Epsilon-net method for optimizations over separable states

Yaoyun Shi and Xiaodi Wu

Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor

QIP 2012, December, 2011

Warm Up

Given $\mathbf{H} \in \operatorname{Herm}(\mathcal{X})$ as input. Consider

$$
\max / \min \langle\mathbf{H}, \rho\rangle \text { subject to } \rho \in \mathrm{D}(\mathcal{X})
$$

Warm Up

Given $\mathbf{H} \in \operatorname{Herm}(\mathcal{X})$ as input. Consider

$$
\max / \min \langle\mathbf{H}, \rho\rangle \text { subject to } \rho \in \mathrm{D}(\mathcal{X})
$$

- Capture some physical meaning, such as finding the ground energy/states when H is a Hamiltonian.

Warm Up

Given $\mathbf{H} \in \operatorname{Herm}(\mathcal{X})$ as input. Consider

```
max / min }\langle\mathbf{H},\rho\rangle\mathrm{ subject to }\rho\in\textrm{D}(\mathcal{X}
```

- Capture some physical meaning, such as finding the ground energy/states when H is a Hamiltonian.
- Can be efficiently solved by computing the spectral decomposition of H.

The Problem

Given $\mathbf{H} \in \operatorname{Herm}(\mathcal{X} \otimes \mathcal{Y})$ as input. Consider

$$
\max / \min \langle\mathbf{H}, \rho\rangle \text { subject to } \rho \in \operatorname{SepD}(\mathcal{X} \otimes \mathcal{Y})
$$

The Problem

Given $\mathbf{H} \in \operatorname{Herm}(\mathcal{X} \otimes \mathcal{Y})$ as input. Consider

$$
\max / \min \langle\mathbf{H}, \rho\rangle \text { subject to } \rho \in \operatorname{SepD}(\mathcal{X} \otimes \mathcal{Y})
$$

- Ground energy that is achieved by non-entangled states. Other applications such as mean-field approximation, or later, ...

The Problem

Given $\mathbf{H} \in \operatorname{Herm}(\mathcal{X} \otimes \mathcal{Y})$ as input. Consider

```
max / min }\langle\mathbf{H},\rho\rangle\mathrm{ subject to }\rho\in\operatorname{SepD}(\mathcal{X}\otimes\mathcal{Y}
```

- Ground energy that is achieved by non-entangled states. Other applications such as mean-field approximation, or later, ...
- NP-hard to solve in general.

Hardness

$\operatorname{OptSep}(\mathbf{H})=\max / \min \langle\mathbf{H}, \rho\rangle$ s.t. $\rho \in \operatorname{SepD}(\mathcal{X} \otimes \mathcal{Y})$

Hardness

$$
\operatorname{OptSep}(\mathbf{H})=\max \langle\mathbf{H}, \rho\rangle \text { s.t. } \rho \in \operatorname{SepD}(\mathcal{X} \otimes \mathcal{Y})
$$

Hardness

$$
\operatorname{OptSep}(\mathbf{H})=\max \langle\mathbf{H}, \rho\rangle \text { s.t. } \rho \in \operatorname{SepD}(\mathcal{X} \otimes \mathcal{Y})
$$

Problem

Given $\mathbf{H}(d \times d)$ and $\delta>0$ as input, approximate $\operatorname{OptSep}(\mathbf{H})$ with additive error δ. Namely, the return value λ satisfies,

$$
\lambda-\delta \leq \operatorname{OptSep}(\mathbf{H}) \leq \lambda+\delta
$$

NP-hard even to solve the problem with $\delta=O\left(\frac{1}{\text { poly }(d)}\right.$ The hardness can be implied by the hardness of the

 membership problem of separable states [Gur03, loa07,Gha10]
Hardness

$$
\operatorname{OptSep}(\mathbf{H})=\max \langle\mathbf{H}, \rho\rangle \text { s.t. } \rho \in \operatorname{SepD}(\mathcal{X} \otimes \mathcal{Y})
$$

Problem

Given $\mathbf{H}(d \times d)$ and $\delta>0$ as input, approximate $\operatorname{OptSep}(\mathbf{H})$ with additive error δ. Namely, the return value λ satisfies,

$$
\lambda-\delta \leq \operatorname{OptSep}(\mathbf{H}) \leq \lambda+\delta
$$

- NP-hard even to solve the problem with $\delta=O\left(\frac{1}{\text { poly }(d)}\right)$.
\square
membership problem of separable states [Gur03,
loa07,Gha10].
Results in operations research also imply such hardness
\square

Hardness

$$
\operatorname{OptSep}(\mathbf{H})=\max \langle\mathbf{H}, \rho\rangle \text { s.t. } \rho \in \operatorname{SepD}(\mathcal{X} \otimes \mathcal{Y})
$$

Problem

Given $\mathbf{H}(d \times d)$ and $\delta>0$ as input, approximate $\operatorname{OptSep}(\mathbf{H})$ with additive error δ. Namely, the return value λ satisfies,

$$
\lambda-\delta \leq \operatorname{OptSep}(\mathbf{H}) \leq \lambda+\delta
$$

- NP-hard even to solve the problem with $\delta=O\left(\frac{1}{\text { poly }(d)}\right)$.
- The hardness can be implied by the hardness of the membership problem of separable states [Gur03, loa07,Gha10].

Hardness

$$
\operatorname{OptSep}(\mathbf{H})=\max \langle\mathbf{H}, \rho\rangle \text { s.t. } \rho \in \operatorname{SepD}(\mathcal{X} \otimes \mathcal{Y})
$$

Problem

Given $\mathbf{H}(d \times d)$ and $\delta>0$ as input, approximate $\operatorname{OptSep}(\mathbf{H})$ with additive error δ. Namely, the return value λ satisfies,

$$
\lambda-\delta \leq \operatorname{OptSep}(\mathbf{H}) \leq \lambda+\delta
$$

- NP-hard even to solve the problem with $\delta=O\left(\frac{1}{\text { poly }(d)}\right)$.
- The hardness can be implied by the hardness of the membership problem of separable states [Gur03, Ioa07,Gha10].
- Results in operations research also imply such hardness [deK08, LQNY09].

Our Interest

Problem

Given $\mathbf{H}(d \times d)$ and $\delta>0$ as input, approximate $\operatorname{OptSep}(\mathbf{H})$ with additive error δ. Namely, the return value λ satisfies,

$$
\lambda-\delta \leq \operatorname{OptSep}(\mathbf{H}) \leq \lambda+\delta
$$

Although it is impossible to obtain an efficient algorithm in general, one can still hope for efficient algorithms when

- δ is larger than inverse-polynomial.
- H is some interesting instance

Our Interest

Problem

Given $\mathbf{H}(d \times d)$ and $\delta>0$ as input, approximate $\operatorname{OptSep}(\mathbf{H})$ with additive error δ. Namely, the return value λ satisfies,

$$
\lambda-\delta \leq \operatorname{OptSep}(\mathbf{H}) \leq \lambda+\delta
$$

Although it is impossible to obtain an efficient algorithm in general, one can still hope for efficient algorithms when

- δ is larger than inverse-polynomial.
- \mathbf{H} is some interesting instance.

simulation of QMA(2).

Our Interest

Problem

Given $\mathbf{H}(d \times d)$ and $\delta>0$ as input, approximate $\operatorname{OptSep}(\mathbf{H})$ with additive error δ. Namely, the return value λ satisfies,

$$
\lambda-\delta \leq \operatorname{OptSep}(\mathbf{H}) \leq \lambda+\delta
$$

Although it is impossible to obtain an efficient algorithm in general, one can still hope for efficient algorithms when

- δ is larger than inverse-polynomial ? Open problem.
- \mathbf{H} is some interesting instance.

simulation of QMA(2).

Our Interest

Problem

Given $\mathbf{H}(d \times d)$ and $\delta>0$ as input, approximate $\operatorname{OptSep}(\mathbf{H})$ with additive error δ. Namely, the return value λ satisfies,

$$
\lambda-\delta \leq \operatorname{OptSep}(\mathbf{H}) \leq \lambda+\delta
$$

Although it is impossible to obtain an efficient algorithm in general, one can still hope for efficient algorithms when

- δ is larger than inverse-polynomial ? Open problem.
- \mathbf{H} is some interesting instance.

It connects to many problems while we will focus on the simulation of QMA(2).

One Motivation: QMA(2)

C-Prover

One Motivation: QMA(2)

C-Prover

C-Verifier

quantum message

Q-Prove:

One Motivation: QMA(2)

NP

quantum message
Q-Prove:

One Motivation: QMA(2)

NP

QMA

Q-Prover $\xrightarrow{\text { quantum message }|\psi\rangle}$ Q-Verifier

One Motivation: QMA(2)

$$
\begin{aligned}
& C-P_{1} \\
& C-P_{2}
\end{aligned}
$$

C-Verifier

quantum message

One Motivation: QMA(2)

C- P_{1}
 classical message m_{1}
 C- P_{2} classical message m_{2}

quantum message
Q-Prover

One Motivation: QMA(2)

C- $P_{1} \xrightarrow{\text { classical message } m_{1}} \xrightarrow{\text { classical message } m_{2}}$ C-Verifier ${ }^{\text {cl(2) }}$
QMA(2)
Q- P_{1} quantum message $\left|\psi_{1}\right\rangle$
Q-Verifier
Q- P_{2} quantum message $\left|\psi_{2}\right\rangle$

One Motivation: QMA(2)

QMA(2)
Q- P_{1} quantum message $\left|\psi_{1}\right\rangle$
Q-Verifier
Q- P_{2} quantum message $\left|\psi_{2}\right\rangle$

One Motivation: QMA(2)

$N P(2)=N P$

$$
\text { C- } P_{1} \circ P_{2} \xrightarrow{m_{1}+m_{2}} \text { C-Verifier }
$$

QMA(2)

Q- P_{1} quantum message $\left|\psi_{1}\right\rangle$
Q-Verifier
Q- P_{2} quantum message $\left|\psi_{2}\right\rangle$

One Motivation: QMA(2)

$N P(2)=N P$

C- $P_{1} \circ P_{2} \xrightarrow{m_{1}+m_{2}}$ C-Verifier

QMA(2)?

quantum message $\left|\psi_{1}\right\rangle$

$$
\mathbf{Q}-Q_{1} \otimes Q_{2}
$$

quantum message $\left|\psi_{2}\right\rangle$

History about QMA(2)

- QMA(2) was firstly studied in [KMY01, KMY03].

History about QMA(2)

- QMA(2) was firstly studied in [KMY01, KMY03].
- Recently, a surprising result shows NP \subseteq QMA(2) $)_{\text {log }}$ [BT09]. Compare with QMA $_{\log }=$ BQP [MW05].

However, only the trivial upper bound NEXP is known for

History about QMA(2)

- QMA(2) was firstly studied in [KMY01, KMY03].
- Recently, a surprising result shows NP \subseteq QMA(2) ${ }_{\text {log }}$ [BT09]. Compare with QMA $_{\text {log }}=$ BQP [MW05].
- Various improvements of the above result have been found [Bei10, ABD+09, CF11, GNN11, CD10, ...].

History about QMA(2)

- QMA(2) was firstly studied in [KMY01, KMY03].
- Recently, a surprising result shows NP \subseteq QMA(2) ${ }_{\text {log }}$ [BT09]. Compare with QMA $_{\text {log }}=$ BQP [MW05].
- Various improvements of the above result have been found [Bei10, ABD+09, CF11, GNN11, CD10, ...].

However, only the trivial upper bound NEXP is known for QMA(2) and it is widely believed that QMA(2) $\subsetneq N E X P$.

History about QMA(2)

- QMA(2) was firstly studied in [KMY01, KMY03].
- Recently, a surprising result shows NP \subseteq QMA(2) $)_{\text {log }}$ [BT09]. Compare with QMA $_{\text {log }}=$ BQP [MW05].
- Various improvements of the above result have been found [Bei10, ABD+09, CF11, GNN11, CD10, ...].

However, only the trivial upper bound NEXP is known for QMA(2) and it is widely believed that QMA(2) $\subsetneq N E X P$.

- Variants of QMA(2) have been studied, such as BellQMA, LOCC-QMA, which collapse to QMA [Bra08, ABD+09, BCY11].

Better upper bounds, such as EXP, PSPACE, are expected.

History about QMA(2)

- QMA(2) was firstly studied in [KMY01, KMY03].
- Recently, a surprising result shows NP \subseteq QMA(2) ${ }_{l o g}$ [BT09]. Compare with QMA $_{\text {log }}=$ BQP [MW05].
- Various improvements of the above result have been found [Bei10, ABD+09, CF11, GNN11, CD10, ...].

However, only the trivial upper bound NEXP is known for QMA(2) and it is widely believed that QMA(2) $\subsetneq N E X P$.

- Variants of QMA(2) have been studied, such as BellQMA, LOCC-QMA, which collapse to QMA [Bra08, ABD+09, BCY11].
- QMA(2)=QMA(poly) [HM10].

History about QMA(2)

- QMA(2) was firstly studied in [KMY01, KMY03].
- Recently, a surprising result shows NP \subseteq QMA(2) ${ }_{\mathrm{log}}$ [BT09]. Compare with QMA $_{\text {log }}=$ BQP [MW05].
- Various improvements of the above result have been found [Bei10, ABD+09, CF11, GNN11, CD10, ...].

However, only the trivial upper bound NEXP is known for
QMA(2) and it is widely believed that QMA(2) ¢NEXP.

- Variants of QMA(2) have been studied, such as BellQMA, LOCC-QMA, which collapse to QMA [Bra08, ABD+09, BCY11].
- QMA(2)=QMA(poly) [HM10].

Better upper bounds, such as EXP, PSPACE, are expected.

Formulation of QMA(2)

Definition (QMA(2))

A language \mathcal{L} is in $\mathrm{QMA}(2)$ if there exists a polynomial-time generated two-outcome POVM measurement $\left\{Q_{X}^{\text {acc }}, I-Q_{X}^{\text {acc }}\right\}$ for any input x such that,

- If $x \in \mathcal{L}, \exists\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle,\left\langle Q_{X}^{\text {acc }}, \mid \psi_{1}\right\rangle\left\langle\psi_{1}\right| \otimes\left|\psi_{2}\right\rangle\left\langle\psi_{2} \mid\right\rangle \geq \frac{2}{3}$.
- If $x \notin \mathcal{L}, \forall\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle,\left\langle Q_{X}^{\text {acc }}, \mid \psi_{1}\right\rangle\left\langle\psi_{1}\right| \otimes\left|\psi_{2}\right\rangle\left\langle\psi_{2} \mid\right\rangle \leq \frac{1}{3}$.

Roughly it amounts to computing OptSep $\left(\mathbf{Q}_{\mathrm{X}}^{\text {acc }}\right)$, except

Formulation of QMA(2)

Definition (QMA(2))

A language \mathcal{L} is in QMA(2) if there exists a polynomial-time generated two-outcome POVM measurement $\left\{Q_{X}^{\text {acc }}, I-Q_{X}^{\text {acc }}\right\}$ for any input x such that,

- If $x \in \mathcal{L}, \exists\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle,\left\langle Q_{X}^{\text {acc }}, \mid \psi_{1}\right\rangle\left\langle\psi_{1}\right| \otimes\left|\psi_{2}\right\rangle\left\langle\psi_{2} \mid\right\rangle \geq \frac{2}{3}$.
- If $x \notin \mathcal{L}, \forall\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle,\left\langle Q_{X}^{\text {acc }}, \mid \psi_{1}\right\rangle\left\langle\psi_{1}\right| \otimes\left|\psi_{2}\right\rangle\left\langle\psi_{2} \mid\right\rangle \leq \frac{1}{3}$.

Roughly it amounts to computing $\operatorname{OptSep}\left(\mathbf{Q}_{\mathbf{x}}^{\text {acc }}\right)$, except

Formulation of QMA(2)

Definition (QMA(2))

A language \mathcal{L} is in $\mathrm{QMA}(2)$ if there exists a polynomial-time generated two-outcome POVM measurement $\left\{Q_{X}^{\text {acc }}, I-Q_{X}^{\text {acc }}\right\}$ for any input x such that,

- If $x \in \mathcal{L}, \exists\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle,\left\langle Q_{X}^{\text {acc }}, \mid \psi_{1}\right\rangle\left\langle\psi_{1}\right| \otimes\left|\psi_{2}\right\rangle\left\langle\psi_{2} \mid\right\rangle \geq \frac{2}{3}$.
- If $x \notin \mathcal{L}, \forall\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle,\left\langle Q_{X}^{\text {acc }}, \mid \psi_{1}\right\rangle\left\langle\psi_{1}\right| \otimes\left|\psi_{2}\right\rangle\left\langle\psi_{2} \mid\right\rangle \leq \frac{1}{3}$.

Roughly it amounts to computing OptSep $\left(\mathbf{Q}_{\mathbf{x}}^{\text {acc }}\right)$, except

- One only needs to distinguish two promises of OptSep $\left(\mathbf{Q}_{\mathrm{x}}^{\text {acc }}\right)$.
One has the freedom to obtain nice $Q_{X}^{a c c} S$ by manipulating the protocol.

Formulation of QMA(2)

Definition (QMA(2))

A language \mathcal{L} is in $\mathrm{QMA}(2)$ if there exists a polynomial-time generated two-outcome POVM measurement $\left\{Q_{x}^{\text {acc }}, I-Q_{X}^{\text {acc }}\right\}$ for any input x such that,

- If $x \in \mathcal{L}, \exists\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle,\left\langle Q_{X}^{\text {acc }}, \mid \psi_{1}\right\rangle\left\langle\psi_{1}\right| \otimes\left|\psi_{2}\right\rangle\left\langle\psi_{2} \mid\right\rangle \geq \frac{2}{3}$.
- If $x \notin \mathcal{L}, \forall\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle,\left\langle Q_{X}^{\text {acc }}, \mid \psi_{1}\right\rangle\left\langle\psi_{1}\right| \otimes\left|\psi_{2}\right\rangle\left\langle\psi_{2} \mid\right\rangle \leq \frac{1}{3}$.

Roughly it amounts to computing OptSep $\left(\mathbf{Q}_{\mathbf{x}}^{\text {acc }}\right)$, except

- One only needs to distinguish two promises of OptSep $\left(\mathbf{Q}_{\mathbf{x}}^{\text {acc }}\right)$.
- One has the freedom to obtain nice $Q_{x}^{\text {acc }} s$ by manipulating the protocol.

High-level Technique Overview

High-level Technique Overview

High-level Technique Overview

High-level Technique Overview

Result based on the DECOMPOSABILITY of H

Definition

We call \mathbf{H} is (M, \vec{w})-decomposable if $H=\sum_{i=1}^{M} H_{i}^{1} \otimes H_{i}^{2}$ where $\left\|H_{i}^{1}\right\| \leq w_{1},\left\|H_{i}^{2}\right\| \leq w_{2}$.

Intuition: the smaller M is, the more "local" \mathbf{H} is and the less connection there is between the two parties.

Result based on the DECOMPOSABILITY of \mathbf{H}

Definition

We call \mathbf{H} is (M, \vec{w})-decomposable if $H=\sum_{i=1}^{M} H_{i}^{1} \otimes H_{i}^{2}$ where $\left\|H_{i}^{1}\right\| \leq w_{1},\left\|H_{i}^{2}\right\| \leq w_{2}$.

Intuition: the smaller M is, the more "local" \mathbf{H} is and the less connection there is between the two parties.

- One can enumerate and then fix the connection, and solve the optimization separably.

Assume the decomposition is given or easily computable. We do not need the smallest M.

We ohtain efficient algorithms in hoth TIIME and SPACE when
M is small.

Result based on the DECOMPOSABILITY of H

Definition

We call \mathbf{H} is (M, \vec{w})-decomposable if $H=\sum_{i=1}^{M} H_{i}^{1} \otimes H_{i}^{2}$ where $\left\|H_{i}^{1}\right\| \leq w_{1},\left\|H_{i}^{2}\right\| \leq w_{2}$.

Intuition: the smaller M is, the more "local" \mathbf{H} is and the less connection there is between the two parties.

- One can enumerate and then fix the connection, and solve the optimization separably.
- Assume the decomposition is given or easily computable. We do not need the smallest M.
We obtain efficient algorithms in both TIME and SPACE when M is small.

Result based on the DECOMPOSABILITY of H

Definition

We call \mathbf{H} is (M, \vec{w})-decomposable if $H=\sum_{i=1}^{M} H_{i}^{1} \otimes H_{i}^{2}$ where $\left\|H_{i}^{1}\right\| \leq w_{1},\left\|H_{i}^{2}\right\| \leq w_{2}$.

Intuition: the smaller M is, the more "local" \mathbf{H} is and the less connection there is between the two parties.

- One can enumerate and then fix the connection, and solve the optimization separably.
- Assume the decomposition is given or easily computable. We do not need the smallest M.

We obtain efficient algorithms in both TIME and SPACE when M is small.

Result based on the DECOMPOSABILITY of H

As a result, we can show

- The variant QMA(2)[poly(n), $O(\log (n))] \subseteq$ PSPACE.

Result based on the DECOMPOSABILITY of H

As a result, we can show

- The variant QMA(2)[poly(n), $O(\log (n))] \subseteq$ PSPACE.
- Restricted verifier that only performs poly(n) type-I elementary gates and $O(\log (n))$ type-II elementary gates.

Result based on the DECOMPOSABILITY of H

As a result, we can show

- The variant QMA(2)[poly(n), O(log(n))]؟ PSPACE.
- Restricted verifier that only performs poly(n) type-I elementary gates and $O(\log (n))$ type-II elementary gates.

Result based on the DECOMPOSABILITY of H

As a result, we can show

- The variant QMA(2)[poly(n), $O(\log (n))] \subseteq$ PSPACE.
- Restricted verifier that only performs poly(n) type-I elementary gates and $O(\log (n))$ type-II elementary gates.

- Stronger verifier than those in BeIIQMA and LOCC-QMA.

The k =partite local Hamiltonian is inside PSPACE, which
comnlements the result in the nrevinus talk

Result based on the DECOMPOSABILITY of H

As a result, we can show

- The variant QMA(2)[poly(n), O(log(n))]؟ PSPACE.
- Restricted verifier that only performs poly(n) type-I elementary gates and $O(\log (n))$ type-II elementary gates.

- Stronger verifier than those in BellQMA and LOCC-QMA.
- PSPACE upper bound.

Result based on the DECOMPOSABILITY of H

As a result, we can show

- The variant QMA(2)[poly(n), $O(\log (n))] \subseteq$ PSPACE.
- Restricted verifier that only performs poly(n) type-I elementary gates and $O(\log (n))$ type-II elementary gates.

- Stronger verifier than those in BellQMA and LOCC-QMA.
- PSPACE upper bound.
- The k-partite local Hamiltonian is inside PSPACE, which complements the result in the previous talk.

CONNECTION enumeration, TIME efficiency

Assume $H=\sum_{i=1}^{M} H_{i}^{1} \otimes H_{i}^{2}$, then we have $\max \left\langle H, \rho_{1} \otimes \rho_{2}\right\rangle=\max \left\langle H_{1}^{1}, \rho_{1}\right\rangle\left\langle H_{1}^{2}, \rho_{2}\right\rangle+\cdots+\left\langle H_{M}^{1}, \rho_{1}\right\rangle\left\langle\mathcal{H}_{M}^{2}, \rho_{2}\right\rangle$

- Hard optimization problem because of the \bigcirc 〇terms.

Once the values are fixed, the optimization over
becomes efficiently solvable.

- Enumerate the valid values of the terms. Details later

CONNECTION enumeration, TIME efficiency

Assume $H=\sum_{i=1}^{M} H_{i}^{1} \otimes H_{i}^{2}$, then we have $\max \left\langle H, \rho_{1} \otimes \rho_{2}\right\rangle=\max \left\langle H_{1}^{1}, \rho_{1}\right\rangle\left\langle H_{1}^{2}, \rho_{2}\right\rangle+\cdots+\left\langle H_{M}^{1}, \rho_{1}\right\rangle\left\langle\mathcal{H}_{M}^{2}, \rho_{2}\right\rangle$

- Hard optimization problem because of the $\bigcirc \bigcirc$ terms.
- Once the \bigcirc values are fixed, the optimization over \bigcirc becomes efficiently solvable.

Small M implies the dimension of the space to enumerate over

CONNECTION enumeration, TIME efficiency

Assume $H=\sum_{i=1}^{M} H_{i}^{1} \otimes H_{i}^{2}$, then we have $\max \left\langle H, \rho_{1} \otimes \rho_{2}\right\rangle=\max \left\langle H_{1}^{1}, \rho_{1}\right\rangle\left\langle H_{1}^{2}, \rho_{2}\right\rangle+\cdots+\left\langle H_{M}^{1}, \rho_{1}\right\rangle\left\langle\mathcal{H}_{M}^{2}, \rho_{2}\right\rangle$

- Hard optimization problem because of the $\bigcirc \bigcirc$ terms.
- Once the \bigcirc values are fixed, the optimization over \bigcirc becomes efficiently solvable.
- Enumerate the valid values of theterms. Details later.

CONNECTION enumeration, TIME efficiency

Assume $H=\sum_{i=1}^{M} H_{i}^{1} \otimes H_{i}^{2}$, then we have $\max \left\langle H, \rho_{1} \otimes \rho_{2}\right\rangle=\max \left\langle H_{1}^{1}, \rho_{1}\right\rangle\left\langle H_{1}^{2}, \rho_{2}\right\rangle+\cdots+\left\langle H_{M}^{1}, \rho_{1}\right\rangle\left\langle\mathcal{H}_{M}^{2}, \rho_{2}\right\rangle$

- Hard optimization problem because of the $\bigcirc \bigcirc$ terms.
- Once the \bigcirc values are fixed, the optimization over \bigcirc becomes efficiently solvable.
- Enumerate the valid values of theterms. Details later.
Small M implies the dimension of the space to enumerate over is small.

CONNECTION enumeration, SPACE efficiency

- Enumerate raw values of \bigcirc terms from a bounded set according to \vec{w}.

Finally, after fixing the \bigcirc values, all you need to do is the
spectral decomposition

CONNECTION enumeration, SPACE efficiency

- Enumerate raw values of \bigcirc terms from a bounded set according to \vec{w}.
- Check the validness of the enumerated values by the multiplicative weight update method.
Finally, after fixing the \bigcirc values, all you need to do is the
spectral decomposition.

CONNECTION enumeration, SPACE efficiency

- Enumerate raw values of \bigcirc terms from a bounded set according to \vec{w}.
- Check the validness of the enumerated values by the multiplicative weight update method.
Finally, after fixing the \bigcirc values, all you need to do is the spectral decomposition.

CONNECTION enumeration, SPACE efficiency

- Enumerate raw values of \bigcirc terms from a bounded set according to \vec{w}. Efficient in both TIME and SPACE.
- Check the validness of the enumerated values by the multiplicative weight update method. Efficient in both TIME and SPACE.
Finally, after fixing the \bigcirc values, all you need to do is the spectral decomposition. Efficient in both TIME and SPACE.

Result based on the EIGENSPACE of H

Theorem

When $\mathbf{H} \geq 0$, OptSep (\mathbf{H}) can be approximated with additive error δ in time $\exp \left(O\left(\log (d)+\delta^{-2}\|\mathbf{H}\|_{F}^{2} \ln \left(\|\mathbf{H}\|_{F} / \delta\right)\right)\right)$.

Result based on the EIGENSPACE of H

Theorem

When $\mathbf{H} \geq 0$, OptSep (\mathbf{H}) can be approximated with additive error δ in time $\exp \left(O\left(\log (d)+\delta^{-2}\|\mathbf{H}\|_{F}^{2} \ln \left(\|\mathbf{H}\|_{F} / \delta\right)\right)\right)$.

- A similar running time $\exp \left(O\left(\log ^{2}(d) \delta^{-2}\|\mathbf{H}\|_{\mathrm{F}}^{2}\right)\right)$ was obtained in [BCY11] (Using symmetric extension, quantum de Finetti bounds).
Our algorithm only makes use of the spectral
decomposition and then the Schmidt decomposition

Result based on the EIGENSPACE of H

Theorem

When $\mathbf{H} \geq 0$, OptSep (\mathbf{H}) can be approximated with additive error δ in time $\exp \left(O\left(\log (d)+\delta^{-2}\|\mathbf{H}\|_{F}^{2} \ln \left(\|\mathbf{H}\|_{F} / \delta\right)\right)\right)$.

- A similar running time $\exp \left(O\left(\log ^{2}(d) \delta^{-2}\|\mathbf{H}\|_{\mathrm{F}}^{2}\right)\right)$ was obtained in [BCY11] (Using symmetric extension, quantum de Finetti bounds).
- Our algorithm only makes use of the spectral decomposition and then the Schmidt decomposition.

Result based on the EIGENSPACE of H

Theorem

When $\mathbf{H} \geq 0$, OptSep (\mathbf{H}) can be approximated with additive error δ in time $\exp \left(O\left(\log (d)+\delta^{-2}\|\mathbf{H}\|_{F}^{2} \ln \left(\|\mathbf{H}\|_{F} / \delta\right)\right)\right)$.

- A similar running time $\exp \left(O\left(\log ^{2}(d) \delta^{-2}\|\mathbf{H}\|_{\mathrm{F}}^{2}\right)\right)$ was obtained in [BCY11] (Using symmetric extension, quantum de Finetti bounds).
- Our algorithm only makes use of the spectral decomposition and then the Schmidt decomposition.

Schmidt decomposition

Technique: EIGENSPACE enumeration

Let $\mathbf{H}=\sum_{t} \lambda_{t}\left|\Psi_{t}\right\rangle\left\langle\Psi_{t}\right|, \Gamma=\left\{t: \lambda_{t} \geq \delta\right\}\left(|\Gamma|=O\left(\|\mathbf{H}\|_{\mathrm{F}}^{2} \delta^{-2}\right)\right)$. Also let $|\boldsymbol{u}\rangle|\boldsymbol{v}\rangle=\sum_{t} \beta_{t}\left|\psi_{t}\right\rangle$.

Technique: EIGENSPACE enumeration

Let $\mathbf{H}=\sum_{t} \lambda_{t}\left|\Psi_{t}\right\rangle\left\langle\Psi_{t}\right|, \Gamma=\left\{t: \lambda_{t} \geq \delta\right\}\left(|\Gamma|=O\left(\|\mathbf{H}\|_{F}^{2} \delta^{-2}\right)\right)$. Also let $|u\rangle|v\rangle=\sum_{t} \beta_{t}\left|\psi_{t}\right\rangle$.

Technique: EIGENSPACE enumeration

Let $\mathbf{H}=\sum_{t} \lambda_{t}\left|\Psi_{t}\right\rangle\left\langle\Psi_{t}\right|, \Gamma=\left\{t: \lambda_{t} \geq \delta\right\}\left(|\Gamma|=O\left(\|\mathbf{H}\|_{F}^{2} \delta^{-2}\right)\right)$. Also let $|u\rangle|\boldsymbol{v}\rangle=\sum_{t} \beta_{t}\left|\psi_{t}\right\rangle$.

- Claim 1: it suffices to only consider the eigenspace Γ.

$$
\langle Q, \mid u\rangle\langle u| \otimes|v\rangle\langle v \mid\rangle=\underbrace{\sum_{t \in \Gamma_{\epsilon}} \lambda_{t}\left|\beta_{t}\right|^{2}}_{(I)}+\underbrace{\sum_{t \notin \Gamma_{\epsilon}} \lambda_{t}\left|\beta_{t}\right|^{2}}_{(I I)},
$$

Technique: EIGENSPACE enumeration

Let $\mathbf{H}=\sum_{t} \lambda_{t}\left|\Psi_{t}\right\rangle\left\langle\Psi_{t}\right|, \Gamma=\left\{t: \lambda_{t} \geq \delta\right\}\left(|\Gamma|=O\left(\|\mathbf{H}\|_{F}^{2} \delta^{-2}\right)\right)$.
Also let $|u\rangle|v\rangle=\sum_{t} \beta_{t}\left|\psi_{t}\right\rangle$.

- Claim 1: it suffices to only consider the eigenspace Γ.

Technique: EIGENSPACE enumeration

Let $\mathbf{H}=\sum_{t} \lambda_{t}\left|\Psi_{t}\right\rangle\left\langle\Psi_{t}\right|, \Gamma=\left\{t: \lambda_{t} \geq \delta\right\}\left(|\Gamma|=O\left(\|\mathbf{H}\|_{\mathrm{F}}^{2} \delta^{-2}\right)\right)$. Also let $|u\rangle|v\rangle=\sum_{t} \beta_{t}\left|\psi_{t}\right\rangle$.

- Claim 2: it suffices to enumerate in $\mathbb{C}^{|\Gamma|}$.

Technique: EIGENSPACE enumeration

Let $\mathbf{H}=\sum_{t} \lambda_{t}\left|\Psi_{t}\right\rangle\left\langle\Psi_{t}\right|, \Gamma=\left\{t: \lambda_{t} \geq \delta\right\}\left(|\Gamma|=O\left(\|\mathbf{H}\|_{\mathrm{F}}^{2} \delta^{-2}\right)\right)$. Also let $|u\rangle|v\rangle=\sum_{t} \beta_{t}\left|\psi_{t}\right\rangle$.

- Claim 2: it suffices to enumerate in $\mathbb{C}^{|\Gamma|}$.

$$
\begin{aligned}
& \max _{|u\rangle|v\rangle} \sum_{t \in \Gamma_{\epsilon}} \lambda_{t} \mid\left.\langle u|\left\langle v \mid \Psi_{t}\right\rangle\right|^{2} \\
= & \max _{|u\rangle|v\rangle} \max _{\alpha \in \mathbf{B}\left(\mathbb{C}\left|\Gamma_{\epsilon}\right|\right)} \mid\left.\sum_{t \in \Gamma_{\epsilon}} \alpha_{t}^{*} \sqrt{\lambda_{t}}\langle u|\left\langle v \mid \Psi_{t}\right\rangle\right|^{2} \\
= & \max ^{2}|u| v \max ^{\max }\left(\left.\langle)\left|\langle v| \phi_{a}\right)\right|^{2}\right. \\
= & \max
\end{aligned}
$$

Technique: EIGENSPACE enumeration

Let $\mathbf{H}=\sum_{t} \lambda_{t}\left|\Psi_{t}\right\rangle\left\langle\Psi_{t}\right|, \Gamma=\left\{t: \lambda_{t} \geq \delta\right\}\left(|\Gamma|=O\left(\|\mathbf{H}\|_{F}^{2} \delta^{-2}\right)\right)$. Also let $|u\rangle|v\rangle=\sum_{t} \beta_{t}\left|\psi_{t}\right\rangle$.

- Claim 2: it suffices to enumerate in $\mathbb{C}^{|\Gamma|}$.

$$
\begin{aligned}
& \max _{|u\rangle|v\rangle} \sum_{t \in \Gamma_{\epsilon}} \lambda_{t} \mid\left.\langle u|\left\langle v \mid \Psi_{t}\right\rangle\right|^{2} \\
= & \max _{|u\rangle|v\rangle} \max _{\alpha \in \mathbf{B}\left(\mathbb{C}\left|\Gamma_{\epsilon}\right|\right)} \mid\left.\sum_{t \in \Gamma_{\epsilon}} \alpha_{t}^{*} \sqrt{\lambda_{t}}\langle u|\left\langle v \mid \Psi_{t}\right\rangle\right|^{2} \\
= & \max _{|u\rangle|v\rangle} \max _{\alpha \in \mathbf{B}\left(\mathbb{C}^{\left|\Gamma_{\epsilon}\right|}\right)} \mid\left.\langle u|\left\langle v \mid \phi_{\alpha}\right\rangle\right|^{2} \\
= & \max
\end{aligned}
$$

Technique: EIGENSPACE enumeration

Let $\mathbf{H}=\sum_{t} \lambda_{t}\left|\Psi_{t}\right\rangle\left\langle\Psi_{t}\right|, \Gamma=\left\{t: \lambda_{t} \geq \delta\right\}\left(|\Gamma|=O\left(\|\mathbf{H}\|_{\mathrm{F}}^{2} \delta^{-2}\right)\right)$. Also let $|u\rangle|v\rangle=\sum_{t} \beta_{t}\left|\psi_{t}\right\rangle$.

- Claim 2: it suffices to enumerate in $\mathbb{C}^{|\Gamma|}$.

$$
\begin{aligned}
& \max _{|u||v\rangle} \sum_{t \in \Gamma_{\epsilon}} \lambda_{t} \mid\left.\langle u|\left\langle v \mid \Psi_{t}\right\rangle\right|^{2} \\
= & \max _{|u||v\rangle} \max _{\alpha \in \mathbf{B}\left(\mathbb{C}\left|\Gamma_{\epsilon}\right|\right)} \mid\left.\sum_{t \in \Gamma_{\epsilon}} \alpha_{t}^{*} \sqrt{\lambda_{t}}\langle u|\left\langle v \mid \Psi_{t}\right\rangle\right|^{2} \\
= & \max _{|u||v\rangle} \max _{\alpha \in \mathbf{B}\left(\mathbb{C}\left|\Gamma_{\epsilon}\right|\right)} \mid\left.\langle u|\left\langle v \mid \phi_{\alpha}\right\rangle\right|^{2} \\
= & \max _{\alpha \in \mathbf{B}\left(\mathbb{C}\left|\Gamma_{\epsilon}\right|\right)} \max _{|u\rangle|v\rangle} \mid\left.\langle u|\left\langle v \mid \phi_{\alpha}\right\rangle\right|^{2},
\end{aligned}
$$

Technique: EIGENSPACE enumeration

Let $\mathbf{H}=\sum_{t} \lambda_{t}\left|\Psi_{t}\right\rangle\left\langle\Psi_{t}\right|, \Gamma=\left\{t: \lambda_{t} \geq \delta\right\}\left(|\Gamma|=O\left(\|\mathbf{H}\|_{\mathrm{F}}^{2} \delta^{-2}\right)\right)$. Also let $|u\rangle|v\rangle=\sum_{t} \beta_{t}\left|\psi_{t}\right\rangle$.

- Claim 2: it suffices to enumerate in $\mathbb{C}^{|\Gamma|}$.

$$
\begin{aligned}
& \max _{|u\rangle|v\rangle} \sum_{t \in \Gamma_{\epsilon}} \lambda_{t} \mid\left.\langle u|\left\langle v \mid \Psi_{t}\right\rangle\right|^{2} \\
= & \max _{|u\rangle|v\rangle} \max _{\alpha \in \mathbf{B}\left(\mathbb{C}\left|\Gamma_{\epsilon}\right|\right)} \mid\left.\sum_{t \in \Gamma_{\epsilon}} \alpha_{t}^{*} \sqrt{\lambda_{t}}\langle u|\left\langle v \mid \Psi_{t}\right\rangle\right|^{2} \\
= & \max _{|u\rangle|v\rangle} \max _{\alpha \in \mathbf{B}\left(\mathbb{C}\left|\Gamma_{\epsilon}\right|\right)} \mid\left.\langle u|\left\langle v \mid \phi_{\alpha}\right\rangle\right|^{2} \\
= & \max _{\alpha \in \mathbf{B}\left(\mathbb{C}\left|\Gamma_{\epsilon}\right|\right)} \max _{|u\rangle|v\rangle} \mid\left.\langle u|\left\langle v \mid \phi_{\alpha}\right\rangle\right|^{2},
\end{aligned}
$$

Conclusion

In this talk, we provide two algorithms based on the following structures of \mathbf{H}.

- The decomposability of \mathbf{H}.
- The eigenspace of high eigenvalues of \mathbf{H}.

Open Problems:

- Algorithm or Hardness for larger δ.
- Upper bound for QMA(2).

Question And Answer

Thank you!

