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History about QMA(2)

Introduced in [KMY01, KMY03].
Surprising: NP ⊆ QMA(2)log [BT09] comparing with
QMAlog = BQP [MW05]. Trivially, NPlog ⊆ P.
Various improvements [Bei10, ABD+09, CD10, CF11,
GNN11, ...].

Trivially, QMA(2)⊆NEXP.
Variants of QMA(2) , e.g. BellQMA, LOCC-QMA, collapse
to QMA [Bra08, ABD+09, BCY11].
QMA(2)=QMA(poly) [HM10].

Better upper bounds, such as EXP, PSPACE, are expected.
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Quantum Notations

Density Operators: Representation of quantum states.
Note: n-qubit quantum state requires 2n by 2n matrix.
Measurements: The outcome (e.g., probability) of a
quantum circuit is given by the inner product 〈M, ρ〉 where
M is a PSD defined by the circuit.
Tensor Product: For any isolated two systems, the
quantum state of the whole state is ρ⊗ σ where ρ is the
density operator from the first system while σ is from the
other one.
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Formulation of QMA(2)

Definition (QMA(2))
A language L is in QMA(2) if there exists a polynomial-time
generated two-outcome measurement {Qacc

x , I −Qacc
x } s.t.,

If x ∈ L,∃ρ1, ρ2, 〈Qacc
x , ρ1 ⊗ ρ2〉 ≥ 2

3 .

If x /∈ L,∀ρ1, ρ2, 〈Qacc
x , ρ1 ⊗ ρ2〉 ≤ 1

3 .

Roughly equivalent to computing max 〈Qacc
x , ρ1 ⊗ ρ2〉, except

Larger additive error allowed.
Special and possibly nicer Qacc

x s by manipulating the
protocol.
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The Problem

Problem (Quantum Formulation)
Given H ∈ Herm (X ⊗ Y) as input, compute

max 〈H, ρ⊗ σ〉 subject to ρ ∈ D (X ) , σ ∈ D (Y),

where D (X ) is the set of trace-one psd matrices over X .

Ground energy that is achieved by non-entangled states.
Mean-field approximation in statistical quantum mechanics.
Positivity test of quantum channels.
17 more examples in quantum information in [HM10].
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The Problem :Classical Formulation

Problem (Quantum Formulation)
Given H ∈ Herm (X ⊗ Y) as input, compute

max 〈H, ρ⊗ σ〉 subject to ρ ∈ D (X ) , σ ∈ D (Y),

where D (X ) is the set of trace-one psd matrices over X .

is roughly equivalent to

Problem (Classical Formulation)
Given H ∈ Sym(X ⊗ Y) as input, compute

max
∑
i,j,k,l

Hij,klxiyjxkyl subject to
∑

i

x2
i =

∑
i

y2
i = 1.

A special class of the polynomial optimization problems.
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More Motivations

Quantum Information : more examples in [HM10].
Quantum Computational Complexity: QMA(2).
Operations Research: “Bi-Quadratic Optimization over
Unit Spheres” [LNQY09]. Polynomial Optimization with
Quadratic Constraints.
Unique Game Conjecture: 2-to-4 norm, Small-Set
Expansion-hardness [BBHKSZ12].
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The Problem: Easiness vs Hardness

EASY:

max 〈H, ρ〉 s.t. ρ ∈ D (X ⊗ Y)

Efficiently solvable via the spectral decomposition of H.

HARD:

max 〈H, ρ⊗ σ〉 s.t. ρ ∈ D (X ) , σ ∈ D (Y)

NP-hard even to approximate the optimum value with
inverse-polynomial additive error.
Hardness via quantum information [Gur03,Ioa07,Gha10]
or operation research [deK08, LQNY09].
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Overview
Decomposability

Our Results

RESULT 1: making use of the DECOMPOSABILITY of H.
Time and Space -efficient algorithms when
H =

∑M
i=1 H1

i ⊗ H2
i with small M.

Applied in quantum computational complexity, we prove
QMA(2)[poly(n),O(log(n))]⊆ PSPACE

RESULT 2: making use of the EIGENSPACE of H.
Time complexity exp(O(log(d) + δ−2‖H‖2F ln(‖H‖F/δ)))
with additive error δ for H ≥ 0.
Conceptually simpler and better running time than an
earlier algorithm [BCY11] (time complexity
exp(O(log2(d)δ−2‖H‖2F)), using symmetric extension,
quantum de Finetti bounds).
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Results

Overview
Decomposability

Result based on the DECOMPOSABILITY of H

Definition

We call H is (M, ~w)-decomposable if H =
∑M

i=1 H1
i ⊗ H2

i where
‖H1

i ‖ ≤ w1, ‖H2
i ‖ ≤ w2.

Intuition: the smaller M ⇒ the more ”local” H and the less
connection between the two parties.

Enumerate and then fix the connection, and solve the
optimization separably.
Assume the decomposition is given or easily computable.
Not necessarily the smallest M.

We obtain efficient algorithms in both TIME and SPACE when
M is small.
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M is small.

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states



Background
Results

Overview
Decomposability

Result based on the DECOMPOSABILITY of H

Definition

We call H is (M, ~w)-decomposable if H =
∑M

i=1 H1
i ⊗ H2

i where
‖H1

i ‖ ≤ w1, ‖H2
i ‖ ≤ w2.

Intuition: the smaller M ⇒ the more ”local” H and the less
connection between the two parties.

Enumerate and then fix the connection, and solve the
optimization separably.
Assume the decomposition is given or easily computable.
Not necessarily the smallest M.

We obtain efficient algorithms in both TIME and SPACE when
M is small.

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states



Background
Results

Overview
Decomposability

Result based on the DECOMPOSABILITY of H

Definition

We call H is (M, ~w)-decomposable if H =
∑M

i=1 H1
i ⊗ H2

i where
‖H1

i ‖ ≤ w1, ‖H2
i ‖ ≤ w2.

Intuition: the smaller M ⇒ the more ”local” H and the less
connection between the two parties.

Enumerate and then fix the connection, and solve the
optimization separably.
Assume the decomposition is given or easily computable.
Not necessarily the smallest M.

We obtain efficient algorithms in both TIME and SPACE when
M is small.

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states



Background
Results

Overview
Decomposability

Result based on the DECOMPOSABILITY of H

As a result, we prove QMA(2)[poly(n),O(log(n))]⊆ PSPACE.
Restricted verifier that only performs poly(n) type-I
elementary gates and O(log(n)) type-II elementary gates.

|ψ1〉
⊗
|ψ2〉
⊗
|0〉

I I

I I

I

II

II

II
Type-I: local gates

Type-II: crossing gates

Stronger verifier than those in BellQMA and LOCC-QMA.
PSPACE upper bound.
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CONNECTION enumeration, TIME efficiency

Assume H =
∑M

i=1 H1
i ⊗ H2

i ,

max 〈H, ρ1 ⊗ ρ2〉 = max
〈
H1

1 , ρ1
〉 〈

H2
1 , ρ2

〉
+· · ·+

〈
H1

M , ρ1
〉 〈
H2

M , ρ2
〉

HARD: because of the product ( ) terms.
EASY (efficiently solvable) : when the values are fixed.
Enumerate the valid values of the terms. Details later.
Small M ⇒ enumeration space is small.
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CONNECTION enumeration, SPACE efficiency

( , , · · · , )︸ ︷︷ ︸
dimension M

from some ρ1 ∈ D (X )

Enumerate raw values of terms from a bounded set.
Validness checking by using the multiplicative weight
update method to compute a min-max form.
Spectral Decomposition after the values are fixed.

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states



Background
Results

Overview
Decomposability

CONNECTION enumeration, SPACE efficiency

( , , · · · , )︸ ︷︷ ︸
dimension M

from some ρ1 ∈ D (X )

Enumerate raw values of terms from a bounded set.
Validness checking by using the multiplicative weight
update method to compute a min-max form.
Spectral Decomposition after the values are fixed.

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states



Background
Results

Overview
Decomposability

CONNECTION enumeration, SPACE efficiency

( , , · · · , )︸ ︷︷ ︸
dimension M

from some ρ1 ∈ D (X )

Enumerate raw values of terms from a bounded set.
Validness checking by using the multiplicative weight
update method to compute a min-max form.
Spectral Decomposition after the values are fixed.

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states



Background
Results

Overview
Decomposability

CONNECTION enumeration, SPACE efficiency

( , , · · · , )︸ ︷︷ ︸
dimension M

from some ρ1 ∈ D (X )

Enumerate raw values of terms from a bounded set.
Efficient in both TIME and SPACE.
Validness checking by using the multiplicative weight
update method to compute a min-max form.
Efficient in both TIME and SPACE.
Spectral Decomposition after the values are fixed.
Efficient in both TIME and SPACE.
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Summary

In this talk, we provide two algorithms based on the following
structures of H.

The decomposability of H. PSPACE upper bound of a new
and potentially more powerful QMA(2) variant.
The eigenspace of high eigenvalues of H.

Open Problems:
Algorithm or Hardness for larger additive error.
Upper bound for QMA(2).
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Question And Answer

Thank you!
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