
Background
Results

Epsilon-net method for optimizations over
separable states

Yaoyun Shi and Xiaodi Wu

Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor

QIP 2012, December, 2011

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states



Background
Results

The Problem
Motivations

Warm Up

Given H ∈ Herm (X ) as input. Consider

max /min 〈H, ρ〉 subject to ρ ∈ D (X )

Capture some physical meaning, such as finding the
ground energy/states when H is a Hamiltonian.
Can be efficiently solved by computing the spectral
decomposition of H.
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The Problem

Given H ∈ Herm (X ⊗ Y) as input. Consider

max /min 〈H, ρ〉 subject to ρ ∈ SepD (X ⊗ Y)

Ground energy that is achieved by non-entangled states.
Other applications such as mean-field approximation, or
later, ...
NP-hard to solve in general.
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Hardness

OptSep(H) = max /min 〈H, ρ〉 s.t. ρ ∈ SepD (X ⊗ Y)

Problem

Given H (d × d) and δ > 0 as input, approximate OptSep(H)
with additive error δ. Namely, the return value λ satisfies,

λ− δ ≤ OptSep(H) ≤ λ+ δ

NP-hard even to solve the problem with δ = O( 1
poly(d) ).

The hardness can be implied by the hardness of the
membership problem of separable states [Gur03,
Ioa07,Gha10].
Results in operations research also imply such hardness
[deK08, LQNY09].
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Our Interest

Problem

Given H (d × d) and δ > 0 as input, approximate OptSep(H)
with additive error δ. Namely, the return value λ satisfies,

λ− δ ≤ OptSep(H) ≤ λ+ δ

Although it is impossible to obtain an efficient algorithm in
general, one can still hope for efficient algorithms when

δ is larger than inverse-polynomial.
H is some interesting instance.

It connects to many problems while we will focus on the
simulation of QMA(2).
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One Motivation: QMA(2)

C-Prover C-Verifier

Q-VerifierQ-VerifierQ-Prover
quantum message |ψ〉
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History about QMA(2)

QMA(2) was firstly studied in [KMY01, KMY03].
Recently, a surprising result shows NP ⊆ QMA(2)log
[BT09]. Compare with QMAlog = BQP [MW05].
Various improvements of the above result have been found
[Bei10, ABD+09, CF11, GNN11, CD10, ...].

However, only the trivial upper bound NEXP is known for
QMA(2) and it is widely believed that QMA(2)(NEXP.

Variants of QMA(2) have been studied, such as BellQMA,
LOCC-QMA, which collapse to QMA [Bra08, ABD+09,
BCY11].
QMA(2)=QMA(poly) [HM10].

Better upper bounds, such as EXP, PSPACE, are expected.

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states



Background
Results

The Problem
Motivations

History about QMA(2)

QMA(2) was firstly studied in [KMY01, KMY03].
Recently, a surprising result shows NP ⊆ QMA(2)log
[BT09]. Compare with QMAlog = BQP [MW05].
Various improvements of the above result have been found
[Bei10, ABD+09, CF11, GNN11, CD10, ...].

However, only the trivial upper bound NEXP is known for
QMA(2) and it is widely believed that QMA(2)(NEXP.

Variants of QMA(2) have been studied, such as BellQMA,
LOCC-QMA, which collapse to QMA [Bra08, ABD+09,
BCY11].
QMA(2)=QMA(poly) [HM10].

Better upper bounds, such as EXP, PSPACE, are expected.

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states



Background
Results

The Problem
Motivations

History about QMA(2)

QMA(2) was firstly studied in [KMY01, KMY03].
Recently, a surprising result shows NP ⊆ QMA(2)log
[BT09]. Compare with QMAlog = BQP [MW05].
Various improvements of the above result have been found
[Bei10, ABD+09, CF11, GNN11, CD10, ...].

However, only the trivial upper bound NEXP is known for
QMA(2) and it is widely believed that QMA(2)(NEXP.

Variants of QMA(2) have been studied, such as BellQMA,
LOCC-QMA, which collapse to QMA [Bra08, ABD+09,
BCY11].
QMA(2)=QMA(poly) [HM10].

Better upper bounds, such as EXP, PSPACE, are expected.

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states



Background
Results

The Problem
Motivations

History about QMA(2)

QMA(2) was firstly studied in [KMY01, KMY03].
Recently, a surprising result shows NP ⊆ QMA(2)log
[BT09]. Compare with QMAlog = BQP [MW05].
Various improvements of the above result have been found
[Bei10, ABD+09, CF11, GNN11, CD10, ...].

However, only the trivial upper bound NEXP is known for
QMA(2) and it is widely believed that QMA(2)(NEXP.

Variants of QMA(2) have been studied, such as BellQMA,
LOCC-QMA, which collapse to QMA [Bra08, ABD+09,
BCY11].
QMA(2)=QMA(poly) [HM10].

Better upper bounds, such as EXP, PSPACE, are expected.

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states



Background
Results

The Problem
Motivations

History about QMA(2)

QMA(2) was firstly studied in [KMY01, KMY03].
Recently, a surprising result shows NP ⊆ QMA(2)log
[BT09]. Compare with QMAlog = BQP [MW05].
Various improvements of the above result have been found
[Bei10, ABD+09, CF11, GNN11, CD10, ...].

However, only the trivial upper bound NEXP is known for
QMA(2) and it is widely believed that QMA(2)(NEXP.

Variants of QMA(2) have been studied, such as BellQMA,
LOCC-QMA, which collapse to QMA [Bra08, ABD+09,
BCY11].
QMA(2)=QMA(poly) [HM10].

Better upper bounds, such as EXP, PSPACE, are expected.

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states



Background
Results

The Problem
Motivations

History about QMA(2)

QMA(2) was firstly studied in [KMY01, KMY03].
Recently, a surprising result shows NP ⊆ QMA(2)log
[BT09]. Compare with QMAlog = BQP [MW05].
Various improvements of the above result have been found
[Bei10, ABD+09, CF11, GNN11, CD10, ...].

However, only the trivial upper bound NEXP is known for
QMA(2) and it is widely believed that QMA(2)(NEXP.

Variants of QMA(2) have been studied, such as BellQMA,
LOCC-QMA, which collapse to QMA [Bra08, ABD+09,
BCY11].
QMA(2)=QMA(poly) [HM10].

Better upper bounds, such as EXP, PSPACE, are expected.

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states



Background
Results

The Problem
Motivations

History about QMA(2)

QMA(2) was firstly studied in [KMY01, KMY03].
Recently, a surprising result shows NP ⊆ QMA(2)log
[BT09]. Compare with QMAlog = BQP [MW05].
Various improvements of the above result have been found
[Bei10, ABD+09, CF11, GNN11, CD10, ...].

However, only the trivial upper bound NEXP is known for
QMA(2) and it is widely believed that QMA(2)(NEXP.

Variants of QMA(2) have been studied, such as BellQMA,
LOCC-QMA, which collapse to QMA [Bra08, ABD+09,
BCY11].
QMA(2)=QMA(poly) [HM10].

Better upper bounds, such as EXP, PSPACE, are expected.

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states



Background
Results

The Problem
Motivations

Formulation of QMA(2)

Definition (QMA(2))
A language L is in QMA(2) if there exists a polynomial-time
generated two-outcome POVM measurement {Qacc

x , I −Qacc
x }

for any input x such that,
If x ∈ L,∃ |ψ1〉 , |ψ2〉, 〈Qacc

x , |ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2|〉 ≥ 2
3 .

If x /∈ L,∀ |ψ1〉 , |ψ2〉 , 〈Qacc
x , |ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2|〉 ≤ 1

3 .

Roughly it amounts to computing OptSep(Qacc
x ), except

One only needs to distinguish two promises of
OptSep(Qacc

x ).
One has the freedom to obtain nice Qacc

x s by manipulating
the protocol.
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Decomposability
Eigenspace

Result based on the DECOMPOSABILITY of H

Definition

We call H is (M, ~w)-decomposable if H =
∑M

i=1 H1
i ⊗ H2

i where
‖H1

i ‖ ≤ w1, ‖H2
i ‖ ≤ w2.

Intuition: the smaller M is , the more ”local” H is and the less
connection there is between the two parties.

One can enumerate and then fix the connection, and solve
the optimization separably.
Assume the decomposition is given or easily computable.
We do not need the smallest M.

We obtain efficient algorithms in both TIME and SPACE when
M is small.
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Result based on the DECOMPOSABILITY of H

As a result, we can show
The variant QMA(2)[poly(n),O(log(n))]⊆ PSPACE.

Restricted verifier that only performs poly(n) type-I
elementary gates and O(log(n)) type-II elementary gates.

|ψ1〉
⊗
|ψ2〉
⊗
|0〉

I I

I I

I

II

II

II

Stronger verifier than those in BellQMA and LOCC-QMA.
PSPACE upper bound.

The k -partite local Hamiltonian is inside PSPACE, which
complements the result in the previous talk.
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CONNECTION enumeration, TIME efficiency

Assume H =
∑M

i=1 H1
i ⊗ H2

i , then we have

max 〈H, ρ1 ⊗ ρ2〉 = max
〈
H1

1 , ρ1
〉 〈

H2
1 , ρ2

〉
+· · ·+

〈
H1

M , ρ1
〉 〈
H2

M , ρ2
〉

Hard optimization problem because of the terms.
Once the values are fixed, the optimization over
becomes efficiently solvable.
Enumerate the valid values of the terms. Details later.

Small M implies the dimension of the space to enumerate over
is small.
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CONNECTION enumeration, SPACE efficiency

( , , · · · , )︸ ︷︷ ︸
dimension M

from some ρ1 ∈ D (X )

Enumerate raw values of terms from a bounded set
according to ~w .
Check the validness of the enumerated values by the
multiplicative weight update method.

Finally, after fixing the values, all you need to do is the
spectral decomposition.
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( , , · · · , )︸ ︷︷ ︸
dimension M

from some ρ1 ∈ D (X )

Enumerate raw values of terms from a bounded set
according to ~w . Efficient in both TIME and SPACE.
Check the validness of the enumerated values by the
multiplicative weight update method. Efficient in both
TIME and SPACE.
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spectral decomposition. Efficient in both TIME and SPACE.
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Result based on the EIGENSPACE of H

Theorem
When H ≥ 0, OptSep(H) can be approximated with additive
error δ in time exp(O(log(d) + δ−2‖H‖2F ln(‖H‖F/δ))).

A similar running time exp(O(log2(d)δ−2‖H‖2F)) was
obtained in [BCY11] (Using symmetric extension, quantum
de Finetti bounds).
Our algorithm only makes use of the spectral
decomposition and then the Schmidt decomposition.

eigenspace
enumeration + Schmidt decomposition
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Technique: EIGENSPACE enumeration

Let H =
∑

t λt |Ψt〉〈Ψt | , Γ = {t : λt ≥ δ} (|Γ| = O(‖H‖2Fδ
−2)).

Also let |u〉 |v 〉 =
∑

t βt |ψt 〉.

Claim 1: it suffices to only consider the eigenspace Γ.

〈Q, |u〉〈u| ⊗ |v〉〈v |〉 =
∑
t∈Γε

λt |βt |2︸ ︷︷ ︸
(I)

+
∑
t /∈Γε

λt |βt |2︸ ︷︷ ︸
(II)

,

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states



Background
Results

Decomposability
Eigenspace

Technique: EIGENSPACE enumeration

Let H =
∑

t λt |Ψt〉〈Ψt | , Γ = {t : λt ≥ δ} (|Γ| = O(‖H‖2Fδ
−2)).

Also let |u〉 |v 〉 =
∑

t βt |ψt 〉.

Claim 1: it suffices to only consider the eigenspace Γ.

〈Q, |u〉〈u| ⊗ |v〉〈v |〉 =
∑
t∈Γε

λt |βt |2︸ ︷︷ ︸
(I)

+
∑
t /∈Γε

λt |βt |2︸ ︷︷ ︸
(II)

,

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states



Background
Results

Decomposability
Eigenspace

Technique: EIGENSPACE enumeration

Let H =
∑

t λt |Ψt〉〈Ψt | , Γ = {t : λt ≥ δ} (|Γ| = O(‖H‖2Fδ
−2)).

Also let |u〉 |v 〉 =
∑

t βt |ψt 〉.

Claim 1: it suffices to only consider the eigenspace Γ.

〈Q, |u〉〈u| ⊗ |v〉〈v |〉 =
∑
t∈Γε

λt |βt |2︸ ︷︷ ︸
(I)

+
∑
t /∈Γε

λt |βt |2︸ ︷︷ ︸
(II)

,

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states



Background
Results

Decomposability
Eigenspace

Technique: EIGENSPACE enumeration

Let H =
∑

t λt |Ψt〉〈Ψt | , Γ = {t : λt ≥ δ} (|Γ| = O(‖H‖2Fδ
−2)).

Also let |u〉 |v 〉 =
∑

t βt |ψt 〉.

Claim 1: it suffices to only consider the eigenspace Γ.

〈Q, |u〉〈u| ⊗ |v〉〈v |〉 =
∑
t∈Γε

λt |βt |2︸ ︷︷ ︸
(I)

+
∑
t /∈Γε

λt |βt |2︸ ︷︷ ︸
(II)

≤ δ ,

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states



Background
Results

Decomposability
Eigenspace

Technique: EIGENSPACE enumeration

Let H =
∑

t λt |Ψt〉〈Ψt | , Γ = {t : λt ≥ δ} (|Γ| = O(‖H‖2Fδ
−2)).

Also let |u〉 |v 〉 =
∑

t βt |ψt 〉.

Claim 2: it suffices to enumerate in C|Γ|.

max
|u〉|v 〉

∑
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λt | 〈u| 〈v |Ψt〉 |2

= max
|u〉|v 〉

max
α∈B(C|Γε|)

|
∑
t∈Γε

α∗t
√
λt 〈u| 〈v |Ψt〉 |2

= max|u〉|v 〉 maxα∈B(C|Γε|) | 〈u| 〈v |φα〉 |
2

= maxα∈B(C|Γε|) max|u〉|v 〉 | 〈u| 〈v |φα〉 |2,

standard ε-net Schmidt decomposition
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Conclusion

In this talk, we provide two algorithms based on the following
structures of H.

The decomposability of H.
The eigenspace of high eigenvalues of H.

Open Problems:
Algorithm or Hardness for larger δ.
Upper bound for QMA(2).
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Question And Answer

Thank you!
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