Limitations of monogamy, Tsirelson-type bounds, and other SDPs in quantum information

Aram W. Harrow ${ }^{1}$, Anand Natarajan ${ }^{1}$, Xiaodi Wu ${ }^{2}$

${ }^{1}$ MIT Center for Theoretical Physics
${ }^{2}$ University of Oregon
IQI Seminar, Caltech

SDPs in Quantum Information

Semidefinite Programmings (SDPs) admit polynomial time solvers and plays an important role in quantum information.

- Consistency of reduced states, Quantum conditional min-entropy, local Hamiltonians
- QIP=PSPACE, QRG=EXP,

This talk is, however, about its limitation in

- Separability or entanglement detection,
- Approximation of Bell-violation (non-local game values)
Result: unconditional limitations of SDPs comparing to existing
computational hardness.

SDPs in Quantum Information

Semidefinite Programmings (SDPs) admit polynomial time solvers and plays an important role in quantum information.

- Consistency of reduced states, Quantum conditional min-entropy, local Hamiltonians
- QIP=PSPACE, QRG=EXP,

This talk is, however, about its limitation in

- Separability or entanglement detection,
- Approximation of Bell-violation (non-local game values).
computational hardness.

SDPs in Quantum Information

Semidefinite Programmings (SDPs) admit polynomial time solvers and plays an important role in quantum information.

- Consistency of reduced states, Quantum conditional min-entropy, local Hamiltonians
- QIP=PSPACE, QRG=EXP,

This talk is, however, about its limitation in

- Separability or entanglement detection,
- Approximation of Bell-violation (non-local game values).

Result: unconditional limitations of SDPs comparing to existing computational hardness.

Problem 1: Separability

Definition (Separable and Entangled States)

A bi-partitie state $\rho \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y})$ is separable if \exists dist. $\left\{p_{i}\right\}$,

$$
\rho=\sum p_{i} \sigma_{X}^{i} \otimes \sigma_{Y}^{i}, \text { s.t. } \sigma_{X}^{i} \in \mathrm{D}(\mathcal{X}), \sigma_{Y}^{i} \in \mathrm{D}(\mathcal{Y})
$$

Otherwise, ρ is entangled. Let Sep $\stackrel{\text { def }}{=}\{$ separable states $\}$.

Problem 1: Separability

Definition (Separable and Entangled States)

A bi-partitie state $\rho \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y})$ is separable if \exists dist. $\left\{p_{i}\right\}$,

$$
\rho=\sum p_{i} \sigma_{X}^{i} \otimes \sigma_{Y}^{i}, \text { s.t. } \sigma_{X}^{i} \in \mathrm{D}(\mathcal{X}), \sigma_{Y}^{i} \in \mathrm{D}(\mathcal{Y}) .
$$

Otherwise, ρ is entangled. Let Sep $\stackrel{\text { def }}{=}\{$ separable states $\}$.

Definition (Entanglement Detection)

A KEY problem: given the description of $\rho \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y})$, decide
Either $\rho \in \operatorname{Sep}$, or ρ is far away from Sep.

Introduction

Alternative Formulation

Definition (Weak Membership)

WMem $(\epsilon,\|\cdot\|)$: for any $\rho \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y})$, decide either $\rho \in$ Sep or $\|\rho-\operatorname{Sep}\| \geq \epsilon$.

Via standard techniques in convex optimization, equivalent to
with additive error

Alternative Formulation

Definition (Weak Membership)

WMem $(\epsilon,\|\cdot\|)$: for any $\rho \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y})$, decide either $\rho \in$ Sep or $\|\rho-\operatorname{Sep}\| \geq \epsilon$.

Via standard techniques in convex optimization, equivalent to

Definition (Weak Optimization)

$\operatorname{WOpt}(M, \epsilon):$ for any $M \in \operatorname{Herm}(\mathcal{X} \otimes \mathcal{Y})$, estimate the value of

$$
h_{\operatorname{Sep}(d, d)}(M):=\max _{\rho \in \operatorname{Sep}}\langle M, \rho\rangle
$$

with additive error ϵ.

$h_{S e p(d, d)}(M)$

$$
\begin{equation*}
h_{\operatorname{Sep}(d, d)}(M):=\max _{\substack{x, y \in \mathbb{C}^{d} \\\|x\|_{2}=\|y\|_{2}=1}} \sum_{i, j, k, l \in[d]} M_{i j, k \mid} x_{i}^{*} x_{j} y_{k}^{*} y_{I} . \tag{1}
\end{equation*}
$$

REMARK: this is an instance of polynomial optimization problems with a homogenous degree 4 objective polynomial and a degree 2 constraint polynomial.

Connections

Quantum Information:

- Mean-field approximation in statistical quantum mechanics.

Positivity test of quantum channels.
Data hiding, Channel capacities, Privacy,

Connections

Quantum Information:

- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.

Connections

Quantum Information:

- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- Data hiding, Channel capacities, Privacy,

Connections

Quantum Information:

- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- Data hiding, Channel capacities, Privacy,
- 17 more examples in quantum information in [HM10].

Quantum Complexity:

- Quantum Merlin-Arthur Game with Two-Provers (QMA(2))

Classical Comnlexity:
Unique Game Conjecture and Small-set Expansion.

Connections

Quantum Information:

- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- Data hiding, Channel capacities, Privacy,
- 17 more examples in quantum information in [HM10].

Quantum Complexity:

- Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:
Unique Game Conjecture and Small-set Expansion.

Connections

Quantum Information:

- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- Data hiding, Channel capacities, Privacy,
- 17 more examples in quantum information in [HM10].

Quantum Complexity:

- Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:

- Unique Game Conjecture and Small-set Expansion. ($\ell_{2} \rightarrow \ell_{4}$ norm)

Introduction

Heuristics

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T \mathcal{y}}=\rho$? [PH]

Heuristics

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T \mathcal{Y}}=\rho$? [PH]
- Reduction Criterions: $I_{\mathcal{X}} \otimes \rho_{Y} \geq \rho$? [HH]

Heuristics

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{y}}=\rho$? [PH]
- Reduction Criterions: $I_{\mathcal{X}} \otimes \rho_{Y} \geq \rho$? [HH]
- FAILURE: any such test has arbitrarily large error. [BS]

Heuristics

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{y}}=\rho$? [PH]
- Reduction Criterions: $I_{\mathcal{X}} \otimes \rho_{Y} \geq \rho$? [HH]
- FAILURE: any such test has arbitrarily large error. [BS]

Heuristics

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{y}}=\rho$? [PH]
- Reduction Criterions: $I_{\mathcal{X}} \otimes \rho_{Y} \geq \rho$? [HH]
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

- ρ is k-extendible if \exists symmetric $\sigma \in \mathrm{D}\left(\mathcal{X} \otimes \mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}\right)$, $\forall i, \rho=\sigma_{X Y_{i}}$.

Sep if and only if ρ is k-extendible for any $k \geq 0$.
Semidefinite program (SDP): size exponential in k.

Heuristics

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{y}}=\rho$? [PH]
- Reduction Criterions: $I_{\mathcal{X}} \otimes \rho_{Y} \geq \rho$? [HH]
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

- ρ is k-extendible if \exists symmetric $\sigma \in \mathrm{D}\left(\mathcal{X} \otimes \mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}\right)$, $\forall i, \rho=\sigma_{X Y_{i}}$.
- $\rho \in$ Sep if and only if ρ is k-extendible for any $k \geq 0$.

Semidefinite program (SDP)

Heuristics

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{y}}=\rho$? [PH]
- Reduction Criterions: $I_{\mathcal{X}} \otimes \rho_{Y} \geq \rho$? [HH]
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

- ρ is k-extendible if \exists symmetric $\sigma \in \mathrm{D}\left(\mathcal{X} \otimes \mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}\right)$, $\forall i, \rho=\sigma_{X Y_{i}}$.
- $\rho \in$ Sep if and only if ρ is k-extendible for any $k \geq 0$.
- Semidefinite program (SDP): size exponential in k.

Computational Hardness

reference	k	c	s	n
GNN12	2	1	$1-\frac{1}{d \cdot \operatorname{polylog}(d)}$	$O(d)$
Per12	2	1	$1-\frac{1}{\text { polyy }(d)}$	$O(d)$
AB+08	$\sqrt{d} \cdot$ poly $\log (d)$	1	0.99	$O(d)$
CD10	$\sqrt{d} \cdot \operatorname{poly} \log (d)$	$1-2^{-d}$	0.99	$O(d)$
HM13	2	1	0.01	$\frac{\log ^{2}(d)}{\operatorname{poly}^{2}(d)(d)}$

Table: Hardness results for $h_{\operatorname{Sep}^{k}(d)}$ (extension of $h_{\operatorname{Sep}(d, d)}$ to k parties.)
Hardness in the following sense: determining satisfiability of 3-SAT instances with n variables and $O(n)$ clauses can be reduced to distinguishing between $h_{\mathrm{Sep}^{k}(d)} \geq c$ and $\leq s$ as above.

Computational Hardness

Exponential Time Hypothesis (ETH)

The 3-SAT problem with n variables requires $2^{\Omega(n)}$ time to solve.

Computational Hardness

Exponential Time Hypothesis (ETH)

The 3-SAT problem with n variables requires $2^{\Omega(n)}$ time to solve.

- Combine with [HM13] hardness result \Rightarrow approximation of $h_{\text {Sep }(d)}$ with constant precision requires $d^{\Omega(\log (d))}$ time.

Computational Hardness

Exponential Time Hypothesis (ETH)

The 3-SAT problem with n variables requires $2^{\Omega(n)}$ time to solve.

- Combine with [HM13] hardness result \Rightarrow approximation of $h_{\text {Sep }(d)}$ with constant precision requires $d^{\Omega(\log (d))}$ time.
- A matching upper bound: DPS to $O\left(\log (d) / \epsilon^{2}\right)$ level for 1-LOCC M: time $d^{O\left(\log (d) / \epsilon^{2}\right)} \rightarrow d^{O(\log (d))}$. [BYC, BH]

Computational Hardness

Exponential Time Hypothesis (ETH)

The 3-SAT problem with n variables requires $2^{\Omega(n)}$ time to solve.

- Combine with [HM13] hardness result \Rightarrow approximation of $h_{\text {Sep }(d)}$ with constant precision requires $d^{\Omega(\log (d))}$ time.
- A matching upper bound: DPS to $O\left(\log (d) / \epsilon^{2}\right)$ level for 1-LOCC M : time $d^{O\left(\log (d) / \epsilon^{2}\right)} \rightarrow d^{O(\log (d))}$. [BYC, BH]

Question: any unconditional lower bounds for DPS or any SDPs? any matching upper bounds?

Problem 2: Non-local Games

Non-local Game (denoted G):

- Two physically separated players Alice and Bob. No communication once the game starts.

Problem 2: Non-local Games

Non-local Game (denoted G):

- Two physically separated players Alice and Bob. No communication once the game starts.
- Sets of questions S, T and answers A, B and a distribution $\pi: S \times T \rightarrow[0,1]$.

Problem 2: Non-local Games

Non-local Game (denoted G):

- Two physically separated players Alice and Bob. No communication once the game starts.
- Sets of questions S, T and answers A, B and a distribution $\pi: S \times T \rightarrow[0,1]$.
- Sample $(s, t) \in S \times T \sim \pi$ and ask Alice and Bob respectively. Obtain answers $a \in A, b \in B$.

Motivation: Bell-violation (quantum non-locality) in a game
language. Also related to quantum multi-prover interactive
proofs with shared entanglement

Problem 2: Non-local Games

Non-local Game (denoted G):

- Two physically separated players Alice and Bob. No communication once the game starts.
- Sets of questions S, T and answers A, B and a distribution $\pi: S \times T \rightarrow[0,1]$.
- Sample $(s, t) \in S \times T \sim \pi$ and ask Alice and Bob respectively. Obtain answers $a \in A, b \in B$.
- Determine win or lose by a predicate $V(a, b \mid s, t) \in\{0,1\}$.

Motivation: Bell-violation (quantum non-locality) in a game

language. Also related to quantum multi-prover interactive
proofs with shared entanglement.

Problem 2: Non-local Games

Non-local Game (denoted G):

- Two physically separated players Alice and Bob. No communication once the game starts.
- Sets of questions S, T and answers A, B and a distribution $\pi: S \times T \rightarrow[0,1]$.
- Sample $(s, t) \in S \times T \sim \pi$ and ask Alice and Bob respectively. Obtain answers $a \in A, b \in B$.
- Determine win or lose by a predicate $V(a, b \mid s, t) \in\{0,1\}$.

Motivation: Bell-violation (quantum non-locality) in a game language. Also related to quantum multi-prover interactive proofs with shared entanglement.

Problem 2: Non-local Games (cont'd)

Strategies:

- Denote by $P[a, b \mid s, t]$ the probability of answering (a, b) upon receiving (s, t).

Problem 2: Non-local Games (cont'd)

Strategies:

- Denote by $P[a, b \mid s, t]$ the probability of answering (a, b) upon receiving (s, t).
- Quantum strategies: share a quantum state $|\psi\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$ and answer w.r.t measurements $\left\{A_{s}^{a}\right\}$ and $\left\{B_{t}^{b}\right\}$,

$$
P[a, b \mid s, t]=\langle\psi| A_{s}^{a} \otimes B_{t}^{b}|\psi\rangle .
$$

Introduction

Non-local Games (cont'd)

Definition (Game Value)

$$
\omega(G)=\max _{P} \sum_{a, b, s, t} \pi(s, t) V(a, b \mid s, t) P(a, b \mid s, t)
$$

Non-local Games (cont'd)

Definition (Game Value)

$$
\omega(G)=\max _{P} \sum_{a, b, s, t} \pi(s, t) V(a, b \mid s, t) P(a, b \mid s, t)
$$

Example: CHSH game:

- $A=B=S=T=\{0,1\}$ and $\pi(s, t)=1 / 4, \forall(s, t) \in S \times T$.

Non-local Games (cont'd)

Definition (Game Value)

$$
\omega(G)=\max _{P} \sum_{a, b, s, t} \pi(s, t) V(a, b \mid s, t) P(a, b \mid s, t)
$$

Example: CHSH game:

- $A=B=S=T=\{0,1\}$ and $\pi(s, t)=1 / 4, \forall(s, t) \in S \times T$.
- $V(a, b \mid s, t)=1$ iff $a \oplus b=s \wedge t$.

Classical strategies: $\omega(C H S H)=3 / 4$. Quantum
strategies: $\omega^{*}(C H S H)=\cos ^{2}(\pi / 8) \approx 0.85$.
Quantum strategies are strictly more powerful.

Non-local Games (cont'd)

Definition (Game Value)

$$
\omega(G)=\max _{P} \sum_{a, b, s, t} \pi(s, t) V(a, b \mid s, t) P(a, b \mid s, t)
$$

Example: CHSH game:

- $A=B=S=T=\{0,1\}$ and $\pi(s, t)=1 / 4, \forall(s, t) \in S \times T$.
- $V(a, b \mid s, t)=1$ iff $a \oplus b=s \wedge t$.
- Classical strategies: $\omega(\mathrm{CHSH})=3 / 4$. Quantum strategies: $\omega^{*}(C H S H)=\cos ^{2}(\pi / 8) \approx 0.85$.

Question: calculate $\omega^{*}(G)$ for any given G. How hard is that?

Non-local Games (cont'd)

Definition (Game Value)

$$
\omega(G)=\max _{P} \sum_{a, b, s, t} \pi(s, t) V(a, b \mid s, t) P(a, b \mid s, t)
$$

Example: CHSH game:

- $A=B=S=T=\{0,1\}$ and $\pi(s, t)=1 / 4, \forall(s, t) \in S \times T$.
- $V(a, b \mid s, t)=1$ iff $a \oplus b=s \wedge t$.
- Classical strategies: $\omega(C H S H)=3 / 4$. Quantum strategies: $\omega^{*}(C H S H)=\cos ^{2}(\pi / 8) \approx 0.85$.
- Quantum strategies are strictly more powerful.

Question: calculate $\omega^{*}(G)$ for any given G. How hard is that?

Non-local Games (cont'd)

Definition (Game Value)

$$
\omega(G)=\max _{P} \sum_{a, b, s, t} \pi(s, t) V(a, b \mid s, t) P(a, b \mid s, t)
$$

Example: CHSH game:

- $A=B=S=T=\{0,1\}$ and $\pi(s, t)=1 / 4, \forall(s, t) \in S \times T$.
- $V(a, b \mid s, t)=1$ iff $a \oplus b=s \wedge t$.
- Classical strategies: $\omega(C H S H)=3 / 4$. Quantum strategies: $\omega^{*}(C H S H)=\cos ^{2}(\pi / 8) \approx 0.85$.
- Quantum strategies are strictly more powerful.

Question: calculate $\omega^{*}(G)$ for any given G. How hard is that?

Calculating $\omega^{*}(G)$ for quantum strategies

$\omega^{*}(G)$ for quantum strategies: an optimization problem!

$$
\omega^{*}(G)=\lim _{d \rightarrow \infty} \max _{|\psi\rangle \in \mathbb{C}^{d \times d}} \max _{A_{s}^{a}, B_{t}^{b}} \sum_{a, b, s, t} \pi(s, t) V(a, b \mid s, t)\langle\psi| A_{s}^{a} \otimes B_{t}^{b}|\psi\rangle
$$

Calculating $\omega^{*}(G)$ for quantum strategies

$\omega^{*}(G)$ for quantum strategies: an optimization problem!

$$
\omega^{*}(G)=\lim _{d \rightarrow \infty} \max _{|\psi\rangle \in \mathbb{C}^{d} \times d} \max _{A_{s}^{a}, B_{t}^{b}} \sum_{a, b, s, t} \pi(s, t) V(a, b \mid s, t)\langle\psi| A_{s}^{a} \otimes B_{t}^{b}|\psi\rangle
$$

- $\omega^{*}(G)$ is not known to be computable.

> A SDP hierarchy proposed by Navascues-Pironio-Acin (NPA) approximates $\omega^{*}(G)$ from above and converges at infinity.
> Converging rate only known for special cases: XOR, Unique games. No general upper or lower bounds known about the NPA

Calculating $\omega^{*}(G)$ for quantum strategies

$\omega^{*}(G)$ for quantum strategies: an optimization problem!

$$
\omega^{*}(G)=\lim _{d \rightarrow \infty} \max _{|\psi\rangle \in \mathbb{C}^{d x d}} \max _{A_{s}^{s}, B_{t}^{b}} \sum_{a, b, s, t} \pi(s, t) V(a, b \mid s, t)\langle\psi| A_{s}^{a} \otimes B_{t}^{b}|\psi\rangle .
$$

- $\omega^{*}(G)$ is not known to be computable.
- A SDP hierarchy proposed by Navascues-Pironio-Acin (NPA) approximates $\omega^{*}(G)$ from above and converges at infinity.

Calculating $\omega^{*}(G)$ for quantum strategies

$\omega^{*}(G)$ for quantum strategies: an optimization problem!

$$
\omega^{*}(G)=\lim _{d \rightarrow \infty} \max _{|\psi\rangle \in \mathbb{C}^{d \times d}} \max _{A_{s}^{a}, B_{t}^{b}} \sum_{a, b, s, t} \pi(s, t) V(a, b \mid s, t)\langle\psi| A_{s}^{a} \otimes B_{t}^{b}|\psi\rangle .
$$

- $\omega^{*}(G)$ is not known to be computable.
- A SDP hierarchy proposed by Navascues-Pironio-Acin (NPA) approximates $\omega^{*}(G)$ from above and converges at infinity.
- Converging rate only known for special cases: XOR, Unique games. No general upper or lower bounds known about the NPA hierarchy.

Computational Hardness

reference	k	c	s	n
KK+11	3	1	$1-\frac{1}{\operatorname{poly}(Q)}$	$O(Q)$
IKM09	2	1	$1-\frac{1}{\operatorname{poly}(Q)}$	$O(Q)$
IV12	4	1	$2^{-Q^{\Omega(1)}}$	$Q^{\Omega(1)}$
Vid13	3	1	$2^{-Q^{\Omega(1)}}$	$Q^{\Omega(1)}$

Table: Hardness results for $\omega^{*}(G)$ where G is a one-round k-prover interactive proof protocol with question alphabet size Q. Hardness in the following sense: determining satisfiability of 3-SAT instances with n variables and $O(n)$ clauses can be reduced to distinguishing between $\omega^{*}(G) \geq c$ and $\leq s$ as above.

Motivations

Result I: Unconditional Hardness for $h_{\text {Sep }}$?

Will the hardness of $h_{\text {Sep }(d)}$ for const ϵ hold w/o ETH?

Result I: Unconditional Hardness for $h_{\text {Sep }}$?

Will the hardness of $h_{\text {Sep }(d)}$ for const ϵ hold w/o ETH?

Theorem (Main I.1)

The DPS hierarchy (or general Sum-of-Squares SDP) requires $\Omega(\log (d))$ levels to solve $h_{\text {Sep }(d)}$ with constant precision.

Result I: Unconditional Hardness for $h_{\text {Sep }}$?

Will the hardness of $h_{\text {Sep }(d)}$ for const ϵ hold w/o ETH?

Theorem (Main I.1)

The DPS hierarchy (or general Sum-of-Squares SDP) requires $\Omega(\log (d))$ levels to solve $h_{\operatorname{Sep}(d)}$ with constant precision.

Theorem (Main I.2)

Any SDP relaxation that estimate $h_{\operatorname{Sep}(d)}(M)$ with constant errors requires size $d^{\Omega(\log (d))}$.

Result I: Unconditional Hardness for $h_{\text {Sep }}$?

Will the hardness of $h_{\text {Sep }(d)}$ for const ϵ hold w/o ETH?

Theorem (Main I.1)

The DPS hierarchy (or general Sum-of-Squares SDP) requires $\Omega(\log (d))$ levels to solve $h_{\operatorname{Sep}(d)}$ with constant precision.

Theorem (Main I.2)

Any SDP relaxation that estimate $h_{\operatorname{Sep}(d)}(M)$ with constant errors requires size $d^{\Omega(\log (d))}$.

Remark: Match $d^{\Omega(\log (d))}$ time bound when assuming ETH.

Introduction

Result II: Unconditional Hardness for $\omega^{*}(G)$?

Will the hardness of $\omega^{*}(G)$ hold w/o ETH?

Result II: Unconditional Hardness for $\omega^{*}(G)$?

Will the hardness of $\omega^{*}(G)$ hold w/o ETH?

Theorem (Main II.1)

There exists a family of games $\left\{G_{n}\right\}$ s.t. the NPA hierarchy requires $\Omega(n)$ levels to distinguish $\omega^{*}(G)=1$ from $\omega^{*}(G)=1-\Omega\left(1 / n^{2}\right)$.
\square G) with precision
\square
\square

Result II: Unconditional Hardness for $\omega^{*}(G)$?

Will the hardness of $\omega^{*}(G)$ hold w/o ETH?

Theorem (Main II.1)

There exists a family of games $\left\{G_{n}\right\}$ s.t. the NPA hierarchy requires $\Omega(n)$ levels to distinguish $\omega^{*}(G)=1$ from
$\omega^{*}(G)=1-\Omega\left(1 / n^{2}\right)$.

Theorem (Main II.2)

Any SDP relaxation that estimates $\omega^{*}(G)$ with precision $O\left(1 / n^{2}\right)$ requires size $(n / \log (n))^{\Omega(n)}$.

Match the computational hardness of
\square

Result II：Unconditional Hardness for $\omega^{*}(G)$ ？

Will the hardness of $\omega^{*}(G)$ hold w／o ETH？

Theorem（Main II．1）

There exists a family of games $\left\{G_{n}\right\}$ s．t．the NPA hierarchy requires $\Omega(n)$ levels to distinguish $\omega^{*}(G)=1$ from
$\omega^{*}(G)=1-\Omega\left(1 / n^{2}\right)$ ．

Theorem（Main II．2）

Any SDP relaxation that estimates $\omega^{*}(G)$ with precision $O\left(1 / n^{2}\right)$ requires size $(n / \log (n))^{\Omega(n)}$ ．

Remark：Match the computational hardness of［IKM］． Open for［IV12，Vid13］．

Introduction

Unconditional SoS \& SDP lower bounds

- First unconditional lower bounds (SoS or SDP) for both $h_{\text {Sep }}$ and $\omega^{*}(G)$ problems.

Introduction
Proof Technique Conclusions

Unconditional SoS \& SDP lower bounds

- First unconditional lower bounds (SoS or SDP) for both $h_{\text {Sep }}$ and $\omega^{*}(G)$ problems.
- Match all bounds from computational hardness for $h_{\text {Sep }}$, especially the DPS hierarchy.

Unconditional SoS \& SDP lower bounds

- First unconditional lower bounds (SoS or SDP) for both $h_{\text {Sep }}$ and $\omega^{*}(G)$ problems.
- Match all bounds from computational hardness for $h_{\text {Sep }}$, especially the DPS hierarchy.
- Improve lower bounds from level $k \leq 5$ to $k=\Omega(n)$ for the NPA hierarchy.

Unconditional SoS \& SDP lower bounds

- First unconditional lower bounds (SoS or SDP) for both $h_{\text {Sep }}$ and $\omega^{*}(G)$ problems.
- Match all bounds from computational hardness for $h_{\text {Sep }}$, especially the DPS hierarchy.
- Improve lower bounds from level $k \leq 5$ to $k=\Omega(n)$ for the NPA hierarchy.

Consequences

- Implication to any resolution of the complexity of QMA(2). Discussed later.

Unconditional SoS \& SDP lower bounds

- First unconditional lower bounds (SoS or SDP) for both $h_{\text {Sep }}$ and $\omega^{*}(G)$ problems.
- Match all bounds from computational hardness for h_{Sep}, especially the DPS hierarchy.
- Improve lower bounds from level $k \leq 5$ to $k=\Omega(n)$ for the NPA hierarchy.

Consequences

- Implication to any resolution of the complexity of QMA(2). Discussed later.
- Hardness extends to the $2 \rightarrow 4$ norm, and thus small-set expansions (SSE), and potentially the unique game conjecture (UGC).

Introduction
Proof Technique
Conclusions

Motivations

Main Results \& Implications

QMA(2) vs QMA

C-Prover

QMA(2) vs QMA

C-Prover

C-Verifier

QMA(2) vs QMA

NP
 classical message m_{1}
 C-Prover
 C-Verifier

quantum message

QMA(2) vs QMA

NP
 classical message m_{1}
 C-Prover $\xrightarrow{\text { Classical message } m_{1}}$-Verifier

QMA

Q-Prover $\xrightarrow{\text { quantum message }|\psi\rangle}$ Q-Verifier

Introduction
Proof Technique
Conclusions

Motivations
Main Results \& Implications

QMA(2) vs QMA

C- P_{1}

C-Verifier

C- P_{2}
quantum message

QMA(2) vs QMA

C- $P_{1} \quad$ classical message m_{1} C-Verifier
 C- $P_{2} \xrightarrow[\text { classical message } m_{2}]{ }$

quantum message

QMA(2) vs QMA

C- $P_{1} \quad \begin{aligned} & \text { classical message } m_{1}\end{aligned}$ NP(2)

C-Verifier
C- P_{2} classical message m_{2}

QMA(2)
Q- P_{1} quantum message $\left|\psi_{1}\right\rangle$
Q-Verifier
Q- P_{2} quantum message $\left|\psi_{2}\right\rangle$

QMA(2) vs QMA

QMA(2)
Q- $P_{1} \xrightarrow{\text { quantum message }\left|\psi_{1}\right\rangle}$
Q-Verifier
Q- P_{2} quantum message $\left|\psi_{2}\right\rangle$

QMA(2) vs QMA

$N P(2)=N P$

$$
\text { C- } P_{1} \circ P_{2} \xrightarrow{m_{1}+m_{2}} \text { C-Verifier }
$$

Q- P_{1} quantum message $\left|\psi_{1}\right\rangle$
Q- P_{2} quantum message $\left|\psi_{2}\right\rangle$

QMA(2) vs QMA

$N P(2)=N P$

$$
\text { C-P } P_{1} \circ P_{2} \xrightarrow{m_{1}+m_{2}} \text { C-Verifier }
$$

QMA(2)?=QMA

quantum message $\left|\psi_{1}\right\rangle$

$$
Q-Q_{1} \otimes Q_{2}
$$

Q-Verifier
quantum message $\left|\psi_{2}\right\rangle$

History about QMA(2)

- First study in [KMY01, KMY03]. Surprising: NP \subseteq QMA $(2)_{\log }[B T 09]$ v.s. QMA $_{\log }=B Q P$ [MW05].

History about QMA(2)

- First study in [KMY01, KMY03]. Surprising: NP \subseteq QMA $(2)_{\log }[B T 09]$ v.s. QMA $_{\log }=B Q P$ [MW05].
Main open question is to improve the trivial upper bound NEXP.

History about QMA(2)

- First study in [KMY01, KMY03]. Surprising: NP \subseteq QMA $(2)_{\log }[B T 09]$ v.s. QMA $_{\log }=B Q P[M W 05]$.
Main open question is to improve the trivial upper bound NEXP.
- Variants of QMA(2) have been studied, such as BellQMA, LOCC-QMA, which collapse to QMA [Bra, ABD + , BCY].

QMA(2)=QMA(poly) [HM10]. A recently claimed result QMA(2) \subseteq EXP with questionable

 correctness
History about QMA(2)

- First study in [KMY01, KMY03]. Surprising: NP \subseteq QMA $(2)_{\log }[B T 09]$ v.s. QMA $_{\text {log }}=B Q P$ [MW05].
Main open question is to improve the trivial upper bound NEXP.
- Variants of QMA(2) have been studied, such as BellQMA, LOCC-QMA, which collapse to QMA [Bra, ABD+, BCY].
- QMA(2)=QMA(poly) [HM10].

A recently claimed result $\mathrm{QMA}(2) \subseteq$ EXP with questionable
correctness [Sch15].
It suffices to solve $h_{\text {can/(л) }}\left(M\right.$:) with $M_{\text {aco }}$ the POVM from
QMA(2) protocols.

History about QMA(2)

- First study in [KMY01, KMY03]. Surprising: NP \subseteq QMA $(2)_{\log }[B T 09]$ v.s. QMA $_{\text {log }}=B Q P$ [MW05].
Main open question is to improve the trivial upper bound NEXP.
- Variants of QMA(2) have been studied, such as BellQMA, LOCC-QMA, which collapse to QMA [Bra, ABD+, BCY].
- QMA(2)=QMA(poly) [HM10].
- A recently claimed result $\mathrm{QMA}(2) \subseteq$ EXP with questionable correctness [Sch15].

History about QMA(2)

- First study in [KMY01, KMY03]. Surprising: NP \subseteq QMA $(2)_{\log }[B T 09]$ v.s. QMA $_{\text {log }}=B Q P$ [MW05].
Main open question is to improve the trivial upper bound NEXP.
- Variants of QMA(2) have been studied, such as BellQMA, LOCC-QMA, which collapse to QMA [Bra, ABD+, BCY].
- QMA(2)=QMA(poly) [HM10].
- A recently claimed result $\mathrm{QMA}(2) \subseteq$ EXP with questionable correctness [Sch15].
It suffices to solve $h_{\text {Sep }(d)}\left(M_{\mathrm{acc}}\right)$ with M_{acc} the POVM from QMA(2) protocols.

Implication on QMA(2)

Hardness applies to QMA(2)

- Our explicit hard instance is a valid QMA(2) instance.
- Hardness implies that the de Finetti theorem of 1-LOCC [$\mathrm{BCY}, \mathrm{BH}]$ is the best possible.

Implication on QMA(2)

Hardness applies to QMA(2)

- Our explicit hard instance is a valid QMA(2) instance.
- Hardness implies that the de Finetti theorem of 1-LOCC [BCY, BH$]$ is the best possible.

Unconditional proof of Watrous's dis-entangler conjecture

- Dis-entangler: a hypothetical channel that a) its output is always ϵ-close to a separable state, and b) its image is δ-close to any separable state, both in trace distance.

Implication on QMA(2)

Hardness applies to QMA(2)

- Our explicit hard instance is a valid QMA(2) instance.
- Hardness implies that the de Finetti theorem of 1-LOCC [BCY, BH$]$ is the best possible.

Unconditional proof of Watrous's dis-entangler conjecture

- Dis-entangler: a hypothetical channel that a) its output is always ϵ-close to a separable state, and b) its image is δ-close to any separable state, both in trace distance.
- Input dimension $\operatorname{dim}(\mathcal{H})=\infty$ for $\epsilon=\delta=0[A B+09]$.

Implication on QMA(2)

Hardness applies to QMA(2)

- Our explicit hard instance is a valid QMA(2) instance.
- Hardness implies that the de Finetti theorem of 1-LOCC [$\mathrm{BCY}, \mathrm{BH}]$ is the best possible.

Unconditional proof of Watrous's dis-entangler conjecture

- Dis-entangler: a hypothetical channel that a) its output is always ϵ-close to a separable state, and b) its image is δ-close to any separable state, both in trace distance.
- Input dimension $\operatorname{dim}(\mathcal{H})=\infty$ for $\epsilon=\delta=0$ [AB+09].
- $\forall \epsilon+\delta<1, \operatorname{dim}(\mathcal{H}) \geq \Omega\left(d^{\log (d) / \text { poly } \log \log (d)}\right)$.

Technical Outline \& Contributions

Technical Target

- Introduce hardness of SDPs/SoS into quantum problems.
Deal with their limitations, such as boolean domains and
commutative problems.

Technical Outline \& Contributions

Technical Target

- Introduce hardness of SDPs/SoS into quantum problems.
- Deal with their limitations, such as boolean domains and commutative problems.

Technical Outline \& Contributions

Technical Target

- Introduce hardness of SDPs/SoS into quantum problems.
- Deal with their limitations, such as boolean domains and commutative problems.

Technical Contributions

- Formulate a framework of reductions for this purpose. Also applicable to other problems, e.g., Nash's equilibria.
Design reductions following the guideline of the framework.
Special techniques to handle general domains and
non-commutative problems.

Technical Outline \& Contributions

Technical Target

- Introduce hardness of SDPs/SoS into quantum problems.
- Deal with their limitations, such as boolean domains and commutative problems.

Technical Contributions

- Formulate a framework of reductions for this purpose. Also applicable to other problems, e.g., Nash's equilibria.
- Design reductions following the guideline of the framework.

Special techniques to handle general domains and
non-commutative problems.

Technical Outline \& Contributions

Technical Target

- Introduce hardness of SDPs/SoS into quantum problems.
- Deal with their limitations, such as boolean domains and commutative problems.

Technical Contributions

- Formulate a framework of reductions for this purpose. Also applicable to other problems, e.g., Nash's equilibria.
- Design reductions following the guideline of the framework.
- Special techniques to handle general domains and non-commutative problems.

Principle of Sum-of-Squares

One way to show that a polynomial $f(x)$ is nonnegative could be

$$
f(x)=\sum a_{i}(x)^{2} \geq 0
$$

Example

$$
\begin{aligned}
f(x) & =2 x^{2}-6 x+5 \\
& =\left(x^{2}-2 x+1\right)+\left(x^{2}-4 x+4\right) \\
& =(x-1)^{2}+(x-2)^{2} \geq 0
\end{aligned}
$$

Such a decomposition is called a sum of squares (SOS) certificate for the non-negativity of f. The min degree, $\operatorname{deg}_{\text {sos }}$.

Principle of SoS : constrained domain

Definition (Variety)

A set $V \subseteq \mathbb{C}^{n}$ is called an algebraic variety if
$V=\left\{x \in \mathbb{C}^{n}: g_{1}(x)=\cdots=g_{k}(x)=0\right\}$.
Non-negativity of $f(x)$ on V could be shown by

$$
f(x)=\sum a_{i}(x)^{2}+\sum b_{j}(x) g_{j}(x) \geq 0 .
$$

Question: whether all nonnegative polynomials on certain
variety have a SOS certificate? Hilbert 17th problem!

Principle of SoS : constrained domain

Definition (Variety)

A set $V \subseteq \mathbb{C}^{n}$ is called an algebraic variety if
$V=\left\{x \in \mathbb{C}^{n}: g_{1}(x)=\cdots=g_{k}(x)=0\right\}$.
Non-negativity of $f(x)$ on V could be shown by

$$
f(x)=\sum a_{i}(x)^{2}+\sum b_{j}(x) g_{j}(x) \geq 0
$$

Question: whether all nonnegative polynomials on certain variety have a SOS certificate?

Principle of SoS : constrained domain

Definition (Variety)

A set $V \subseteq \mathbb{C}^{n}$ is called an algebraic variety if
$V=\left\{x \in \mathbb{C}^{n}: g_{1}(x)=\cdots=g_{k}(x)=0\right\}$.
Non-negativity of $f(x)$ on V could be shown by

$$
f(x)=\sum a_{i}(x)^{2}+\sum b_{j}(x) g_{j}(x) \geq 0
$$

Question: whether all nonnegative polynomials on certain variety have a SOS certificate? Hilbert 17th problem!

SoS in Optimization

$$
\begin{array}{ll}
\max & f(x) \tag{2}\\
\text { subject to } & g_{i}(x)=0 \quad \forall i
\end{array}
$$

is equivalent to (justified by Positivstellensatz)
min
ν
such that $\nu-f(x)=\sigma(x)+\sum_{i} b_{i}(x) g_{i}(x)$,
where $\sigma(x)$ is SOS and $b_{i}(x)$ is any polynomial.

SoS relaxation: Lasserre/Parrilo Hierarchy

- If $\sigma(x), b_{i}(x)$ have any degrees (or $\left.\operatorname{deg}_{\text {sos }}(v-f)\right)$, then problem (3) is equivalent to problem (2).
By bounding the degrees, we get the Lasserre/Parrilo
hierarchy, which is a SDP hierarchy.

SoS relaxation: Lasserre/Parrilo Hierarchy

- If $\sigma(x), b_{i}(x)$ have any degrees (or $\operatorname{deg}_{\text {sos }}(v-f)$), then problem (3) is equivalent to problem (2).
- By bounding the degrees, we get the Lasserre/Parrilo hierarchy, which is a SDP hierarchy.
where $\sigma(x)$ is SOS and $b_{i}(x)$ is any polynomial and $\operatorname{deg}(\sigma(x))$

SoS relaxation: Lasserre/Parrilo Hierarchy

- If $\sigma(x), b_{i}(x)$ have any degrees (or $\left.\operatorname{deg}_{\text {sos }}(v-f)\right)$, then problem (3) is equivalent to problem (2).
- By bounding the degrees, we get the Lasserre/Parrilo hierarchy, which is a SDP hierarchy.

SoS relaxation: Lasserre/Parrilo Hierarchy

- If $\sigma(x), b_{i}(x)$ have any degrees (or $\operatorname{deg}_{\text {sos }}(v-f)$), then problem (3) is equivalent to problem (2).
- By bounding the degrees, we get the Lasserre/Parrilo hierarchy, which is a SDP hierarchy.
min
ν
such that $\quad \nu-f(x)=\sigma(x)+\sum_{i} b_{i}(x) g_{i}(x)$,
where $\sigma(x)$ is SOS and $b_{i}(x)$ is any polynomial and $\operatorname{deg}(\sigma(x))$, $\operatorname{deg}\left(b_{i}(x) g_{i}(x)\right) \leq 2 D$.

Recall $h_{\text {Sep }(d, d)}(M)$

$$
\begin{equation*}
h_{\operatorname{Sep}(d, d)}(M):=\max _{\substack{x, y \in \mathbb{C}^{d} \\\|x\|_{2}=\|y\|_{2}=1}} \sum_{i, j, k, l \in[d]} M_{i j, k l} x_{i}^{*} x_{j} y_{k}^{*} y_{l} . \tag{5}
\end{equation*}
$$

Recall: this is an instance of polynomial optimization problems with a homogenous degree 4 objective polynomial and a degree 2 constraint polynomial.

Its Lasserre's hierarchy is the DPS hierarchy with full symmetry.

Non-commutative (nc) SoS

Given $F, G_{1}, \ldots, G_{m} \in \mathcal{R}\langle X\rangle$, define

$$
F_{\max }:=\sup _{\rho, X=\left(X_{1}, \ldots, X_{n}\right)} \operatorname{Tr}[\rho F(X)]
$$

$$
\begin{equation*}
\text { subject to } \rho \geq 0, \operatorname{Tr} \rho=1, G_{1}(X)=\cdots=G_{m}(X)=0 \tag{6}
\end{equation*}
$$

Note that the supremum here is over density operators ρ and Hermitian operators X_{1}, \ldots, X_{n} that may be infinite dimensional;

ncSoS

A non-commutative SoS proof can be expressed similarly as

$$
\begin{equation*}
c-F=\sum_{i=1}^{k} P_{i}^{\dagger} P_{i}+\sum_{i=1}^{m} Q_{i} G_{i} R_{i} \tag{7}
\end{equation*}
$$

for $\left\{P_{i}\right\},\left\{Q_{i}\right\},\left\{R_{i}\right\} \subset \mathcal{R}\langle X\rangle$. Likewise the best degree- d ncSoS proof can be found in time $n^{O(d)} m^{O(1)}$ by SDPs.

The NPA hierarchy for approximating $\omega^{*}(G)$ is an ncSoS SDP

ncSoS

A non-commutative SoS proof can be expressed similarly as

$$
\begin{equation*}
c-F=\sum_{i=1}^{k} P_{i}^{\dagger} P_{i}+\sum_{i=1}^{m} Q_{i} G_{i} R_{i}, \tag{7}
\end{equation*}
$$

for $\left\{P_{i}\right\},\left\{Q_{i}\right\},\left\{R_{i}\right\} \subset \mathcal{R}\langle X\rangle$. Likewise the best degree- d ncSoS proof can be found in time $n^{O(d)} m^{O(1)}$ by SDPs.

The NPA hierarchy for approximating $\omega^{*}(G)$ is an ncSoS SDP hierarchy.

General SDPs

- The DPS and NPA hierarchies are just SoS and ncSoS SDP hierarchies.

General SDPs

- The DPS and NPA hierarchies are just SoS and ncSoS SDP hierarchies.
- Thus, lower bounds for $\operatorname{deg}_{\text {sos }} \Rightarrow$ lower bounds for DPS and NPA.

General SDPs

- The DPS and NPA hierarchies are just SoS and ncSoS SDP hierarchies.
- Thus, lower bounds for $\operatorname{deg}_{\text {sos }} \Rightarrow$ lower bounds for DPS and NPA.
- How about general SDPs?

General SDPs

- The DPS and NPA hierarchies are just SoS and ncSoS SDP hierarchies.
- Thus, lower bounds for $\operatorname{deg}_{\text {sos }} \Rightarrow$ lower bounds for DPS and NPA.
- How about general SDPs?

Lee-Raghavendra-Steurer

- Any $\operatorname{deg}_{\text {sos }}$ lower bound on $\{0,1\}^{n} \Rightarrow$ a lower bound on SDP relaxations.

General SDPs

- The DPS and NPA hierarchies are just SoS and ncSoS SDP hierarchies.
- Thus, lower bounds for $\operatorname{deg}_{\text {sos }} \Rightarrow$ lower bounds for DPS and NPA.
- How about general SDPs?

Lee-Raghavendra-Steurer

- Any $\operatorname{deg}_{\text {sos }}$ lower bound on $\{0,1\}^{n} \Rightarrow$ a lower bound on SDP relaxations.
- SDP relaxation: $\forall x \in\{0,1\}^{n}, \exists$ relaxed X^{\prime}, s.t., $f(x)=F\left(X^{\prime}\right)$. Embedding!

General SDPs

- The DPS and NPA hierarchies are just SoS and ncSoS SDP hierarchies.
- Thus, lower bounds for $\operatorname{deg}_{\text {sos }} \Rightarrow$ lower bounds for DPS and NPA.
- How about general SDPs?

Lee-Raghavendra-Steurer

- Any $\operatorname{deg}_{\text {sos }}$ lower bound on $\{0,1\}^{n} \Rightarrow$ a lower bound on SDP relaxations.
- SDP relaxation: $\forall x \in\{0,1\}^{n}, \exists$ relaxed X^{\prime}, s.t., $f(x)=F\left(X^{\prime}\right)$. Embedding!
- LRS's analysis crucially relies on $\{0,1\}^{n}$.

Pseudo-distribution

Dual of the SOS cone

- Let $\Sigma_{d, 2 D}$ be the cone of all PSD matrices representing SOS polynomials with degree up to $2 D$.
- The dual cone $\Sigma_{d, 2 D}^{*}$ is moment $M_{D}(x) \geq 0$, where entry (α, β) of $M_{d}(x)$ is $\int x^{\alpha+\beta} \mu(d x),|\alpha|,|\beta| \leq d$.

Moment $M_{D}(x)$ gives rise to pseudo-distribution. Expectation on it is pseudo-expectation. Behave similar to expectation for low-degree polynomials

Pseudo-distribution

Dual of the SOS cone

- Let $\Sigma_{d, 2 D}$ be the cone of all PSD matrices representing SOS polynomials with degree up to $2 D$.
- The dual cone $\sum_{d, 2 D}^{*}$ is moment $M_{D}(x) \geq 0$, where entry (α, β) of $M_{d}(x)$ is $\int x^{\alpha+\beta} \mu(d x),|\alpha|,|\beta| \leq d$.

Pseudo-distributrion/expectation

- Moment $M_{D}(x)$ gives rise to pseudo-distribution. Expectation on it is pseudo-expectation.
- Behave similar to expectation for low-degree polynomials.

Pseudo-expectation

A degree- d pseudo-expectation $\tilde{\mathbb{E}}$ is an element of $\mathcal{R}[x]_{d}^{*}$ (i.e. a linear map from $\mathcal{R}[x]_{d}$ to \mathcal{R}) satisfying

- Normalization. $\tilde{\mathbb{E}}[1]=1$.
- Positivity. $\tilde{\mathbb{E}}\left[p^{2}\right] \geq 0$ for any $p \in \mathcal{R}[x]_{d / 2}$.
$\tilde{\mathbb{E}}$ satisfies the constraints g_{1}, \ldots, g_{m} if $\tilde{\mathbb{E}}\left[g_{i} q\right]=0$ for all $i \in[n]$ and all $q \in \mathcal{R}[x]_{d-\operatorname{deg}\left(g_{i}\right)}$

Pseudo-expectation

A degree- d pseudo-expectation $\tilde{\mathbb{E}}$ is an element of $\mathcal{R}[x]_{d}^{*}$ (i.e. a linear map from $\mathcal{R}[x]_{d}$ to \mathcal{R}) satisfying

- Normalization. $\tilde{\mathbb{E}}[1]=1$.
- Positivity. $\tilde{\mathbb{E}}\left[p^{2}\right] \geq 0$ for any $p \in \mathcal{R}[x]_{d / 2}$.
$\tilde{\mathbb{E}}$ satisfies the constraints g_{1}, \ldots, g_{m} if $\tilde{\mathbb{E}}\left[g_{i} q\right]=0$ for all $i \in[n]$ and all $q \in \mathcal{R}[x]_{d-\operatorname{deg}\left(g_{i}\right)}$.

Pseudo-expectation

A degree- d pseudo-expectation $\tilde{\mathbb{E}}$ is an element of $\mathcal{R}[x]_{d}^{*}$ (i.e. a linear map from $\mathcal{R}[x]_{d}$ to \mathcal{R}) satisfying

- Normalization. $\tilde{\mathbb{E}}[1]=1$.
- Positivity. $\tilde{E}\left[p^{2}\right] \geq 0$ for any $p \in \mathcal{R}[x]_{d / 2}$.
$\tilde{\mathbb{E}}$ satisfies the constraints g_{1}, \ldots, g_{m} if $\tilde{\mathbb{E}}\left[g_{i} q\right]=0$ for all $i \in[n]$ and all $q \in \mathcal{R}[x]_{d-\operatorname{deg}\left(g_{i}\right)}$.

$$
\begin{equation*}
f_{\text {SoS }}^{d}=\max \left\{\tilde{\mathbb{E}}[f]: \tilde{\mathbb{E}} \text { of degree- } d \text { satisfying } g_{1}, \ldots, g_{m}\right\} . \tag{8}
\end{equation*}
$$

Integrality Gaps

What constitutes an integrality gap?

- An instance Φ that has $f_{\text {opt }}(\Phi)$ is small.
- But $f_{\mathrm{SoS}}^{d}(\Phi)$ is large for some $d \Rightarrow$ lower bound at level d.

Integrality Gaps

What constitutes an integrality gap?

- An instance Φ that has $f_{\text {opt }}(\Phi)$ is small.
- But $f_{\mathrm{SoS}}^{d}(\Phi)$ is large for some $d \Rightarrow$ lower bound at level d.

Example

- 3XOR: $O(n)$ clauses on n boolean variables:

$$
x_{i} \oplus x_{j} \oplus x_{k}=C_{i j k}
$$

- A random instance satisfies $1 / 2+\epsilon$ of clauses while an $\Omega(n)$ pseudo-solution believes it satisfies all clauses.

Extend integrality gaps via reductions

Reduction from \mathbf{A} to \mathbf{B}

- Reduction is an instance-mapping $\Phi^{A} \rightarrow \Phi^{B}$.

Extend integrality gaps via reductions

Reduction from \mathbf{A} to \mathbf{B}

- Reduction is an instance-mapping $\Phi^{A} \rightarrow \Phi^{B}$.
- Soundness: $f_{\text {opt }}^{A}\left(\Phi^{A}\right)$ small $\Rightarrow f_{\text {opt }}^{B}\left(\Phi^{B}\right)$

Extend integrality gaps via reductions

Reduction from \mathbf{A} to \mathbf{B}

- Reduction is an instance-mapping $\Phi^{A} \rightarrow \Phi^{B}$.
- Soundness: $f_{\mathrm{opt}}^{A}\left(\Phi^{A}\right)$ small $\Rightarrow f_{\mathrm{opt}}^{B}\left(\Phi^{B}\right)$
- Pseudo-completeness: $f_{\mathrm{SoS}}^{d_{A}}\left(\Phi^{A}\right)$ large $\Rightarrow f_{\mathrm{SoS}}^{d_{B}}\left(\Phi^{B}\right)$ large, d_{B} is not too smaller than d_{A}.

Extend integrality gaps via reductions

Reduction from \mathbf{A} to \mathbf{B}

- Reduction is an instance-mapping $\Phi^{A} \rightarrow \Phi^{B}$.
- Soundness: $f_{\text {opt }}^{A}\left(\Phi^{A}\right)$ small $\Rightarrow f_{\text {opt }}^{B}\left(\Phi^{B}\right)$
- Pseudo-completeness: $f_{\mathrm{SoS}}^{d_{A}}\left(\Phi^{A}\right)$ large $\Rightarrow f_{\mathrm{SoS}}^{d_{B}}\left(\Phi^{B}\right)$ large, d_{B} is not too smaller than d_{A}.

Extend integrality gaps via reductions

Reduction from \mathbf{A} to \mathbf{B}

- Reduction is an instance-mapping $\Phi^{A} \rightarrow \Phi^{B}$.
- Soundness: $f_{\mathrm{opt}}^{A}\left(\Phi^{A}\right)$ small $\Rightarrow f_{\mathrm{opt}}^{B}\left(\Phi^{B}\right)$
- Pseudo-completeness: $f_{\mathrm{SoS}}^{d_{A}}\left(\Phi^{A}\right)$ large $\Rightarrow f_{\mathrm{SoS}}^{d_{B}}\left(\Phi^{B}\right)$ large, d_{B} is not too smaller than d_{A}.

Pseudo-completeness: low-degree reduction

- Let $\mu_{A}\left(\tilde{\mathbb{E}}_{A}\right)$ be the pseudo-solution for Φ^{A}. One needs to construct a $\mu_{B}\left(\tilde{\mathbb{E}}_{B}\right)$ for Φ^{B}.
Sufficient condition: a low-degree polynomial that maps

Extend integrality gaps via reductions

Reduction from \mathbf{A} to \mathbf{B}

- Reduction is an instance-mapping $\Phi^{A} \rightarrow \Phi^{B}$.
- Soundness: $f_{\mathrm{opt}}^{A}\left(\Phi^{A}\right)$ small $\Rightarrow f_{\mathrm{opt}}^{B}\left(\Phi^{B}\right)$
- Pseudo-completeness: $f_{\mathrm{SoS}}^{d_{A}}\left(\Phi^{A}\right)$ large $\Rightarrow f_{\mathrm{SoS}}^{d_{B}}\left(\Phi^{B}\right)$ large, d_{B} is not too smaller than d_{A}.

Pseudo-completeness: low-degree reduction

- Let $\mu_{A}\left(\tilde{\mathbb{E}}_{A}\right)$ be the pseudo-solution for Φ^{A}. One needs to construct a $\mu_{B}\left(\tilde{\mathbb{E}}_{B}\right)$ for Φ^{B}.
- Sufficient condition: a low-degree polynomial that maps $\mu_{A} \rightarrow \mu_{B}$.

Extend integrality gaps via reductions:

A reduction with pseudo-completeness and soundness leads to an integrality gap of degree d_{B} for Φ^{B}.

Extend integrality gaps via reductions:

A reduction with pseudo-completeness and soundness leads to an integrality gap of degree d_{B} for Φ^{B}.

SDP lower bounds (LRS)

- Only apply to $\{0,1\}^{n} \Rightarrow$ no direct application on $h_{\text {Sep }}$ or $\omega^{*}(G)$.

Extend integrality gaps via reductions:

A reduction with pseudo-completeness and soundness leads to an integrality gap of degree d_{B} for Φ^{B}.

SDP lower bounds (LRS)

- Only apply to $\{0,1\}^{n} \Rightarrow$ no direct application on $h_{\text {Sep }}$ or $\omega^{*}(G)$.
- Additional condition: embedding (replacing pseudo-completeness)

Extend integrality gaps via reductions:

A reduction with pseudo-completeness and soundness leads to an integrality gap of degree d_{B} for Φ^{B}.

SDP lower bounds (LRS)

- Only apply to $\{0,1\}^{n} \Rightarrow$ no direct application on $h_{\text {Sep }}$ or $\omega^{*}(G)$.
- Additional condition: embedding (replacing pseudo-completeness)
- Assume $A \Rightarrow B$ and apply LRS on A that is on $\{0,1\}^{n}$.

Extend integrality gaps via reductions:

A reduction with pseudo-completeness and soundness leads to an integrality gap of degree d_{B} for Φ^{B}.

SDP lower bounds (LRS)

- Only apply to $\{0,1\}^{n} \Rightarrow$ no direct application on $h_{\text {Sep }}$ or $\omega^{*}(G)$.
- Additional condition: embedding (replacing pseudo-completeness)
- Assume $A \Rightarrow B$ and apply LRS on A that is on $\{0,1\}^{n}$.
- Then \Rightarrow needs to be embedded as well as its composition with SDP relaxations.

A typical reduction

$$
3 X O R \underset{R_{1}}{\Longrightarrow} \cdots \underset{R_{2}}{\Longrightarrow} A \text { over }\{0,1\}^{n} \underset{R_{3}}{\Longrightarrow} \cdots \underset{R_{4}}{\Longrightarrow} \text { Final Problem }
$$

- Reductions R_{1}, \cdots, R_{2} lead to an SoS integrality gap at the problem A.

A typical reduction

$$
3 X O R \underset{R_{1}}{\Longrightarrow} \cdots \underset{R_{2}}{\Longrightarrow} A \text { over }\{0,1\}^{n} \underset{R_{3}}{\Longrightarrow} \cdots \underset{R_{4}}{\Longrightarrow} \text { Final Problem }
$$

- Reductions R_{1}, \cdots, R_{2} lead to an SoS integrality gap at the problem A.
- Apply LRS on the problem A over boolean domains.

A typical reduction

$$
3 X O R \underset{R_{1}}{\Longrightarrow} \cdots \underset{R_{2}}{\Longrightarrow} A \text { over }\{0,1\}^{n} \underset{R_{3}}{\longrightarrow} \cdots \underset{R_{4}}{\Longrightarrow} \text { Final Problem }
$$

- Reductions R_{1}, \cdots, R_{2} lead to an SoS integrality gap at the problem A.
- Apply LRS on the problem A over boolean domains.
- Reductions R_{3}, \cdots, R_{4} are embedding reductions.

Extend LRS results without redoing their analysis.

A typical reduction

$$
3 X O R \underset{R_{1}}{\Longrightarrow} \cdots \underset{R_{2}}{\Longrightarrow} A \text { over }\{0,1\}^{n} \underset{R_{3}}{\longrightarrow} \cdots \underset{R_{4}}{\Longrightarrow} \text { Final Problem }
$$

- Reductions R_{1}, \cdots, R_{2} lead to an SoS integrality gap at the problem A.
- Apply LRS on the problem A over boolean domains.
- Reductions R_{3}, \cdots, R_{4} are embedding reductions.
- Extend LRS results without redoing their analysis.

Introduction Proof Technique Conclusions

Real reductions for $h_{\text {Sep }}$ and $\omega^{*}(G)$

Figure: All our results are derived from the integrality gaps of 3XOR. Red nodes: problems over the boolean cube and LRS is applied. Blue arrows are "embedding reductions".

Reduction for $h_{\text {Sep }}$

3XOR $\underset{R_{1}}{\Longrightarrow}$ 2-OUT-OF-4-SAT-EQ $\underset{R_{2}}{\Longrightarrow}$ QMA(2)-Acc PROB $\underset{R_{3}}{\Longrightarrow} h_{\text {Sep }}$

- R_{1} : a classical step. Low-degree \& soundness similar to the degree reduction step in Dinur's proof of the PCP theorem.

Reduction for $h_{\text {Sep }}$

$$
\text { 3XOR } \underset{R_{1}}{\Longrightarrow} \text { 2-OUT-OF-4-SAT-EQ } \underset{R_{2}}{\Longrightarrow} \text { QMA(2)-Acc PROB } \underset{R_{3}}{\Longrightarrow} h_{\text {Sep }}
$$

- R_{1} : a classical step. Low-degree \& soundness similar to the degree reduction step in Dinur's proof of the PCP theorem.
- R_{2} : a quantum step. Apply a modified QMA(2) protocol for 3-SAT [AB+09, HM13]. Low-degree due to the tests of the protocol. Soundness inhered from the protocol.

Reduction for $h_{\text {Sep }}$

$$
3 X O R \underset{R_{1}}{\Longrightarrow} \text { 2-OUT-OF-4-SAT-EQ } \underset{R_{2}}{\Longrightarrow} \text { QMA(2)-Acc PROB } \underset{R_{3}}{\Longrightarrow} h_{\text {Sep }}
$$

- R_{1} : a classical step. Low-degree \& soundness similar to the degree reduction step in Dinur's proof of the PCP theorem.
- R_{2} : a quantum step. Apply a modified QMA(2) protocol for 3-SAT [AB+09, HM13]. Low-degree due to the tests of the protocol. Soundness inhered from the protocol.
- R_{3} : embedding by construction. Soundness inhered from the above protocol.

Reduction for $\omega^{*}(G)$

$$
3 X O R \underset{R_{1}}{\Longrightarrow} \omega_{\text {HONEST CLASSICAL }} \underset{R_{2}}{\Longrightarrow} \omega^{*}(G)
$$

- R_{1} : reduction by a multi-prover interactive proof protocol in [IKM]. Low-degree due to the tests of the protocol. Soundness inhered from the protocol.

Reduction for $\omega^{*}(G)$

$$
3 X O R \underset{R_{1}}{\Longrightarrow} \omega_{\text {HONEST CLASSICAL }} \underset{R_{2}}{\Longrightarrow} \omega^{*}(G)
$$

- R_{1} : reduction by a multi-prover interactive proof protocol in [IKM]. Low-degree due to the tests of the protocol. Soundness inhered from the protocol.
- R_{2} : embedding by construction. Soundness inhered from the above protocol.
Integrality gap for ncSOS: additional step to embed an SoS pseudo-solution into an ncSoS pseudo-solution.

Reduction for $\omega^{*}(G)$

$$
3 X O R \underset{R_{1}}{\Longrightarrow} \omega_{\text {HONEST CLASSICAL }} \underset{R_{2}}{\Longrightarrow} \omega^{*}(G)
$$

- R_{1} : reduction by a multi-prover interactive proof protocol in [IKM]. Low-degree due to the tests of the protocol. Soundness inhered from the protocol.
- R_{2} : embedding by construction. Soundness inhered from the above protocol.
- Integrality gap for ncSOS: additional step to embed an SoS pseudo-solution into an ncSoS pseudo-solution.

Summary

Results

- First unconditional SoS/SDP lower bounds for $h_{\text {Sep }}$ and $\omega^{*}(G)$.
- Match ETH-based bounds for $h_{\text {Sep }}$.
- Implication on QMA(2) and Watrous's dis-entangler conjecture.

A reduction framework. Already find an application to the Nash equilibria.

Reductions for general domains and non-commutative problems.

Summary

Results

- First unconditional SoS/SDP lower bounds for $h_{\text {Sep }}$ and $\omega^{*}(G)$.
- Match ETH-based bounds for $h_{\text {Sep }}$.
- Implication on QMA(2) and Watrous's dis-entangler conjecture.

Technical Contribution

- A reduction framework. Already find an application to the Nash equilibria.
- Reductions for general domains and non-commutative problems.

Open Questions

- Prove stronger hardness for $\omega^{*}(G)$ that matches computational hardness.
Prover stronger SoS/SDP lower bounds than ETH bounds. Consider general convex programming for $h_{\text {Sep }}$.

Open Questions

- Prove stronger hardness for $\omega^{*}(G)$ that matches computational hardness.
- Prover stronger SoS/SDP lower bounds than ETH bounds.

Consider general convex programming for
Other applications of the techniques here.

Open Questions

- Prove stronger hardness for $\omega^{*}(G)$ that matches computational hardness.
- Prover stronger SoS/SDP lower bounds than ETH bounds.
- Consider general convex programming for $h_{\text {Sep }}$.

Open Questions

- Prove stronger hardness for $\omega^{*}(G)$ that matches computational hardness.
- Prover stronger SoS/SDP lower bounds than ETH bounds.
- Consider general convex programming for $h_{\text {Sep }}$.
- Other applications of the techniques here.

Question And Answer

Thank you! Q \& A

SoS relaxation: Lasserre/Parrilo Hierarchy

- If $\sigma(x), b_{i}(x)$ have any degrees (or $\operatorname{deg}_{\text {sos }}(v-f)$), then problem (3) is equivalent to problem (2).
By bounding the degrees, we get the Lasserre/Parrilo hierarchy.

SoS relaxation: Lasserre/Parrilo Hierarchy

- If $\sigma(x), b_{i}(x)$ have any degrees (or $\left.\operatorname{deg}_{\text {sos }}(v-f)\right)$, then problem (3) is equivalent to problem (2).
- By bounding the degrees, we get the Lasserre/Parrilo hierarchy.

SoS relaxation: Lasserre/Parrilo Hierarchy

- If $\sigma(x), b_{i}(x)$ have any degrees (or $\left.\operatorname{deg}_{\text {sos }}(v-f)\right)$, then problem (3) is equivalent to problem (2).
- By bounding the degrees, we get the Lasserre/Parrilo hierarchy.

SoS relaxation: Lasserre/Parrilo Hierarchy

- If $\sigma(x), b_{i}(x)$ have any degrees (or $\operatorname{deg}_{\text {sos }}(v-f)$), then problem (3) is equivalent to problem (2).
- By bounding the degrees, we get the Lasserre/Parrilo hierarchy.
min ν

$$
\begin{equation*}
\text { such that } \quad \nu-f(x)=\sigma(x)+\sum_{i} b_{i}(x) g_{i}(x) \tag{9}
\end{equation*}
$$

where $\sigma(x)$ is SOS and $b_{i}(x)$ is any polynomial and $\operatorname{deg}(\sigma(x))$, $\operatorname{deg}\left(b_{i}(x) g_{i}(x)\right) \leq 2 D$.

Why it is a SDP?

Observation

- Any $p(x)$ (of degree $2 D)=m^{T} Q m$, where m is the vector of monomials of degree up to $2 D$ and Q is the coefficients.
- $p(x)$ is a SOS iff $Q \geq 0$.

Why it is a SDP?

Observation

- Any $p(x)$ (of degree $2 D)=m^{\top} Q m$, where m is the vector of monomials of degree up to $2 D$ and Q is the coefficients.
- $p(x)$ is a SOS iff $Q \geq 0$.

$$
\begin{array}{ll}
\min _{\nu, b_{i \alpha} \in \mathbb{R}} & \nu \\
\text { such that } & \nu A_{0}-F-\sum_{i \alpha} b_{i \alpha} G_{i \alpha} \geq 0 .
\end{array}
$$

Why it is a SDP?

Observation

- Any $p(x)$ (of degree $2 D$) $=m^{T} Q m$, where m is the vector of monomials of degree up to $2 D$ and Q is the coefficients.
- $p(x)$ is a SOS iff $Q \geq 0$.

$$
\begin{array}{ll}
\min _{\nu, b_{i \alpha} \in \mathbb{R}} & \nu \\
\text { such that } & \nu A_{0}-F-\sum_{i \alpha} b_{i \alpha} G_{i \alpha} \geq 0
\end{array}
$$

Complexity: poly (m) poly $\log (1 / \epsilon)$, where $m=\binom{n+D}{D}$.

