Limitations of monogamy, Tsirelson-type bounds, and other SDPs in quantum information

Aram W. Harrow¹, Anand Natarajan¹, Xiaodi Wu²

¹MIT Center for Theoretical Physics

²University of Oregon

IQI Seminar, Caltech

< 同 > < 三 > < 三 >

Motivations Problems Main Results & Implications

SDPs in Quantum Information

Semidefinite Programmings (SDPs) admit *polynomial time* solvers and plays an important role in quantum information.

- Consistency of reduced states, Quantum conditional min-entropy, local Hamiltonians
- QIP=PSPACE, QRG=EXP,

This talk is, however, about its limitation in

- Separability or entanglement detection,
- Approximation of Bell-violation (non-local game values).

Result: unconditional limitations of SDPs comparing to existing computational hardness.

・ロト ・四ト ・ヨト ・ヨト

э.

Motivations Problems Main Results & Implications

SDPs in Quantum Information

Semidefinite Programmings (SDPs) admit *polynomial time* solvers and plays an important role in quantum information.

- Consistency of reduced states, Quantum conditional min-entropy, local Hamiltonians
- QIP=PSPACE, QRG=EXP,

This talk is, however, about its limitation in

- Separability or entanglement detection,
- Approximation of Bell-violation (non-local game values).

Result: unconditional limitations of SDPs comparing to existing computational hardness.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Motivations Problems Main Results & Implications

SDPs in Quantum Information

Semidefinite Programmings (SDPs) admit *polynomial time* solvers and plays an important role in quantum information.

- Consistency of reduced states, Quantum conditional min-entropy, local Hamiltonians
- QIP=PSPACE, QRG=EXP,

This talk is, however, about its limitation in

- Separability or entanglement detection,
- Approximation of Bell-violation (non-local game values).

Result: unconditional limitations of SDPs comparing to existing computational hardness.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

э.

Motivations Problems Main Results & Implications

Problem 1: Separability

Definition (Separable and Entangled States)

A bi-partitie state $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$ is *separable* if \exists dist. $\{p_i\}$,

$$\rho = \sum \boldsymbol{p}_{i} \sigma_{X}^{i} \otimes \sigma_{Y}^{i}, \text{ s.t. } \sigma_{X}^{i} \in D(\mathcal{X}), \sigma_{Y}^{i} \in D(\mathcal{Y}).$$

Otherwise, ρ is *entangled*. Let Sep $\stackrel{\text{def}}{=}$ { separable states }.

Definition (Entanglement Detection)

A KEY problem: given the description of $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$, decide

Either $\rho \in$ Sep, or ρ is far away from Sep.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Motivations Problems Main Results & Implications

Problem 1: Separability

Definition (Separable and Entangled States)

A bi-partitie state $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$ is *separable* if \exists dist. { p_i },

$$\rho = \sum \boldsymbol{p}_{i} \sigma_{\boldsymbol{X}}^{i} \otimes \sigma_{\boldsymbol{Y}}^{i}, \text{ s.t. } \sigma_{\boldsymbol{X}}^{i} \in \mathrm{D}\left(\boldsymbol{\mathcal{X}}\right), \sigma_{\boldsymbol{Y}}^{i} \in \mathrm{D}\left(\boldsymbol{\mathcal{Y}}\right).$$

Otherwise, ρ is *entangled*. Let Sep $\stackrel{\text{def}}{=}$ { separable states }.

Definition (Entanglement Detection)

A KEY problem: given the description of $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$, decide Either $\rho \in$ Sep, or ρ is far away from Sep.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Motivations Problems Main Results & Implications

Alternative Formulation

Definition (Weak Membership)

 $WMem(\epsilon, \|\cdot\|)$: for any $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$, decide either $\rho \in Sep$ or $\|\rho - Sep\| \ge \epsilon$.

Via standard techniques in convex optimization, equivalent to

Definition (Weak Optimization)

WOpt(M, ϵ) : for any $M \in \text{Herm}(\mathcal{X} \otimes \mathcal{Y})$, estimate the value of

$$h_{\operatorname{Sep}(d,d)}(M) := \max_{
ho \in \operatorname{Sep}} \left\langle M,
ho
ight
angle,$$

with additive error ϵ .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Motivations Problems Main Results & Implications

Alternative Formulation

Definition (Weak Membership)

 $WMem(\epsilon, \|\cdot\|)$: for any $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$, decide either $\rho \in Sep$ or $\|\rho - Sep\| \ge \epsilon$.

Via standard techniques in convex optimization, equivalent to

Definition (Weak Optimization)

WOpt(M, ϵ) : for any $M \in \text{Herm}(\mathcal{X} \otimes \mathcal{Y})$, estimate the value of

$$h_{\operatorname{Sep}(d,d)}(M) := \max_{\rho \in \operatorname{Sep}} \left\langle M, \rho \right\rangle,$$

with additive error ϵ .

Motivations Problems Main Results & Implications

$$h_{\text{Sep}(d,d)}(M) := \max_{\substack{x,y \in \mathbb{C}^d \\ \|x\|_2 = \|y\|_2 = 1}} \sum_{i,j,k,l \in [d]} M_{ij,kl} x_i^* x_j y_k^* y_l.$$
(1)

REMARK: this is an instance of *polynomial optimization* problems with a homogenous degree 4 objective polynomial and a degree 2 constraint polynomial.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

크

Motivations Problems Main Results & Implications

Connections

Quantum Information:

- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- Data hiding, Channel capacities, Privacy,
- 17 more examples in quantum information in [HM10].

Quantum Complexity:

• Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:

• Unique Game Conjecture and Small-set Expansion. $(\ell_2 \rightarrow \ell_4 \text{ norm})$

< 日 > < 回 > < 回 > < 回 > < 回 > <

르

Motivations Problems Main Results & Implications

Connections

Quantum Information:

- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- Data hiding, Channel capacities, Privacy,
- 17 more examples in quantum information in [HM10].

Quantum Complexity:

• Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:

• Unique Game Conjecture and Small-set Expansion. $(\ell_2 \rightarrow \ell_4 \text{ norm})$

< 日 > < 回 > < 回 > < 回 > < 回 > <

르

Motivations Problems Main Results & Implications

Connections

Quantum Information:

- *Mean-field* approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- Data hiding, Channel capacities, Privacy,
- 17 more examples in quantum information in [HM10].

Quantum Complexity:

• Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:

• Unique Game Conjecture and Small-set Expansion. $(\ell_2 \rightarrow \ell_4 \text{ norm})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Motivations Problems Main Results & Implications

Connections

Quantum Information:

- *Mean-field* approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- Data hiding, Channel capacities, Privacy,
- 17 more examples in quantum information in [HM10].

Quantum Complexity:

• Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:

• Unique Game Conjecture and Small-set Expansion. $(\ell_2 \rightarrow \ell_4 \text{ norm})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Motivations Problems Main Results & Implications

Connections

Quantum Information:

- *Mean-field* approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- Data hiding, Channel capacities, Privacy,
- 17 more examples in quantum information in [HM10].

Quantum Complexity:

• Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:

• Unique Game Conjecture and Small-set Expansion. $(\ell_2 \rightarrow \ell_4 \text{ norm})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Motivations Problems Main Results & Implications

Connections

Quantum Information:

- *Mean-field* approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- Data hiding, Channel capacities, Privacy,
- 17 more examples in quantum information in [HM10].

Quantum Complexity:

• Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:

• Unique Game Conjecture and Small-set Expansion. ($\ell_2 \rightarrow \ell_4$ norm)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Motivations Problems Main Results & Implications

Heuristics

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{\mathcal{Y}}} = \rho$? [PH]
- Reduction Criterions: $I_{\mathcal{X}} \otimes \rho_Y \ge \rho$? [HH]
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

- ρ is *k*-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$, $\forall i, \rho = \sigma_{XY_i}$.
- $\phi \in \mathrm{Sep}$ if and only if ρ is k -extendible for any $k \geq 0.1$
- Semidefinite program (SDP): size exponential in k:

< 日 > < 回 > < 回 > < 回 > < 回 > <

Motivations Problems Main Results & Implications

Heuristics

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{\mathcal{Y}}} = \rho$? [PH]
- Reduction Criterions: $I_X \otimes \rho_Y \ge \rho$? [HH]
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

- ρ is *k*-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$, $\forall i, \rho = \sigma_{XY_i}$.
- $p \in \mathrm{Sep}$ if and only if ρ is k extendible for any $k \geq 0.1$
- Semiderinite program (SDP): size exponential in k:

・ロト ・四ト ・ヨト ・ヨト

Motivations Problems Main Results & Implications

Heuristics

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{\mathcal{Y}}} = \rho$? [PH]
- Reduction Criterions: $I_X \otimes \rho_Y \ge \rho$? [HH]
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

- ρ is *k*-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$, $\forall i, \rho = \sigma_{XY_i}$.
- $\varphi \in \mathsf{Sep}$ if and only if φ is k extendible for any $k \geq 0$.
- Semidefinite program (SDP): size exponential in k.

・ロト ・四ト ・ヨト ・ヨト

르

Motivations Problems Main Results & Implications

Heuristics

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{\mathcal{Y}}} = \rho$? [PH]
- Reduction Criterions: $I_X \otimes \rho_Y \ge \rho$? [HH]
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

- ρ is *k*-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$, $\forall i, \rho = \sigma_{XY_i}$.
- $\rho \in$ Sep if and only if ρ is k-extendible for any $k \ge 0$.
- Semidefinite program (SDP): size exponential in k.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Motivations Problems Main Results & Implications

Heuristics

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{\mathcal{Y}}} = \rho$? [PH]
- Reduction Criterions: $I_X \otimes \rho_Y \ge \rho$? [HH]
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

- ρ is *k*-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$, $\forall i, \rho = \sigma_{XY_i}$.
- $ho \in \mathsf{Sep}$ if and only if ho is *k*-extendible for any $k \ge 0$.
- Semidefinite program (SDP): size exponential in *k*.

・ロト ・四ト ・ヨト ・ヨト

Motivations Problems Main Results & Implications

Heuristics

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{\mathcal{Y}}} = \rho$? [PH]
- Reduction Criterions: $I_X \otimes \rho_Y \ge \rho$? [HH]
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

- ρ is *k*-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$, $\forall i, \rho = \sigma_{XY_i}$.
- $\rho \in$ Sep if and only if ρ is k-extendible for any $k \ge 0$.
- Semidefinite program (SDP): size exponential in k.

< 日 > < 回 > < 回 > < 回 > < 回 > <

Motivations Problems Main Results & Implications

Heuristics

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{\mathcal{Y}}} = \rho$? [PH]
- Reduction Criterions: $I_X \otimes \rho_Y \ge \rho$? [HH]
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

- ρ is *k*-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$, $\forall i, \rho = \sigma_{XY_i}$.
- $\rho \in$ Sep if and only if ρ is k-extendible for any $k \ge 0$.
- Semidefinite program (SDP): size exponential in k.

< 日 > < 回 > < 回 > < 回 > < 回 > <

Motivations Problems Main Results & Implications

Computational Hardness

reference	k	С	S	п
GNN12	2	1	$1 - \frac{1}{d \cdot \operatorname{poly} \log(d)}$	<i>O</i> (<i>d</i>)
Per12	2	1	$1 - \frac{1}{poly(d)}$	O(d)
AB+08	$\sqrt{d} \cdot \operatorname{poly} \log(d)$	1	0.99	O(d)
CD10	$\sqrt{d} \cdot \operatorname{poly} \log(d)$	$1 - 2^{-d}$	0.99	O(d)
HM13	2	1	0.01	$\frac{\log^2(d)}{\operatorname{poly}\log(d)}$

Table: Hardness results for $h_{\text{Sep}^k(d)}$ (extension of $h_{\text{Sep}(d,d)}$ to k parties.)

Hardness in the following sense: determining satisfiability of 3-SAT instances with *n* variables and O(n) clauses can be reduced to distinguishing between $h_{\text{Sep}^k(d)} \ge c$ and $\le s$ as above.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Motivations Problems Main Results & Implications

Computational Hardness

Exponential Time Hypothesis (ETH)

The 3-SAT problem with *n* variables requires $2^{\Omega(n)}$ time to solve.

- Combine with [HM13] hardness result ⇒ approximation of h_{Sep(d)} with constant precision requires d^{Ω(log(d))} time.
- A matching upper bound: DPS to $O(log(d)/\epsilon^2)$ level for **1-LOCC** M: time $d^{O(log(d)/\epsilon^2)} \rightarrow d^{O(log(d))}$. [BYC, BH]

Question: any unconditional lower bounds for DPS or any SDPs? any matching upper bounds?

・ロト ・回 ト ・ヨ ト ・

르

Motivations Problems Main Results & Implications

Computational Hardness

Exponential Time Hypothesis (ETH)

The 3-SAT problem with *n* variables requires $2^{\Omega(n)}$ time to solve.

- Combine with [HM13] hardness result \Rightarrow approximation of $h_{\text{Sep}(d)}$ with constant precision requires $d^{\Omega(\log(d))}$ time.
- A matching upper bound: DPS to O(log(d)/ε²) level for 1-LOCC M: time d^{O(log(d)/ε²)} → d^{O(log(d))}. [BYC, BH]

Question: any unconditional lower bounds for DPS or any SDPs? any matching upper bounds?

(日)

Motivations Problems Main Results & Implications

Computational Hardness

Exponential Time Hypothesis (ETH)

The 3-SAT problem with *n* variables requires $2^{\Omega(n)}$ time to solve.

- Combine with [HM13] hardness result \Rightarrow approximation of $h_{\text{Sep}(d)}$ with constant precision requires $d^{\Omega(\log(d))}$ time.
- A matching upper bound: DPS to O(log(d)/ε²) level for 1-LOCC M: time d^{O(log(d)/ε²)} → d^{O(log(d))}. [BYC, BH]

Question: any unconditional lower bounds for DPS or any SDPs? any matching upper bounds?

・ロット (母) ・ ヨ) ・ コ)

э.

Motivations Problems Main Results & Implications

Computational Hardness

Exponential Time Hypothesis (ETH)

The 3-SAT problem with *n* variables requires $2^{\Omega(n)}$ time to solve.

- Combine with [HM13] hardness result \Rightarrow approximation of $h_{\text{Sep}(d)}$ with constant precision requires $d^{\Omega(\log(d))}$ time.
- A matching upper bound: DPS to O(log(d)/ε²) level for 1-LOCC M: time d^{O(log(d)/ε²)} → d^{O(log(d))}. [BYC, BH]

Question: any unconditional lower bounds for DPS or any SDPs? any matching upper bounds?

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Motivations Problems Main Results & Implications

Problem 2: Non-local Games

Non-local Game (denoted G):

- Two physically **separated** players Alice and Bob. **No** communication once the game starts.
- Sets of questions *S*, *T* and answers *A*, *B* and a distribution $\pi : S \times T \rightarrow [0, 1]$.
- Sample (s, t) ∈ S × T ~ π and ask Alice and Bob respectively. Obtain answers a ∈ A, b ∈ B.

• Determine win or lose by a predicate $V(a, b|s, t) \in \{0, 1\}$.

Motivation: Bell-violation (quantum **non-locality**) in a game language. Also related to **quantum multi-prover interactive proofs** with shared entanglement.

・ロト ・四ト ・ヨト ・ヨト

э

Motivations Problems Main Results & Implications

Problem 2: Non-local Games

Non-local Game (denoted G):

- Two physically **separated** players Alice and Bob. **No** communication once the game starts.
- Sets of questions *S*, *T* and answers *A*, *B* and a distribution $\pi: S \times T \rightarrow [0, 1]$.
- Sample (s, t) ∈ S × T ~ π and ask Alice and Bob respectively. Obtain answers a ∈ A, b ∈ B.

• Determine win or lose by a predicate $V(a, b|s, t) \in \{0, 1\}$.

Motivation: Bell-violation (quantum **non-locality**) in a game language. Also related to **quantum multi-prover interactive proofs** with shared entanglement.

Motivations Problems Main Results & Implications

Problem 2: Non-local Games

Non-local Game (denoted G):

- Two physically **separated** players Alice and Bob. **No** communication once the game starts.
- Sets of questions S, T and answers A, B and a distribution $\pi: S \times T \rightarrow [0, 1]$.
- Sample (s, t) ∈ S × T ~ π and ask Alice and Bob respectively. Obtain answers a ∈ A, b ∈ B.

• Determine win or lose by a predicate $V(a, b|s, t) \in \{0, 1\}$. Motivation: Bell-violation (quantum non-locality) in a game language. Also related to **quantum multi-prover interactive** proofs with shared entanglement.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Motivations Problems Main Results & Implications

Problem 2: Non-local Games

Non-local Game (denoted G):

- Two physically **separated** players Alice and Bob. **No** communication once the game starts.
- Sets of questions S, T and answers A, B and a distribution $\pi: S \times T \rightarrow [0, 1]$.
- Sample (s, t) ∈ S × T ~ π and ask Alice and Bob respectively. Obtain answers a ∈ A, b ∈ B.
- Determine win or lose by a predicate $V(a, b|s, t) \in \{0, 1\}$.

Motivation: Bell-violation (quantum **non-locality**) in a game language. Also related to **quantum multi-prover interactive proofs** with shared entanglement.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Motivations Problems Main Results & Implications

Problem 2: Non-local Games

Non-local Game (denoted G):

- Two physically **separated** players Alice and Bob. **No** communication once the game starts.
- Sets of questions *S*, *T* and answers *A*, *B* and a distribution $\pi: S \times T \rightarrow [0, 1]$.
- Sample (s, t) ∈ S × T ~ π and ask Alice and Bob respectively. Obtain answers a ∈ A, b ∈ B.
- Determine win or lose by a predicate $V(a, b|s, t) \in \{0, 1\}$.

Motivation: Bell-violation (quantum **non-locality**) in a game language. Also related to **quantum multi-prover interactive proofs** with shared entanglement.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● ○ ○ ○

Motivations Problems Main Results & Implications

Problem 2: Non-local Games (cont'd)

Strategies:

- Denote by P[a, b|s, t] the probability of answering (a, b) upon receiving (s, t).
- Quantum strategies: share a quantum state |ψ⟩ ∈ H_A ⊗ H_B and answer w.r.t measurements {A^a_s} and {B^b_t},

 $P[a,b|s,t] = \langle \psi | A_s^a \otimes B_t^b | \psi \rangle.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Motivations Problems Main Results & Implications

Problem 2: Non-local Games (cont'd)

Strategies:

- Denote by P[a, b|s, t] the probability of answering (a, b) upon receiving (s, t).
- Quantum strategies: share a quantum state |ψ⟩ ∈ H_A ⊗ H_B and answer w.r.t measurements {A^a_s} and {B^b_t},

$$P[a,b|s,t] = \langle \psi | A_s^a \otimes B_t^b | \psi \rangle.$$

・ロット (母) ・ ヨ) ・ コ)

э.

Motivations Problems Main Results & Implications

Non-local Games (cont'd)

Definition (Game Value)

$$\omega(G) = \max_{P} \sum_{a,b,s,t} \pi(s,t) V(a,b|s,t) P(a,b|s,t).$$

Example: CHSH game:

- $A = B = S = T = \{0, 1\}$ and $\pi(s, t) = 1/4, \forall (s, t) \in S \times T$.
- V(a, b|s, t) = 1 iff $a \oplus b = s \wedge t$.
- Classical strategies: \u03c8(CHSH) = 3/4. Quantum
- strategles: $\omega^*(CHSH) = \cos^2(\pi/8) \approx 0.85$.
- Quantum strategies are strictly more powerful.

Question: calculate $\omega^*(G)$ for any given G. How hard is that?

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivations Problems Main Results & Implications

Non-local Games (cont'd)

Definition (Game Value)

$$\omega(G) = \max_{P} \sum_{a,b,s,t} \pi(s,t) V(a,b|s,t) P(a,b|s,t).$$

Example: CHSH game:

• $A = B = S = T = \{0, 1\}$ and $\pi(s, t) = 1/4, \forall (s, t) \in S \times T$.

- V(a,b|s,t) = 1 iff $a \oplus b = s \wedge t$.
- Classical strategies: ω(CHSH) = 3/4. Quantum strategies: ω*(CHSH) = cos²(π/8) ≈ 0.85.
- Quantum strategies are strictly more powerful.

Question: calculate $\omega^*(G)$ for any given G. How hard is that?

< 日 > < 回 > < 回 > < 回 > < 回 > <

э
Motivations Problems Main Results & Implications

Non-local Games (cont'd)

Definition (Game Value)

$$\omega(G) = \max_{P} \sum_{a,b,s,t} \pi(s,t) V(a,b|s,t) P(a,b|s,t).$$

Example: CHSH game:

•
$$A = B = S = T = \{0, 1\}$$
 and $\pi(s, t) = 1/4, \forall (s, t) \in S \times T$.

•
$$V(a, b|s, t) = 1$$
 iff $a \oplus b = s \wedge t$.

- Classical strategies: ω(CHSH) = 3/4. Quantum strategies: ω*(CHSH) = cos²(π/8) ≈ 0.85.
- Quantum strategies are **strictly** more powerful.

Question: calculate $\omega^*(G)$ for any given G. How hard is that?

(日)

Motivations Problems Main Results & Implications

Non-local Games (cont'd)

Definition (Game Value)

$$\omega(G) = \max_{P} \sum_{a,b,s,t} \pi(s,t) V(a,b|s,t) P(a,b|s,t).$$

Example: CHSH game:

- $A = B = S = T = \{0, 1\}$ and $\pi(s, t) = 1/4, \forall (s, t) \in S \times T$.
- V(a, b|s, t) = 1 iff $a \oplus b = s \wedge t$.
- Classical strategies: ω(CHSH) = 3/4. Quantum strategies: ω*(CHSH) = cos²(π/8) ≈ 0.85.
- Quantum strategies are **strictly** more powerful.

Question: calculate $\omega^*(G)$ for any given G. How hard is that?

э

Motivations Problems Main Results & Implications

Non-local Games (cont'd)

Definition (Game Value)

$$\omega(G) = \max_{P} \sum_{a,b,s,t} \pi(s,t) V(a,b|s,t) P(a,b|s,t).$$

Example: CHSH game:

- $A = B = S = T = \{0, 1\}$ and $\pi(s, t) = 1/4, \forall (s, t) \in S \times T$.
- V(a, b|s, t) = 1 iff $a \oplus b = s \wedge t$.
- Classical strategies: ω(CHSH) = 3/4. Quantum strategies: ω*(CHSH) = cos²(π/8) ≈ 0.85.
- Quantum strategies are strictly more powerful.

Question: calculate $\omega^*(G)$ for any given G. How hard is that?

Motivations Problems Main Results & Implications

Non-local Games (cont'd)

Definition (Game Value)

$$\omega(G) = \max_{P} \sum_{a,b,s,t} \pi(s,t) V(a,b|s,t) P(a,b|s,t).$$

Example: CHSH game:

- $A = B = S = T = \{0, 1\}$ and $\pi(s, t) = 1/4, \forall (s, t) \in S \times T$.
- V(a,b|s,t) = 1 iff $a \oplus b = s \wedge t$.
- Classical strategies: ω(CHSH) = 3/4. Quantum strategies: ω*(CHSH) = cos²(π/8) ≈ 0.85.
- Quantum strategies are **strictly** more powerful.

Question: calculate $\omega^*(G)$ for any given *G*. How hard is that?

Motivations Problems Main Results & Implications

Calculating $\omega^*(G)$ for quantum strategies

 $\omega^*(G)$ for quantum strategies: an optimization problem!

$$\omega^*(G) = \lim_{d \to \infty} \max_{|\psi\rangle \in \mathbb{C}^{d \times d}} \max_{A^a_s, B^b_t} \sum_{a, b, s, t} \pi(s, t) V(a, b|s, t) \langle \psi | A^a_s \otimes B^b_t | \psi \rangle \,.$$

- $\omega^*(G)$ is not known to be **computable**.
- A SDP hierarchy proposed by Navascues-Pironio-Acin (NPA) approximates ω*(G) from above and converges at infinity.
- Converging rate only known for special cases: XOR, Unique games, No general upper or lower bounds known about the NPA hierarchy.

(日) (四) (三) (三)

Motivations Problems Main Results & Implications

Calculating $\omega^*(G)$ for quantum strategies

 $\omega^*(G)$ for quantum strategies: an optimization problem!

$$\omega^*(G) = \lim_{d \to \infty} \max_{|\psi\rangle \in \mathbb{C}^{d \times d}} \max_{A^a_s, B^b_t} \sum_{a, b, s, t} \pi(s, t) V(a, b|s, t) \langle \psi | A^a_s \otimes B^b_t | \psi \rangle \,.$$

• $\omega^*(G)$ is not known to be **computable**.

- A SDP hierarchy proposed by Navascues-Pironio-Acin (NPA) approximates ω*(G) from above and converges at infinity.
- Converging rate only known for special cases: XOR, Unique games. No general upper or lower bounds known about the NPA hierarchy.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Motivations Problems Main Results & Implications

Calculating $\omega^*(G)$ for quantum strategies

 $\omega^*(G)$ for quantum strategies: an optimization problem!

$$\omega^*(G) = \lim_{d \to \infty} \max_{|\psi\rangle \in \mathbb{C}^{d \times d}} \max_{A^a_s, B^b_t} \sum_{a, b, s, t} \pi(s, t) V(a, b|s, t) \langle \psi | A^a_s \otimes B^b_t | \psi \rangle \,.$$

- $\omega^*(G)$ is not known to be **computable**.
- A SDP hierarchy proposed by Navascues-Pironio-Acin (NPA) approximates ω^{*}(G) from above and converges at infinity.
- Converging rate only known for special cases: XOR, Unique games. No general upper or lower bounds known about the NPA hierarchy.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

Motivations Problems Main Results & Implications

Calculating $\omega^*(G)$ for quantum strategies

 $\omega^*(G)$ for quantum strategies: an optimization problem!

$$\omega^*(G) = \lim_{d \to \infty} \max_{|\psi\rangle \in \mathbb{C}^{d \times d}} \max_{A^a_s, B^b_t} \sum_{a, b, s, t} \pi(s, t) V(a, b|s, t) \langle \psi | A^a_s \otimes B^b_t | \psi \rangle \,.$$

- $\omega^*(G)$ is not known to be **computable**.
- A SDP hierarchy proposed by Navascues-Pironio-Acin (NPA) approximates ω^{*}(G) from above and converges at infinity.
- Converging rate only known for special cases: XOR, Unique games. No general upper or lower bounds known about the NPA hierarchy.

(日)

Motivations Problems Main Results & Implications

Computational Hardness

reference	k	С	S	n
KK+11	3	1	$1 - \frac{1}{\operatorname{poly}(Q)}$	O(Q)
IKM09	2	1	$1 - \frac{1}{\operatorname{poly}(Q)}$	O(Q)
IV12	4	1	$2^{-Q^{\Omega(1)}}$	$Q^{\Omega(1)}$
Vid13	3	1	$2^{-Q^{\Omega(1)}}$	$Q^{\Omega(1)}$

Table: Hardness results for $\omega^*(G)$ where *G* is a one-round *k*-prover interactive proof protocol with question alphabet size *Q*. Hardness in the following sense: determining satisfiability of 3-SAT instances with *n* variables and O(n) clauses can be reduced to distinguishing between $\omega^*(G) \ge c$ and $\le s$ as above.

(日) (圖) (E) (E) (E)

Motivations Problems Main Results & Implications

Result I: Unconditional Hardness for *h*_{Sep}**?**

Will the hardness of $h_{\text{Sep}(d)}$ for const ϵ hold w/o ETH?

Theorem (Main I.1)

The DPS hierarchy (or general Sum-of-Squares SDP) requires $\Omega(\log(d))$ levels to solve $h_{\text{Sep}(d)}$ with constant precision.

Theorem (Main I.2)

Any SDP relaxation that estimate $h_{\text{Sep}(d)}(M)$ with constant errors requires size $d^{\Omega(\log(d))}$.

Remark: Match $d^{\Omega(\log(d))}$ time bound when assuming ETH.

・ロト ・四ト ・ヨト ・ヨト

э

Motivations Problems Main Results & Implications

Result I: Unconditional Hardness for *h*_{Sep}**?**

Will the hardness of $h_{\text{Sep}(d)}$ for const ϵ hold w/o ETH?

Theorem (Main I.1)

The DPS hierarchy (or general Sum-of-Squares SDP) requires $\Omega(\log(d))$ levels to solve $h_{\text{Sep}(d)}$ with constant precision.

Theorem (Main I.2)

Any SDP relaxation that estimate $h_{\text{Sep}(d)}(M)$ with constant errors requires size $d^{\Omega(\log(d))}$.

Remark: Match $d^{\Omega(\log(d))}$ time bound when assuming ETH.

Motivations Problems Main Results & Implications

Result I: Unconditional Hardness for *h*_{Sep}**?**

Will the hardness of $h_{\text{Sep}(d)}$ for const ϵ hold w/o ETH?

Theorem (Main I.1)

The DPS hierarchy (or general Sum-of-Squares SDP) requires $\Omega(\log(d))$ levels to solve $h_{\text{Sep}(d)}$ with constant precision.

Theorem (Main I.2)

Any SDP relaxation that estimate $h_{\text{Sep}(d)}(M)$ with constant errors requires size $d^{\Omega(\log(d))}$.

Remark: Match $d^{\Omega(\log(d))}$ time bound when assuming ETH.

(日) (圖) (E) (E) (E)

Motivations Problems Main Results & Implications

Result I: Unconditional Hardness for *h*_{Sep}**?**

Will the hardness of $h_{\text{Sep}(d)}$ for const ϵ hold w/o ETH?

Theorem (Main I.1)

The DPS hierarchy (or general Sum-of-Squares SDP) requires $\Omega(\log(d))$ levels to solve $h_{\text{Sep}(d)}$ with constant precision.

Theorem (Main I.2)

Any SDP relaxation that estimate $h_{\text{Sep}(d)}(M)$ with constant errors requires size $d^{\Omega(\log(d))}$.

Remark: Match $d^{\Omega(\log(d))}$ time bound when assuming ETH.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Motivations Problems Main Results & Implications

Result II: Unconditional Hardness for $\omega^*(G)$ **?**

Will the hardness of $\omega^*(G)$ hold w/o ETH?

Theorem (Main II.1)

There exists a family of games $\{G_n\}$ s.t. the NPA hierarchy requires $\Omega(n)$ levels to distinguish $\omega^*(G) = 1$ from $\omega^*(G) = 1 - \Omega(1/n^2)$.

Theorem (Main II.2)

Any SDP relaxation that estimates $\omega^*(G)$ with precision $O(1/n^2)$ requires size $(n/\log(n))^{\Omega(n)}$.

Motivations Problems Main Results & Implications

Result II: Unconditional Hardness for $\omega^*(G)$ **?**

Will the hardness of $\omega^*(G)$ hold w/o ETH?

Theorem (Main II.1)

There exists a family of games $\{G_n\}$ s.t. the NPA hierarchy requires $\Omega(n)$ levels to distinguish $\omega^*(G) = 1$ from $\omega^*(G) = 1 - \Omega(1/n^2)$.

Theorem (Main II.2)

Any SDP relaxation that estimates $\omega^*(G)$ with precision $O(1/n^2)$ requires size $(n/\log(n))^{\Omega(n)}$.

Motivations Problems Main Results & Implications

Result II: Unconditional Hardness for $\omega^*(G)$ **?**

Will the hardness of $\omega^*(G)$ hold w/o ETH?

Theorem (Main II.1)

There exists a family of games $\{G_n\}$ s.t. the NPA hierarchy requires $\Omega(n)$ levels to distinguish $\omega^*(G) = 1$ from $\omega^*(G) = 1 - \Omega(1/n^2)$.

Theorem (Main II.2)

Any SDP relaxation that estimates $\omega^*(G)$ with precision $O(1/n^2)$ requires size $(n/\log(n))^{\Omega(n)}$.

Motivations Problems Main Results & Implications

Result II: Unconditional Hardness for $\omega^*(G)$ **?**

Will the hardness of $\omega^*(G)$ hold w/o ETH?

Theorem (Main II.1)

There exists a family of games $\{G_n\}$ s.t. the NPA hierarchy requires $\Omega(n)$ levels to distinguish $\omega^*(G) = 1$ from $\omega^*(G) = 1 - \Omega(1/n^2)$.

Theorem (Main II.2)

Any SDP relaxation that estimates $\omega^*(G)$ with precision $O(1/n^2)$ requires size $(n/\log(n))^{\Omega(n)}$.

Motivations Problems Main Results & Implications

Unconditional SoS & SDP lower bounds

- First unconditional lower bounds (SoS or SDP) for both h_{Sep} and ω^{*}(G) problems.
- Match all bounds from computational hardness for h_{Sep}, especially the DPS hierarchy.
- Improve lower bounds from level k ≤ 5 to k = Ω(n) for the NPA hierarchy.

- (a) AMO to vehicle on the complexity of OMA (2).
 (a) Discussion of the complexity of OMA (2).
- Heedlams and thus , mon Nee-Sterlin blackers and the second second second second second second second second se

Motivations Problems Main Results & Implications

Unconditional SoS & SDP lower bounds

- First unconditional lower bounds (SoS or SDP) for both h_{Sep} and ω^{*}(G) problems.
- Match all bounds from computational hardness for h_{Sep}, especially the DPS hierarchy.
- Improve lower bounds from level k ≤ 5 to k = Ω(n) for the NPA hierarchy.

- Implication to any resolution of the complexity of QMA(2). Discussed later.
- Hardness extends to the 2 → 4 norm, and thus small-set expansions (SSE), and potentially the unique game

Motivations Problems Main Results & Implications

Unconditional SoS & SDP lower bounds

- First unconditional lower bounds (SoS or SDP) for both h_{Sep} and ω^{*}(G) problems.
- Match all bounds from computational hardness for h_{Sep}, especially the DPS hierarchy.
- Improve lower bounds from level k ≤ 5 to k = Ω(n) for the NPA hierarchy.

- Implication to any resolution of the complexity of QMA(2).
 Discussed later.
- Hardness extends to the 2 → 4 norm, and thus small-set expansions (SSE), and potentially the unique game conjecture (UGC).

Motivations Problems Main Results & Implications

Unconditional SoS & SDP lower bounds

- First unconditional lower bounds (SoS or SDP) for both h_{Sep} and ω^{*}(G) problems.
- Match all bounds from computational hardness for h_{Sep}, especially the DPS hierarchy.
- Improve lower bounds from level k ≤ 5 to k = Ω(n) for the NPA hierarchy.

- Implication to any resolution of the complexity of QMA(2). Discussed later.
- Hardness extends to the 2 → 4 norm, and thus small-set expansions (SSE), and potentially the unique game conjecture (UGC).

Motivations Problems Main Results & Implications

Unconditional SoS & SDP lower bounds

- First unconditional lower bounds (SoS or SDP) for both h_{Sep} and ω^{*}(G) problems.
- Match all bounds from computational hardness for h_{Sep}, especially the DPS hierarchy.
- Improve lower bounds from level k ≤ 5 to k = Ω(n) for the NPA hierarchy.

- Implication to any resolution of the complexity of QMA(2). Discussed later.
- Hardness extends to the 2 \rightarrow 4 norm, and thus small-set expansions (SSE), and potentially the unique game conjecture (UGC).

Motivations Problems Main Results & Implications

QMA(2) vs QMA

A. Harrow, A. Natarajan, and X. Wu Limitations of monogamy, Tsirelson bounds & SDPs

æ

Motivations Problems Main Results & Implications

QMA(2) vs QMA

A. Harrow, A. Natarajan, and X. Wu Limitations of monogamy, Tsirelson bounds & SDPs

æ

Motivations Problems Main Results & Implications

QMA(2) vs QMA

A. Harrow, A. Natarajan, and X. Wu Limitations of monogamy, Tsirelson bounds & SDPs

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

크

Motivations Problems Main Results & Implications

QMA(2) vs QMA

A. Harrow, A. Natarajan, and X. Wu Limitations of monogamy, Tsirelson bounds & SDPs

Motivations Problems Main Results & Implications

QMA(2) vs QMA

A. Harrow, A. Natarajan, and X. Wu Limitations of monogamy, Tsirelson bounds & SDPs

Motivations Problems Main Results & Implications

QMA(2) vs QMA

A. Harrow, A. Natarajan, and X. Wu Limitations of monogamy, Tsirelson bounds & SDPs

Motivations Problems Main Results & Implications

Motivations Problems Main Results & Implications

History about QMA(2)

• First study in [KMY01, KMY03]. Surprising: NP \subseteq QMA(2)_{log} [BT09] v.s. QMA_{log} = BQP [MW05].

Main open question is to improve the trivial upper bound NEXP.

- Variants of QMA(2) have been studied, such as BellQMA, LOCC-QMA, which collapse to QMA [Bra, ABD+, BCY].
- OMA(2)=QMA(poly) [HM10].
- A recently claimed result QMA(2) C EXP with questionable correctness [Sch15].

It suffices to solve $h_{\text{Sep}(d)}(M_{\text{acc}})$ with M_{acc} the POVM from QMA(2) protocols.

(日) (圖) (E) (E) (E)

Motivations Problems Main Results & Implications

History about QMA(2)

• First study in [KMY01, KMY03]. Surprising: NP \subseteq QMA(2)_{log} [BT09] v.s. QMA_{log} = BQP [MW05].

Main open question is to improve the trivial upper bound NEXP.

- Variants of QMA(2) have been studied, such as BellQMA, LOCC-QMA, which collapse to QMA [Bra, ABD+, BCY].
- QMA(2)=QMA(poly) [HM10].
- A recently claimed result QMA(2) ⊆ EXP with questionable correctness [Sch15].

It suffices to solve $h_{Sep(d)}(M_{acc})$ with M_{acc} the POVM from QMA(2) protocols.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

3

Motivations Problems Main Results & Implications

History about QMA(2)

First study in [KMY01, KMY03]. Surprising: NP
 ⊆ QMA(2)_{log} [BT09] v.s. QMA_{log} = BQP [MW05].

Main open question is to improve the trivial upper bound NEXP.

 Variants of QMA(2) have been studied, such as BellQMA, LOCC-QMA, which collapse to QMA [Bra, ABD+, BCY].

• QMA(2)=QMA(poly) [HM10].

 A recently claimed result QMA(2) ⊆ EXP with questionable correctness [Sch15].

It suffices to solve $h_{Sep(d)}(M_{acc})$ with M_{acc} the POVM from QMA(2) protocols.

< 日 > < 回 > < 回 > < 回 > < 回 > <

э.

Motivations Problems Main Results & Implications

History about QMA(2)

• First study in [KMY01, KMY03]. Surprising: NP \subseteq QMA(2)_{log} [BT09] v.s. QMA_{log} = BQP [MW05].

Main open question is to improve the trivial upper bound NEXP.

- Variants of QMA(2) have been studied, such as BellQMA, LOCC-QMA, which collapse to QMA [Bra, ABD+, BCY].
- QMA(2)=QMA(poly) [HM10].
- A recently claimed result QMA(2) ⊆ EXP with questionable correctness [Sch15].

It suffices to solve $h_{\text{Sep}(d)}(M_{\text{acc}})$ with M_{acc} the POVM from QMA(2) protocols.

・ロト ・四ト ・ヨト ・ヨト
Motivations Problems Main Results & Implications

History about QMA(2)

• First study in [KMY01, KMY03]. Surprising: NP \subseteq QMA(2)_{log} [BT09] v.s. QMA_{log} = BQP [MW05].

Main open question is to improve the trivial upper bound NEXP.

- Variants of QMA(2) have been studied, such as BellQMA, LOCC-QMA, which collapse to QMA [Bra, ABD+, BCY].
- QMA(2)=QMA(poly) [HM10].
- A recently claimed result QMA(2) ⊆ EXP with questionable correctness [Sch15].

It suffices to solve $h_{\text{Sep}(d)}(M_{\text{acc}})$ with M_{acc} the POVM from QMA(2) protocols.

・ロト ・四ト ・ヨト ・ヨト

Motivations Problems Main Results & Implications

History about QMA(2)

• First study in [KMY01, KMY03]. Surprising: NP \subseteq QMA(2)_{log} [BT09] v.s. QMA_{log} = BQP [MW05].

Main open question is to improve the trivial upper bound NEXP.

- Variants of QMA(2) have been studied, such as BellQMA, LOCC-QMA, which collapse to QMA [Bra, ABD+, BCY].
- QMA(2)=QMA(poly) [HM10].
- A recently claimed result QMA(2) ⊆ EXP with questionable correctness [Sch15].

It suffices to solve $h_{\text{Sep}(d)}(M_{\text{acc}})$ with M_{acc} the POVM from QMA(2) protocols.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Motivations Problems Main Results & Implications

Implication on QMA(2)

Hardness applies to QMA(2)

- Our explicit hard instance is a **valid** QMA(2) instance.
- Hardness implies that the de Finetti theorem of 1-LOCC [BCY, BH] is the best possible.

Unconditional proof of Watrous's dis-entangler conjecture

- Dis-entangler: a hypothetical channel that a) its output is always c-close to a separable state, and b) its image is δ-close to any separable state, both in trace distance.
- Input dimension dim $(\mathcal{H}) = \infty$ for $\epsilon = \delta = 0$ [AB+09].

イロト イヨト イヨト イヨト

Motivations Problems Main Results & Implications

Implication on QMA(2)

Hardness applies to QMA(2)

- Our explicit hard instance is a **valid** QMA(2) instance.
- Hardness implies that the de Finetti theorem of 1-LOCC [BCY, BH] is the best possible.

Unconditional proof of Watrous's dis-entangler conjecture

- Dis-entangler: a hypothetical channel that a) its output is always *ϵ*-close to a separable state, and b) its image is *δ*-close to any separable state, both in trace distance.
- Input dimension dim $(\mathcal{H}) = \infty$ for $\epsilon = \delta = 0$ [AB+09].
- $\forall \epsilon + \delta < 1$, dim $(\mathcal{H}) \geq \Omega(d^{\log(d)/\operatorname{poly}\log\log(d)})$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

Motivations Problems Main Results & Implications

Implication on QMA(2)

Hardness applies to QMA(2)

- Our explicit hard instance is a **valid** QMA(2) instance.
- Hardness implies that the de Finetti theorem of 1-LOCC [BCY, BH] is the best possible.

Unconditional proof of Watrous's dis-entangler conjecture

- Dis-entangler: a hypothetical channel that a) its output is always *ϵ*-close to a separable state, and b) its image is *δ*-close to any separable state, both in trace distance.
- Input dimension dim $(\mathcal{H}) = \infty$ for $\epsilon = \delta = 0$ [AB+09].
- $\forall \epsilon + \delta < 1$, dim $(\mathcal{H}) \geq \Omega(d^{\log(d)/\operatorname{poly}\log\log(d)})$

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Motivations Problems Main Results & Implications

Implication on QMA(2)

Hardness applies to QMA(2)

- Our explicit hard instance is a **valid** QMA(2) instance.
- Hardness implies that the de Finetti theorem of 1-LOCC [BCY, BH] is the best possible.

Unconditional proof of Watrous's dis-entangler conjecture

- Dis-entangler: a hypothetical channel that a) its output is always *ϵ*-close to a separable state, and b) its image is *δ*-close to any separable state, both in trace distance.
- Input dimension dim $(\mathcal{H}) = \infty$ for $\epsilon = \delta = 0$ [AB+09].
- $\forall \epsilon + \delta < 1$, dim $(\mathcal{H}) \geq \Omega(d^{\log(d)/\operatorname{poly}\log\log(d)})$.

(日)

Sum-of-Squares (SoS) Integrality Gaps Reductions

Technical Outline & Contributions

Technical Target

- Introduce hardness of SDPs/SoS into quantum problems.
- Deal with their limitations, such as boolean domains and commutative problems.

Technical Contributions

- Formulate a framework of reductions for this purpose. Also applicable to other problems, e.g., Nash's equilibria.
- Design reductions following the guideline of the framework:
- Special tochniques to handle general domains and non-commutative problems.

Sum-of-Squares (SoS) Integrality Gaps Reductions

Technical Outline & Contributions

Technical Target

- Introduce hardness of SDPs/SoS into quantum problems.
- Deal with their limitations, such as boolean domains and commutative problems.

Technical Contributions

- Formulate a framework of reductions for this purpose. Also applicable to other problems, e.g., Nash's equilibria.
- Design reductions following the guideline of the framework.
- Special techniques to handle general domains and non-country within an enders.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Sum-of-Squares (SoS) Integrality Gaps Reductions

Technical Outline & Contributions

Technical Target

- Introduce hardness of SDPs/SoS into quantum problems.
- Deal with their limitations, such as boolean domains and commutative problems.

Technical Contributions

- Formulate a framework of reductions for this purpose. Also applicable to other problems, e.g., Nash's equilibria.
- Design reductions following the guideline of the framework.
- Special techniques to handle general domains and non-commutative problems.

(日)

Sum-of-Squares (SoS) Integrality Gaps Reductions

Technical Outline & Contributions

Technical Target

- Introduce hardness of SDPs/SoS into quantum problems.
- Deal with their limitations, such as boolean domains and commutative problems.

Technical Contributions

- Formulate a framework of reductions for this purpose. Also applicable to other problems, e.g., Nash's equilibria.
- Design reductions following the guideline of the framework.
- Special techniques to handle general domains and non-commutative problems.

(日)

Sum-of-Squares (SoS) Integrality Gaps Reductions

Technical Outline & Contributions

Technical Target

- Introduce hardness of SDPs/SoS into quantum problems.
- Deal with their limitations, such as boolean domains and commutative problems.

Technical Contributions

- Formulate a framework of reductions for this purpose. Also applicable to other problems, e.g., Nash's equilibria.
- Design reductions following the guideline of the framework.
- Special techniques to handle general domains and non-commutative problems.

Sum-of-Squares (SoS) Integrality Gaps Reductions

Principle of Sum-of-Squares

One way to show that a polynomial f(x) is *nonnegative* could be

$$f(x)=\sum a_i(x)^2\geq 0.$$

Example

$$\begin{split} f(x) &= 2x^2 - 6x + 5 \\ &= (x^2 - 2x + 1) + (x^2 - 4x + 4) \\ &= (x - 1)^2 + (x - 2)^2 \geq 0. \end{split}$$

Such a decomposition is called a *sum of squares (SOS) certificate* for the non-negativity of *f*. The min degree, deg_{sos} .

(日)

Sum-of-Squares (SoS) Integrality Gaps Reductions

Principle of SoS : constrained domain

Definition (Variety)

A set $V \subseteq \mathbb{C}^n$ is called an *algebraic variety* if $V = \{x \in \mathbb{C}^n : g_1(x) = \cdots = g_k(x) = 0\}.$

Non-negativity of f(x) on V could be shown by

$$f(x) = \sum a_i(x)^2 + \sum b_j(x)g_j(x) \ge 0.$$

Question: whether all nonnegative polynomials on certain variety have a SOS certificate? Hilbert 17th problem!

< 日 > < 回 > < 回 > < 回 > < 回 > <

Sum-of-Squares (SoS) Integrality Gaps Reductions

Principle of SoS : constrained domain

Definition (Variety)

A set $V \subseteq \mathbb{C}^n$ is called an *algebraic variety* if $V = \{x \in \mathbb{C}^n : g_1(x) = \cdots = g_k(x) = 0\}.$

Non-negativity of f(x) on V could be shown by

$$f(x) = \sum a_i(x)^2 + \sum b_j(x)g_j(x) \ge 0.$$

Question: whether all nonnegative polynomials on certain variety have a SOS certificate? Hilbert 17th problem!

Sum-of-Squares (SoS) Integrality Gaps Reductions

Principle of SoS : constrained domain

Definition (Variety)

A set $V \subseteq \mathbb{C}^n$ is called an *algebraic variety* if $V = \{x \in \mathbb{C}^n : g_1(x) = \cdots = g_k(x) = 0\}.$

Non-negativity of f(x) on V could be shown by

$$f(x) = \sum a_i(x)^2 + \sum b_j(x)g_j(x) \ge 0.$$

Question: whether all nonnegative polynomials on certain variety have a SOS certificate? Hilbert 17th problem!

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Sum-of-Squares (SoS) Integrality Gaps Reductions

SoS in Optimization

$$\begin{array}{ll} \max & f(x) \\ \text{subject to} & g_i(x) = 0 \quad \forall i \end{array} \tag{2}$$

is equivalent to (justified by *Positivstellensatz*)

min
$$u$$

such that $u - f(x) = \sigma(x) + \sum_{i} b_i(x)g_i(x),$ (3)

where $\sigma(x)$ is SOS and $b_i(x)$ is any polynomial.

<ロ> <同> <同> < 同> < 同> < 同> 、

크

Sum-of-Squares (SoS) Integrality Gaps Reductions

SoS relaxation: Lasserre/Parrilo Hierarchy

- If σ(x), b_i(x) have any degrees (or deg_{sos}(v f)), then problem (3) is equivalent to problem (2).
- By bounding the degrees, we get the Lasserre/Parrilo hierarchy, which is a SDP hierarchy.

min
$$\nu$$

such that $\nu - f(x) = \sigma(x) + \sum_{i} b_i(x)g_i(x)$, (4)
where $\sigma(x)$ is SOS and $b_i(x)$ is any polynomial and deg $(\sigma(x))$,
deg $(b_i(x)g_i(x)) \le 2D$.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

Sum-of-Squares (SoS) Integrality Gaps Reductions

SoS relaxation: Lasserre/Parrilo Hierarchy

- If σ(x), b_i(x) have any degrees (or deg_{sos}(v f)), then problem (3) is equivalent to problem (2).
- By bounding the degrees, we get the Lasserre/Parrilo hierarchy, which is a SDP hierarchy.

min
$$\nu$$

such that $\nu - f(x) = \sigma(x) + \sum_{i} b_i(x)g_i(x)$, (4)
where $\sigma(x)$ is SOS and $b_i(x)$ is any polynomial and deg $(\sigma(x))$, deg $(b_i(x)g_i(x)) \le 2D$.

(日)

Sum-of-Squares (SoS) Integrality Gaps Reductions

SoS relaxation: Lasserre/Parrilo Hierarchy

- If σ(x), b_i(x) have any degrees (or deg_{sos}(v f)), then problem (3) is equivalent to problem (2).
- By bounding the degrees, we get the Lasserre/Parrilo hierarchy, which is a SDP hierarchy.

min
$$\nu$$

such that $\nu - f(x) = \sigma(x) + \sum_{i} b_i(x)g_i(x)$, (4)
where $\sigma(x)$ is SOS and $b_i(x)$ is any polynomial and deg $(\sigma(x))$, deg $(b_i(x)g_i(x)) \le 2D$.

(日)

Sum-of-Squares (SoS) Integrality Gaps Reductions

SoS relaxation: Lasserre/Parrilo Hierarchy

- If σ(x), b_i(x) have any degrees (or deg_{sos}(v f)), then problem (3) is equivalent to problem (2).
- By bounding the degrees, we get the Lasserre/Parrilo hierarchy, which is a SDP hierarchy.

min
$$\nu$$

such that $\nu - f(x) = \sigma(x) + \sum_{i} b_i(x)g_i(x),$ (4)

where $\sigma(x)$ is SOS and $b_i(x)$ is any polynomial and deg($\sigma(x)$), deg($b_i(x)g_i(x)$) $\leq 2D$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Sum-of-Squares (SoS) Integrality Gaps Reductions

Recall $h_{\text{Sep}(d,d)}(M)$

$$h_{\text{Sep}(d,d)}(M) := \max_{\substack{x,y \in \mathbb{C}^d \\ \|x\|_2 = \|y\|_2 = 1}} \sum_{i,j,k,l \in [d]} M_{ij,kl} x_i^* x_j y_k^* y_l.$$
(5)

Recall: this is an instance of *polynomial optimization* problems with a homogenous degree 4 objective polynomial and a degree 2 constraint polynomial.

Its Lasserre's hierarchy is the DPS hierarchy with full symmetry.

(日)

Sum-of-Squares (SoS) Integrality Gaps Reductions

Non-commutative (nc) SoS

Given
$$F, G_1, \ldots, G_m \in \mathcal{R}\langle X \rangle$$
, define

$$F_{\max} := \sup_{\rho, X = (X_1, \dots, X_n)} \operatorname{Tr}[\rho F(X)]$$

subject to $\rho \ge 0$, Tr $\rho = 1$, $G_1(X) = \dots = G_m(X) = 0$. (6)

Note that the supremum here is over density operators ρ and Hermitian operators X_1, \ldots, X_n that may be infinite dimensional;

(日)

Sum-of-Squares (SoS) Integrality Gaps Reductions

ncSoS

A non-commutative SoS proof can be expressed similarly as

$$c - F = \sum_{i=1}^{k} P_i^{\dagger} P_i + \sum_{i=1}^{m} Q_i G_i R_i, \qquad (7)$$

for $\{P_i\}, \{Q_i\}, \{R_i\} \subset \mathcal{R}\langle X \rangle$. Likewise the best degree-*d* ncSoS proof can be found in time $n^{O(d)}m^{O(1)}$ by SDPs.

The NPA hierarchy for approximating $\omega^*(G)$ is an ncSoS SDP hierarchy.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

э

Sum-of-Squares (SoS) Integrality Gaps Reductions

ncSoS

A non-commutative SoS proof can be expressed similarly as

$$c - F = \sum_{i=1}^{k} P_i^{\dagger} P_i + \sum_{i=1}^{m} Q_i G_i R_i, \qquad (7)$$

for $\{P_i\}, \{Q_i\}, \{R_i\} \subset \mathcal{R}\langle X \rangle$. Likewise the best degree-*d* ncSoS proof can be found in time $n^{O(d)}m^{O(1)}$ by SDPs.

The NPA hierarchy for approximating $\omega^*(G)$ is an ncSoS SDP hierarchy.

Sum-of-Squares (SoS) Integrality Gaps Reductions

General SDPs

- The DPS and NPA hierarchies are just SoS and ncSoS SDP hierarchies.
- Thus, lower bounds for $\deg_{sos} \Rightarrow$ lower bounds for DPS and NPA.
- How about general SDPs?

_ee-Raghavendra-Steurer

- Any degay lower bound on {0;1}? See a lower bound on SDP indexations.
- , i.e. , \mathcal{V} bescher E $\{0,1\}$ \ni of \mathcal{V} measurem 10.2. \circ
- f(x) := F(X'). Embeddingl

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Ξ.

Sum-of-Squares (SoS) Integrality Gaps Reductions

General SDPs

- The DPS and NPA hierarchies are just SoS and ncSoS SDP hierarchies.
- Thus, lower bounds for $\text{deg}_{sos} \Rightarrow$ lower bounds for DPS and NPA.
- How about general SDPs?

Lee-Raghavendra-Steure

- Any deg_{sos} lower bound on {0, 1}ⁿ ⇒ a lower bound on SDP relaxations.
- , i.e., \mathbb{N} bevalar E , $\mathbb{N}\{1,0\} \in \{0,1\}^n$, and invariant $\mathbb{N}(\mathbb{R})$, i.e.,
- LRS's analysis crucially rolles on {0,1}*.

Sum-of-Squares (SoS) Integrality Gaps Reductions

General SDPs

- The DPS and NPA hierarchies are just SoS and ncSoS SDP hierarchies.
- Thus, lower bounds for $\text{deg}_{sos} \Rightarrow$ lower bounds for DPS and NPA.
- How about general SDPs?

Lee-Raghavendra-Steure

- Any deg_{sos} lower bound on {0, 1}ⁿ ⇒ a lower bound on SDP relaxations.
- SDP relaxation: ∀x ∈ {0,1}ⁿ, ∃ relaxed X', s.t.,
 f(x) = F(X'). Embedding!
- LRS's analysis crucially relies on {0,1}ⁿ.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Sum-of-Squares (SoS) Integrality Gaps Reductions

General SDPs

- The DPS and NPA hierarchies are just SoS and ncSoS SDP hierarchies.
- Thus, lower bounds for $\deg_{sos} \Rightarrow$ lower bounds for DPS and NPA.
- How about general SDPs?

Lee-Raghavendra-Steurer

- Any \deg_{sos} lower bound on $\{0, 1\}^n \Rightarrow$ a lower bound on SDP relaxations.
- SDP relaxation: $\forall x \in \{0, 1\}^n$, \exists relaxed X', s.t., f(x) = F(X'). Embedding!
- LRS's analysis crucially relies on {0,1}ⁿ.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Sum-of-Squares (SoS) Integrality Gaps Reductions

General SDPs

- The DPS and NPA hierarchies are just SoS and ncSoS SDP hierarchies.
- Thus, lower bounds for $\text{deg}_{sos} \Rightarrow$ lower bounds for DPS and NPA.
- How about general SDPs?

Lee-Raghavendra-Steurer

- Any deg_{sos} lower bound on {0, 1}ⁿ ⇒ a lower bound on SDP relaxations.
- SDP relaxation: $\forall x \in \{0, 1\}^n$, \exists relaxed X', s.t., f(x) = F(X'). Embedding!
- LRS's analysis crucially relies on $\{0, 1\}^n$.

Sum-of-Squares (SoS) Integrality Gaps Reductions

General SDPs

- The DPS and NPA hierarchies are just SoS and ncSoS SDP hierarchies.
- Thus, lower bounds for $\text{deg}_{sos} \Rightarrow$ lower bounds for DPS and NPA.
- How about general SDPs?

Lee-Raghavendra-Steurer

- Any deg_{sos} lower bound on {0, 1}ⁿ ⇒ a lower bound on SDP relaxations.
- SDP relaxation: $\forall x \in \{0, 1\}^n$, \exists relaxed X', s.t., f(x) = F(X'). Embedding!
- LRS's analysis crucially relies on $\{0, 1\}^n$.

A D N A D N A D N A D

Sum-of-Squares (SoS) Integrality Gaps Reductions

Pseudo-distribution

Dual of the SOS cone

- Let Σ_{d,2D} be the cone of all PSD matrices representing SOS polynomials with degree up to 2D.
- The dual cone $\Sigma_{d,2D}^*$ is moment $M_D(x) \ge 0$, where entry (α, β) of $M_d(x)$ is $\int x^{\alpha+\beta} \mu(dx), |\alpha|, |\beta| \le d$.

Pseudo-distributrion/expectation

- Moment *M*_D(*x*) gives rise to *pseudo-distribution*. Expectation on it is *pseudo-expectation*.
- Behave similar to expectation for low-degree polynomials.

・ロト ・回 ト ・ヨ ト ・

э

Sum-of-Squares (SoS) Integrality Gaps Reductions

Pseudo-distribution

Dual of the SOS cone

- Let Σ_{d,2D} be the cone of all PSD matrices representing SOS polynomials with degree up to 2D.
- The dual cone $\Sigma_{d,2D}^*$ is moment $M_D(x) \ge 0$, where entry (α, β) of $M_d(x)$ is $\int x^{\alpha+\beta} \mu(dx), |\alpha|, |\beta| \le d$.

Pseudo-distributrion/expectation

- Moment *M_D*(*x*) gives rise to *pseudo-distribution*.
 Expectation on it is *pseudo-expectation*.
- Behave similar to expectation for low-degree polynomials.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Sum-of-Squares (SoS) Integrality Gaps Reductions

Pseudo-expectation

A degree-*d* pseudo-expectation $\tilde{\mathbb{E}}$ is an element of $\mathcal{R}[x]_d^*$ (i.e. a linear map from $\mathcal{R}[x]_d$ to \mathcal{R}) satisfying

- Normalization. $\tilde{\mathbb{E}}[1] = 1$.
- **Positivity**. $\tilde{\mathbb{E}}[p^2] \ge 0$ for any $p \in \mathcal{R}[x]_{d/2}$.

 $\tilde{\mathbb{E}}$ satisfies the constraints g_1, \ldots, g_m if $\tilde{\mathbb{E}}[g_i q] = 0$ for all $i \in [n]$ and all $q \in \mathcal{R}[x]_{d-\deg(g_i)}$.

 $\mathbb{R}^d_{SoS} = \max\{\widetilde{\mathbb{E}}[f] : \widetilde{\mathbb{E}} \text{ of degree-} d \text{ satisfying } g_1, \dots, g_m\}.$ (8)

Sum-of-Squares (SoS) Integrality Gaps Reductions

Pseudo-expectation

A degree-*d* pseudo-expectation $\tilde{\mathbb{E}}$ is an element of $\mathcal{R}[x]_d^*$ (i.e. a linear map from $\mathcal{R}[x]_d$ to \mathcal{R}) satisfying

- Normalization. $\tilde{\mathbb{E}}[1] = 1$.
- **Positivity**. $\tilde{\mathbb{E}}[p^2] \ge 0$ for any $p \in \mathcal{R}[x]_{d/2}$.

 $\tilde{\mathbb{E}}$ satisfies the constraints g_1, \ldots, g_m if $\tilde{\mathbb{E}}[g_i q] = 0$ for all $i \in [n]$ and all $q \in \mathcal{R}[x]_{d-\deg(g_i)}$.

 $f^d_{SoS} = \max\{ ilde{\mathbb{E}}[f] : ilde{\mathbb{E}} ext{ of degree-} d ext{ satisfying } g_1, \dots, g_m \}.$ (8)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Sum-of-Squares (SoS) Integrality Gaps Reductions

Pseudo-expectation

A degree-*d* pseudo-expectation $\tilde{\mathbb{E}}$ is an element of $\mathcal{R}[x]_d^*$ (i.e. a linear map from $\mathcal{R}[x]_d$ to \mathcal{R}) satisfying

- Normalization. $\tilde{\mathbb{E}}[1] = 1$.
- **Positivity**. $\tilde{\mathbb{E}}[p^2] \ge 0$ for any $p \in \mathcal{R}[x]_{d/2}$.

 $\tilde{\mathbb{E}}$ satisfies the constraints g_1, \ldots, g_m if $\tilde{\mathbb{E}}[g_i q] = 0$ for all $i \in [n]$ and all $q \in \mathcal{R}[x]_{d-\deg(g_i)}$.

$$f_{SoS}^d = \max{\{\tilde{\mathbb{E}}[f] : \tilde{\mathbb{E}} \text{ of degree-} d \text{ satisfying } g_1, \dots, g_m\}}.$$
 (8)

Sum-of-Squares (SoS) Integrality Gaps Reductions

Integrality Gaps

What constitutes an integrality gap?

- An instance Φ that has $f_{opt}(\Phi)$ is small.
- But $f_{SoS}^d(\Phi)$ is large for some $d \Rightarrow$ lower bound at level d.

Example

• 3XOR: O(n) clauses on n boolean variables: $x_i \oplus x_j \oplus x_k = C_{ijk}$.

• A random instance satisfies $1/2 + \epsilon$ of clauses while an $\Omega(n)$ pseudo-solution believes it satisfies all clauses.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□
Sum-of-Squares (SoS) Integrality Gaps Reductions

Integrality Gaps

What constitutes an integrality gap?

- An instance Φ that has $f_{opt}(\Phi)$ is small.
- But $f_{SoS}^{d}(\Phi)$ is large for some $d \Rightarrow$ lower bound at level d.

Example

- 3XOR: O(n) clauses on n boolean variables: $x_i \oplus x_j \oplus x_k = C_{ijk}$.
- A random instance satisfies $1/2 + \epsilon$ of clauses while an $\Omega(n)$ pseudo-solution believes it satisfies all clauses.

Sum-of-Squares (SoS) Integrality Gaps Reductions

Extend integrality gaps via reductions

Reduction from A to B

- Reduction is an instance-mapping $\Phi^A \rightarrow \Phi^B$.
- Soundness: $f_{opt}^A(\Phi^A)$ small $\Rightarrow f_{opt}^B(\Phi^B)$
- **Pseudo-completeness**: $f_{SoS}^{d_A}(\Phi^A)$ large $\Rightarrow f_{SoS}^{d_B}(\Phi^B)$ large, d_B is not too smaller than d_A .

Pseudo-completeness: low-degree reduction

- al sheen and (63), which and use a bused a the field of the construction and a second state a second state a se
- engen tedt känner/deg eengebeeck a condifikaace heelentike vervel. 99,422,43

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sum-of-Squares (SoS) Integrality Gaps Reductions

Extend integrality gaps via reductions

Reduction from A to B

- Reduction is an instance-mapping $\Phi^A \to \Phi^B$.
- Soundness: $f_{opt}^{A}(\Phi^{A})$ small $\Rightarrow f_{opt}^{B}(\Phi^{B})$
- **Pseudo-completeness**: $f_{SoS}^{d_A}(\Phi^A)$ large $\Rightarrow f_{SoS}^{d_B}(\Phi^B)$ large, d_B is not too smaller than d_A .

Pseudo-completeness: low-degree reduction

- onishoo and (Ga) in the pseudoscalution for the (Ga), a shore a د المار مي المارين
- Sufficient conditions a low-degree polynomial field accession of the second fibration of the second

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sum-of-Squares (SoS) Integrality Gaps Reductions

Extend integrality gaps via reductions

Reduction from A to B

- Reduction is an instance-mapping $\Phi^A \to \Phi^B$.
- Soundness: $f_{opt}^{A}(\Phi^{A})$ small $\Rightarrow f_{opt}^{B}(\Phi^{B})$
- **Pseudo-completeness**: $f_{SoS}^{d_A}(\Phi^A)$ large $\Rightarrow f_{SoS}^{d_B}(\Phi^B)$ large, d_B is not too smaller than d_A .

Pseudo-completeness: low-degree reduction

- Let μ_A(Ē_A) be the pseudo-solution for Φ^A. One needs to construct a μ_B(Ē_B) for Φ^B.
- Sufficient condition: a low-degree polynomial that maps µ_A → µ_A.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Sum-of-Squares (SoS) Integrality Gaps Reductions

Extend integrality gaps via reductions

Reduction from A to B

- Reduction is an instance-mapping $\Phi^A \rightarrow \Phi^B$.
- Soundness: $f_{opt}^{A}(\Phi^{A})$ small $\Rightarrow f_{opt}^{B}(\Phi^{B})$
- **Pseudo-completeness**: $f_{SoS}^{d_A}(\Phi^A)$ large $\Rightarrow f_{SoS}^{d_B}(\Phi^B)$ large, d_B is not too smaller than d_A .

Pseudo-completeness: low-degree reduction

- Let μ_A(Ē_A) be the pseudo-solution for Φ^A. One needs to construct a μ_B(Ē_B) for Φ^B.
- Sufficient condition: a low-degree polynomial that maps μ_A → μ_B.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Sum-of-Squares (SoS) Integrality Gaps Reductions

Extend integrality gaps via reductions

Reduction from A to B

- Reduction is an instance-mapping $\Phi^A \to \Phi^B$.
- Soundness: $f_{opt}^{A}(\Phi^{A})$ small $\Rightarrow f_{opt}^{B}(\Phi^{B})$
- **Pseudo-completeness**: $f_{SoS}^{d_A}(\Phi^A)$ large $\Rightarrow f_{SoS}^{d_B}(\Phi^B)$ large, d_B is not too smaller than d_A .

Pseudo-completeness: low-degree reduction

- Let μ_A(Ē_A) be the pseudo-solution for Φ^A. One needs to construct a μ_B(Ē_B) for Φ^B.
- Sufficient condition: a low-degree polynomial that maps $\mu_A \rightarrow \mu_B$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Sum-of-Squares (SoS) Integrality Gaps Reductions

Extend integrality gaps via reductions

Reduction from A to B

- Reduction is an instance-mapping $\Phi^A \to \Phi^B$.
- Soundness: $f_{opt}^{A}(\Phi^{A})$ small $\Rightarrow f_{opt}^{B}(\Phi^{B})$
- **Pseudo-completeness**: $f_{SoS}^{d_A}(\Phi^A)$ large $\Rightarrow f_{SoS}^{d_B}(\Phi^B)$ large, d_B is not too smaller than d_A .

Pseudo-completeness: low-degree reduction

- Let μ_A(Ē_A) be the pseudo-solution for Φ^A. One needs to construct a μ_B(Ē_B) for Φ^B.
- Sufficient condition: a low-degree polynomial that maps

 $\mu_A \rightarrow \mu_B.$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

= 990

Sum-of-Squares (SoS) Integrality Gaps Reductions

Extend integrality gaps via reductions:

A reduction with *pseudo-completeness* and *soundness* leads to an integrality gap of degree d_B for Φ^B .

SDP lower bounds (LRS)

- Only apply to {0,1}ⁿ ⇒ no direct application on h_{Sep} or ω^{*}(G).
- Additional condition: embedding (replacing pseudo-completeness)

(日)

Sum-of-Squares (SoS) Integrality Gaps Reductions

Extend integrality gaps via reductions:

A reduction with *pseudo-completeness* and *soundness* leads to an integrality gap of degree d_B for Φ^B .

SDP lower bounds (LRS)

- Only apply to $\{0,1\}^n \Rightarrow$ no direct application on h_{Sep} or $\omega^*(G)$.
- Additional condition: embedding (replacing pseudo-completeness)
 - Assume $A \Rightarrow B$ and apply LRS on A that is on $\{0, 1\}^n$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Sum-of-Squares (SoS) Integrality Gaps Reductions

Extend integrality gaps via reductions:

A reduction with *pseudo-completeness* and *soundness* leads to an integrality gap of degree d_B for Φ^B .

SDP lower bounds (LRS)

- Only apply to $\{0,1\}^n \Rightarrow$ no direct application on h_{Sep} or $\omega^*(G)$.
- Additional condition: embedding (replacing pseudo-completeness)
 - Assume $A \Rightarrow B$ and apply LRS on A that is on $\{0, 1\}^n$.
 - Then ⇒ needs to be embedded as well as its composition with SDP relaxations.

Sum-of-Squares (SoS) Integrality Gaps Reductions

Extend integrality gaps via reductions:

A reduction with *pseudo-completeness* and *soundness* leads to an integrality gap of degree d_B for Φ^B .

SDP lower bounds (LRS)

- Only apply to $\{0,1\}^n \Rightarrow$ no direct application on h_{Sep} or $\omega^*(G)$.
- Additional condition: embedding (replacing pseudo-completeness)
 - Assume $A \Rightarrow B$ and apply LRS on A that is on $\{0, 1\}^n$.
 - Then ⇒ needs to be embedded as well as its composition with SDP relaxations.

(日) (圖) (E) (E) (E)

Sum-of-Squares (SoS) Integrality Gaps Reductions

Extend integrality gaps via reductions:

A reduction with *pseudo-completeness* and *soundness* leads to an integrality gap of degree d_B for Φ^B .

SDP lower bounds (LRS)

- Only apply to $\{0,1\}^n \Rightarrow$ no direct application on h_{Sep} or $\omega^*(G)$.
- Additional condition: embedding (replacing pseudo-completeness)
 - Assume $A \Rightarrow B$ and apply LRS on A that is on $\{0, 1\}^n$.
 - Then \Rightarrow needs to be **embedded** as well as its composition with SDP relaxations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Sum-of-Squares (SoS) Integrality Gaps Reductions

A typical reduction

$$3XOR \xrightarrow[R_1]{} \cdots \xrightarrow[R_2]{} A \text{ over } \{0,1\}^n \xrightarrow[R_3]{} \cdots \xrightarrow[R_4]{} Final \text{ Problem}$$

- Reductions R₁,..., R₂ lead to an SoS integrality gap at the problem A.
- Apply LRS on the problem A over boolean domains.
- Reductions R₃, · · · , R₄ are embedding reductions.
- Extend LRS results without redoing their analysis.

・ロト ・四ト ・ヨト ・ヨト

Sum-of-Squares (SoS) Integrality Gaps Reductions

A typical reduction

$$3XOR \Longrightarrow_{R_1} \cdots \Longrightarrow_{R_2} A \text{ over } \{0,1\}^n \Longrightarrow_{R_3} \cdots \Longrightarrow_{R_4} Final Problem$$

- Reductions R₁,..., R₂ lead to an SoS integrality gap at the problem A.
- Apply LRS on the problem A over boolean domains.
- Reductions R_3, \cdots, R_4 are embedding reductions.
- Extend LRS results without redoing their analysis.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

Sum-of-Squares (SoS) Integrality Gaps Reductions

A typical reduction

$$3XOR \Longrightarrow_{R_1} \cdots \Longrightarrow_{R_2} A \text{ over } \{0,1\}^n \Longrightarrow_{R_3} \cdots \Longrightarrow_{R_4} Final Problem$$

- Reductions R₁,..., R₂ lead to an SoS integrality gap at the problem A.
- Apply LRS on the problem A over boolean domains.
- Reductions R_3, \cdots, R_4 are embedding reductions.
- Extend LRS results without redoing their analysis.

(日) (圖) (E) (E) (E)

Sum-of-Squares (SoS) Integrality Gaps Reductions

A typical reduction

$$3XOR \Longrightarrow_{R_1} \cdots \Longrightarrow_{R_2} A \text{ over } \{0,1\}^n \Longrightarrow_{R_3} \cdots \Longrightarrow_{R_4} Final Problem$$

- Reductions R₁,..., R₂ lead to an SoS integrality gap at the problem A.
- Apply LRS on the problem A over boolean domains.
- Reductions R_3, \cdots, R_4 are embedding reductions.
- Extend LRS results without redoing their analysis.

・ロト ・四ト ・ヨト ・ヨト

Sum-of-Squares (SoS) Integrality Gaps Reductions

Real reductions for h_{Sep} and $\omega^*(G)$

Figure: All our results are derived from the integrality gaps of 3XOR. **Red nodes**: problems over the boolean cube and LRS is applied. **Blue arrows** are "embedding reductions".

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

э

Sum-of-Squares (SoS) Integrality Gaps Reductions

Reduction for h_{Sep}

$3\text{XOR} \underset{R_1}{\Longrightarrow} 2\text{-OUT-OF-4-SAT-EQ} \underset{R_2}{\Longrightarrow} \underset{QMA(2)}{\mathsf{QMA(2)-Acc}} \underset{R_3}{\mathsf{Prob}} \underset{R_3}{\Longrightarrow} h_{\mathsf{Sep}}$

- *R*₁: a classical step. Low-degree & soundness similar to the degree reduction step in Dinur's proof of the PCP theorem.
- *R*₂: a quantum step. Apply a modified QMA(2) protocol for 3-SAT [AB+09, HM13]. Low-degree due to the tests of the protocol. Soundness inhered from the protocol.
- *R*₃: embedding by construction. Soundness inhered from the above protocol.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

э

Sum-of-Squares (SoS) Integrality Gaps Reductions

Reduction for h_{Sep}

$$3\text{XOR} \underset{R_1}{\Longrightarrow} 2\text{-OUT-OF-4-SAT-EQ} \underset{R_2}{\Longrightarrow} \frac{\text{QMA(2)-Acc Prob}}{\text{PROB}} \underset{R_3}{\Longrightarrow} h_{\text{Sep}}$$

- *R*₁: a classical step. Low-degree & soundness similar to the degree reduction step in Dinur's proof of the PCP theorem.
- *R*₂: a quantum step. Apply a modified QMA(2) protocol for 3-SAT [AB+09, HM13]. Low-degree due to the tests of the protocol. Soundness inhered from the protocol.
- *R*₃: embedding by construction. Soundness inhered from the above protocol.

(日)

Sum-of-Squares (SoS) Integrality Gaps Reductions

Reduction for h_{Sep}

 $3\text{XOR} \underset{R_1}{\Longrightarrow} 2\text{-OUT-OF-4-SAT-EQ} \underset{R_2}{\Longrightarrow} \frac{\text{QMA(2)-Acc Prob} \underset{R_3}{\Longrightarrow} h_{\text{Sep}}}{}$

- *R*₁: a classical step. Low-degree & soundness similar to the degree reduction step in Dinur's proof of the PCP theorem.
- *R*₂: a quantum step. Apply a modified QMA(2) protocol for 3-SAT [AB+09, HM13]. Low-degree due to the tests of the protocol. Soundness inhered from the protocol.
- *R*₃: embedding by construction. Soundness inhered from the above protocol.

・ロット (母) ・ ヨ) ・ コ)

3

Sum-of-Squares (SoS) Integrality Gaps Reductions

Reduction for $\omega^*(G)$

$$3\text{XOR} \Longrightarrow_{R_1} \omega_{\text{HONEST CLASSICAL}} \Longrightarrow \omega^*(G)$$

- *R*₁: reduction by a multi-prover interactive proof protocol in [IKM]. Low-degree due to the tests of the protocol.
 Soundness inhered from the protocol.
- *R*₂: embedding by construction. Soundness inhered from the above protocol.
- Integrality gap for ncSOS: additional step to embed an SoS pseudo-solution into an ncSoS pseudo-solution.

・ロ・ ・ 四・ ・ 回・ ・ 回・

Sum-of-Squares (SoS) Integrality Gaps Reductions

Reduction for $\omega^*(G)$

$$3\text{XOR} \Longrightarrow_{R_1} \omega_{\text{HONEST CLASSICAL}} \Longrightarrow \omega^*(G)$$

- *R*₁: reduction by a multi-prover interactive proof protocol in [IKM]. Low-degree due to the tests of the protocol.
 Soundness inhered from the protocol.
- *R*₂: embedding by construction. Soundness inhered from the above protocol.
- Integrality gap for ncSOS: additional step to embed an SoS pseudo-solution into an ncSoS pseudo-solution.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Sum-of-Squares (SoS) Integrality Gaps Reductions

Reduction for $\omega^*(G)$

$$3\text{XOR} \underset{R_1}{\Longrightarrow} \omega_{\text{HONEST CLASSICAL}} \underset{R_2}{\Longrightarrow} \omega^*(G)$$

- *R*₁: reduction by a multi-prover interactive proof protocol in [IKM]. Low-degree due to the tests of the protocol.
 Soundness inhered from the protocol.
- *R*₂: embedding by construction. Soundness inhered from the above protocol.
- Integrality gap for ncSOS: additional step to embed an SoS pseudo-solution into an ncSoS pseudo-solution.

(日)

Summary Open Questions

Summary

Results

- First unconditional SoS/SDP lower bounds for h_{Sep} and ω^{*}(G).
- Match ETH-based bounds for h_{Sep}.
- Implication on QMA(2) and Watrous's dis-entangler conjecture.

Technical Contribution

- A reduction framework. Already find an application to the Nash equilibria.
- Reductions for general domains and non-commutative problems.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Summary Open Questions

Summary

Results

- First unconditional SoS/SDP lower bounds for h_{Sep} and ω^{*}(G).
- Match ETH-based bounds for h_{Sep}.
- Implication on QMA(2) and Watrous's dis-entangler conjecture.

Technical Contribution

- A reduction framework. Already find an application to the Nash equilibria.
- Reductions for general domains and non-commutative problems.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Summary Open Questions

Open Questions

Prove stronger hardness for ω^{*}(G) that matches computational hardness.

- Prover stronger SoS/SDP lower bounds than ETH bounds.
- Consider general convex programming for h_{Sep}.
- Other applications of the techniques here.

・ロ・ ・ 四・ ・ 回・ ・ 回・

3

Summary Open Questions

Open Questions

- Prove stronger hardness for ω^{*}(G) that matches computational hardness.
- Prover stronger SoS/SDP lower bounds than ETH bounds.
- Consider general convex programming for h_{Sep}.
- Other applications of the techniques here.

・ロト ・四ト ・ヨト ・ヨト

Summary Open Questions

Open Questions

- Prove stronger hardness for ω^{*}(G) that matches computational hardness.
- Prover stronger SoS/SDP lower bounds than ETH bounds.
- Consider general convex programming for h_{Sep}.
- Other applications of the techniques here.

・ロト ・四ト ・ヨト ・ヨト

Summary Open Questions

Open Questions

- Prove stronger hardness for ω^{*}(G) that matches computational hardness.
- Prover stronger SoS/SDP lower bounds than ETH bounds.
- Consider general convex programming for h_{Sep}.
- Other applications of the techniques here.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Summary Open Questions

Question And Answer

Thank you! Q & A

A. Harrow, A. Natarajan, and X. Wu Limitations of monogamy, Tsirelson bounds & SDPs

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Summary Open Questions

SoS relaxation: Lasserre/Parrilo Hierarchy

- If σ(x), b_i(x) have any degrees (or deg_{sos}(v f)), then problem (3) is equivalent to problem (2).
- By bounding the degrees, we get the Lasserre/Parrilo hierarchy.

min
$$\nu$$

such that $\nu - f(x) = \sigma(x) + \sum_{i} b_i(x)g_i(x)$, (9)
where $\sigma(x)$ is SOS and $b_i(x)$ is any polynomial and deg $(\sigma(x))$, deg $(b_i(x)g_i(x)) \le 2D$.

(日) (圖) (E) (E) (E)

Summary Open Questions

SoS relaxation: Lasserre/Parrilo Hierarchy

- If σ(x), b_i(x) have any degrees (or deg_{sos}(v f)), then problem (3) is equivalent to problem (2).
- By bounding the degrees, we get the Lasserre/Parrilo hierarchy.

min
$$\nu$$

such that $\nu - f(x) = \sigma(x) + \sum_{i} b_i(x)g_i(x)$, (9)
where $\sigma(x)$ is SOS and $b_i(x)$ is any polynomial and deg $(\sigma(x))$, deg $(b_i(x)g_i(x)) \le 2D$.

Summary Open Questions

SoS relaxation: Lasserre/Parrilo Hierarchy

- If σ(x), b_i(x) have any degrees (or deg_{sos}(v f)), then problem (3) is equivalent to problem (2).
- By bounding the degrees, we get the Lasserre/Parrilo hierarchy.

min
$$\nu$$

such that $\nu - f(x) = \sigma(x) + \sum_{i} b_i(x)g_i(x)$, (9)
where $\sigma(x)$ is SOS and $b_i(x)$ is any polynomial and deg $(\sigma(x))$, deg $(b_i(x)g_i(x)) \le 2D$.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Summary Open Questions

SoS relaxation: Lasserre/Parrilo Hierarchy

- If σ(x), b_i(x) have any degrees (or deg_{sos}(v f)), then problem (3) is equivalent to problem (2).
- By bounding the degrees, we get the Lasserre/Parrilo hierarchy.

min
$$\nu$$

such that $\nu - f(x) = \sigma(x) + \sum_{i} b_i(x)g_i(x),$ (9)

where $\sigma(x)$ is SOS and $b_i(x)$ is any polynomial and deg($\sigma(x)$), deg($b_i(x)g_i(x)$) $\leq 2D$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Summary Open Questions

Why it is a SDP?

Observation

- Any p(x) (of degree 2D) = $m^T Qm$, where *m* is the vector of monomials of degree up to 2D and *Q* is the coefficients.
- p(x) is a SOS iff $Q \ge 0$.

$$\min_{\nu, b_{i\alpha} \in \mathbb{R}} \quad \nu$$

such that $\nu A_0 - F - \sum_{i\alpha} b_{i\alpha} G_{i\alpha} \ge 0.$ (10)

Complexity: poly(*m*) poly log($1/\epsilon$), where $m = {\binom{n+D}{D}}$.

(日)

Summary Open Questions

Why it is a SDP?

Observation

- Any p(x) (of degree 2D) = $m^T Qm$, where *m* is the vector of monomials of degree up to 2D and *Q* is the coefficients.
- p(x) is a SOS iff $Q \ge 0$.

$$\min_{\nu, b_{i\alpha} \in \mathbb{R}} \quad \nu$$

such that $\nu A_0 - F - \sum_{i\alpha} b_{i\alpha} G_{i\alpha} \ge 0.$ (10)

Complexity: poly(m) poly log($1/\epsilon$), where $m = \binom{n+D}{D}$.

(日) (圖) (E) (E) (E)
Introduction Proof Technique Conclusions

Summary Open Questions

Why it is a SDP?

Observation

- Any p(x) (of degree 2D) = $m^T Qm$, where *m* is the vector of monomials of degree up to 2D and *Q* is the coefficients.
- p(x) is a SOS iff $Q \ge 0$.

$$\begin{array}{ll} \min_{\nu,b_{i\alpha}\in\mathbb{R}} & \nu \\ \text{such that} & \nu A_0 - F - \sum_{i\alpha} b_{i\alpha} G_{i\alpha} \geq 0. \end{array} \tag{10}$$

Complexity: poly(*m*) poly log($1/\epsilon$), where $m = \binom{n+D}{D}$.