hardness for hSep,
especially the DPS hierarchy.
Improve lower bounds from level k ≤ 5 to k = Ω(n) for the
NPA hierarchy.

Consequences
Implication to any resolution of the complexity of QMA(2).
Discussed later.
Hardness extends to the 2→ 4 norm, and thus small-set
expansions (SSE), and potentially the unique game
conjecture (UGC).

A. Harrow, A. Natarajan, and X. Wu Limitations of monogamy, Tsirelson bounds & SDPs



Introduction
Proof Technique

Conclusions

Motivations
Problems
Main Results & Implications

Unconditional SoS & SDP lower bounds

First unconditional lower bounds (SoS or SDP) for both
hSep and ω∗(G) problems.
Match all bounds from computational hardness for hSep,
especially the DPS hierarchy.
Improve lower bounds from level k ≤ 5 to k = Ω(n) for the
NPA hierarchy.

Consequences
Implication to any resolution of the complexity of QMA(2).
Discussed later.
Hardness extends to the 2→ 4 norm, and thus small-set
expansions (SSE), and potentially the unique game
conjecture (UGC).

A. Harrow, A. Natarajan, and X. Wu Limitations of monogamy, Tsirelson bounds & SDPs



Introduction
Proof Technique

Conclusions

Motivations
Problems
Main Results & Implications

QMA(2) vs QMA

C-Prover C-Verifier

Q-VerifierQ-VerifierQ-Prover
quantum message |ψ〉
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History about QMA(2)

First study in [KMY01, KMY03]. Surprising: NP
⊆ QMA(2)log [BT09] v.s. QMAlog = BQP [MW05].

Main open question is to improve the trivial upper bound NEXP.

Variants of QMA(2) have been studied, such as BellQMA,
LOCC-QMA, which collapse to QMA [Bra, ABD+, BCY].
QMA(2)=QMA(poly) [HM10].
A recently claimed result QMA(2) ⊆ EXP with questionable
correctness [Sch15].

It suffices to solve hSep(d)(Macc) with Macc the POVM from
QMA(2) protocols.
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Implication on QMA(2)

Hardness applies to QMA(2)
Our explicit hard instance is a valid QMA(2) instance.
Hardness implies that the de Finetti theorem of 1-LOCC
[BCY, BH] is the best possible.

Unconditional proof of Watrous’s dis-entangler conjecture
Dis-entangler: a hypothetical channel that a) its output is
always ε-close to a separable state, and b) its image is
δ-close to any separable state, both in trace distance.
Input dimension dim(H) =∞ for ε = δ = 0 [AB+09].
∀ε+ δ < 1, dim(H) ≥ Ω(d log(d)/ poly log log(d)).
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Sum-of-Squares (SoS)
Integrality Gaps
Reductions

Technical Outline & Contributions

Technical Target
Introduce hardness of SDPs/SoS into quantum problems.
Deal with their limitations, such as boolean domains and
commutative problems.

Technical Contributions
Formulate a framework of reductions for this purpose. Also
applicable to other problems, e.g., Nash’s equilibria.
Design reductions following the guideline of the framework.
Special techniques to handle general domains and
non-commutative problems.
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Principle of Sum-of-Squares

One way to show that a polynomial f (x) is nonnegative could be

f (x) =
∑

ai(x)2 ≥ 0.

Example

f (x) = 2x2 − 6x + 5
= (x2 − 2x + 1) + (x2 − 4x + 4)

= (x − 1)2 + (x − 2)2 ≥ 0.

Such a decomposition is called a sum of squares (SOS)
certificate for the non-negativity of f . The min degree, degsos.
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Principle of SoS : constrained domain

Definition (Variety)
A set V ⊆ Cn is called an algebraic variety if
V = {x ∈ Cn : g1(x) = · · · = gk (x) = 0}.

Non-negativity of f (x) on V could be shown by

f (x) =
∑

ai(x)2 +
∑

bj(x)gj(x) ≥ 0.

Question: whether all nonnegative polynomials on certain
variety have a SOS certificate? Hilbert 17th problem!
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SoS in Optimization

max f (x)

subject to gi(x) = 0 ∀i
(2)

is equivalent to (justified by Positivstellensatz)

min ν

such that ν − f (x) = σ(x) +
∑

i

bi(x)gi(x), (3)

where σ(x) is SOS and bi(x) is any polynomial.
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SoS relaxation: Lasserre/Parrilo Hierarchy

If σ(x),bi(x) have any degrees (or degsos(v − f )), then
problem (3) is equivalent to problem (2).
By bounding the degrees, we get the Lasserre/Parrilo
hierarchy, which is a SDP hierarchy.

min ν

such that ν − f (x) = σ(x) +
∑

i

bi(x)gi(x), (4)

where σ(x) is SOS and bi(x) is any polynomial and deg(σ(x)),
deg(bi(x)gi(x)) ≤ 2D.
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Recall hSep(d ,d)(M)

hSep(d ,d)(M) := max
x ,y∈Cd

‖x‖2=‖y‖2=1

∑
i,j,k ,l∈[d ]

Mij,klx∗i xjy∗k yl . (5)

Recall: this is an instance of polynomial optimization problems
with a homogenous degree 4 objective polynomial and a
degree 2 constraint polynomial.

Its Lasserre’s hierarchy is the DPS hierarchy with full symmetry.
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Non-commutative (nc) SoS

Given F ,G1, . . . ,Gm ∈ R〈X 〉, define

Fmax := sup
ρ,X=(X1,...,Xn)

Tr[ρF (X )]

subject to ρ ≥ 0,Tr ρ = 1,G1(X ) = · · · = Gm(X ) = 0. (6)

Note that the supremum here is over density operators ρ and
Hermitian operators X1, . . . ,Xn that may be infinite dimensional;

A. Harrow, A. Natarajan, and X. Wu Limitations of monogamy, Tsirelson bounds & SDPs
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ncSoS

A non-commutative SoS proof can be expressed similarly as

c − F =
k∑

i=1

P†i Pi +
m∑

i=1

QiGiRi , (7)

for {Pi}, {Qi}, {Ri} ⊂ R〈X 〉. Likewise the best degree-d ncSoS
proof can be found in time nO(d)mO(1) by SDPs.

The NPA hierarchy for approximating ω∗(G) is an ncSoS SDP
hierarchy.
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General SDPs

The DPS and NPA hierarchies are just SoS and ncSoS
SDP hierarchies.
Thus, lower bounds for degsos ⇒ lower bounds for DPS and
NPA.
How about general SDPs?

Lee-Raghavendra-Steurer
Any degsos lower bound on {0,1}n ⇒ a lower bound on
SDP relaxations.
SDP relaxation: ∀x ∈ {0,1}n, ∃ relaxed X ′, s.t.,
f (x) = F (X ′). Embedding!
LRS’s analysis crucially relies on {0,1}n.
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Pseudo-distribution

Dual of the SOS cone
Let Σd ,2D be the cone of all PSD matrices representing
SOS polynomials with degree up to 2D.
The dual cone Σ∗d ,2D is moment MD(x) ≥ 0, where entry
(α, β) of Md (x) is

∫
xα+βµ(dx), |α|, |β| ≤ d .

Pseudo-distributrion/expectation
Moment MD(x) gives rise to pseudo-distribution.
Expectation on it is pseudo-expectation.
Behave similar to expectation for low-degree polynomials.
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Pseudo-expectation

A degree-d pseudo-expectation Ẽ is an element of R[x ]∗d (i.e. a
linear map from R[x ]d to R) satisfying

Normalization. Ẽ[1] = 1.
Positivity. Ẽ[p2] ≥ 0 for any p ∈ R[x ]d/2.

Ẽ satisfies the constraints g1, . . . ,gm if Ẽ[giq] = 0 for all i ∈ [n]
and all q ∈ R[x ]d−deg(gi ).

f d
SoS = max{Ẽ[f ] : Ẽ of degree-d satisfying g1, . . . ,gm}. (8)
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and all q ∈ R[x ]d−deg(gi ).

f d
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Integrality Gaps

What constitutes an integrality gap?
An instance Φ that has fopt(Φ) is small.
But f d

SoS(Φ) is large for some d ⇒ lower bound at level d .

Example
3XOR: O(n) clauses on n boolean variables:
xi ⊕ xj ⊕ xk = Cijk .
A random instance satisfies 1/2 + ε of clauses while an
Ω(n) pseudo-solution believes it satisfies all clauses.
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Extend integrality gaps via reductions

Reduction from A to B

Reduction is an instance-mapping ΦA → ΦB.
Soundness: f A

opt(ΦA) small⇒ f B
opt(ΦB)

Pseudo-completeness: f dA
SoS(ΦA) large⇒ f dB

SoS(ΦB) large,
dB is not too smaller than dA.

Pseudo-completeness: low-degree reduction

Let µA(ẼA) be the pseudo-solution for ΦA. One needs to
construct a µB(ẼB) for ΦB.
Sufficient condition: a low-degree polynomial that maps
µA → µB.
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Extend integrality gaps via reductions:

A reduction with pseudo-completeness and soundness leads to
an integrality gap of degree dB for ΦB.

SDP lower bounds (LRS)
Only apply to {0,1}n ⇒ no direct application on hSep or
ω∗(G).
Additional condition: embedding (replacing
pseudo-completeness)

Assume A⇒ B and apply LRS on A that is on {0,1}n.
Then⇒ needs to be embedded as well as its composition
with SDP relaxations.

A. Harrow, A. Natarajan, and X. Wu Limitations of monogamy, Tsirelson bounds & SDPs
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Real reductions for hSep and ω∗(G)

3XOR(n)

2-OUT-OF-4-SAT 3− COLORINGωHONEST CLASSICAL

QMA(K)-ACC PROB

for Chen-Drucker

QMA(K)-ACC PROB

for Le Gall, Nakagawa,
Nishimura

QMA(2)-ACC PROB

for Harrow-Montanaro

hSep(n
√

n,n
√

n) hSep(n,n) hSepO(
√

n)(n)

ωentangled
for 2-player games

Figure: All our results are derived from the integrality gaps of 3XOR.
Red nodes: problems over the boolean cube and LRS is applied.
Blue arrows are “embedding reductions”.
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Reduction for hSep

3XOR =⇒
R1

2-OUT-OF-4-SAT-EQ =⇒
R2

QMA(2)-ACC PROB=⇒
R3

hSep

R1: a classical step. Low-degree & soundness similar to
the degree reduction step in Dinur’s proof of the PCP
theorem.
R2: a quantum step. Apply a modified QMA(2) protocol for
3-SAT [AB+09, HM13]. Low-degree due to the tests of the
protocol. Soundness inhered from the protocol.
R3: embedding by construction. Soundness inhered from
the above protocol.
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Reduction for ω∗(G)

3XOR =⇒
R1

ωHONEST CLASSICAL=⇒
R2
ω∗(G)

R1: reduction by a multi-prover interactive proof protocol in
[IKM]. Low-degree due to the tests of the protocol.
Soundness inhered from the protocol.
R2: embedding by construction. Soundness inhered from
the above protocol.
Integrality gap for ncSOS: additional step to embed an SoS
pseudo-solution into an ncSoS pseudo-solution.
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Results
First unconditional SoS/SDP lower bounds for hSep and
ω∗(G).
Match ETH-based bounds for hSep.
Implication on QMA(2) and Watrous’s dis-entangler
conjecture.

Technical Contribution
A reduction framework. Already find an application to the
Nash equilibria.
Reductions for general domains and non-commutative
problems.
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Question And Answer

Thank you!
Q & A
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SoS relaxation: Lasserre/Parrilo Hierarchy

If σ(x),bi(x) have any degrees (or degsos(v − f )), then
problem (3) is equivalent to problem (2).
By bounding the degrees, we get the Lasserre/Parrilo
hierarchy.

min ν

such that ν − f (x) = σ(x) +
∑

i

bi(x)gi(x), (9)

where σ(x) is SOS and bi(x) is any polynomial and deg(σ(x)),
deg(bi(x)gi(x)) ≤ 2D.
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Why it is a SDP?

Observation

Any p(x) (of degree 2D) = mT Qm, where m is the vector
of monomials of degree up to 2D and Q is the coefficients.
p(x) is a SOS iff Q ≥ 0.

min
ν,biα∈R

ν

such that νA0 − F −
∑
iα

biαGiα ≥ 0.
(10)

Complexity: poly(m) poly log(1/ε), where m =
(n+D

D

)
.
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