Epsilon-net method for optimizations over separable states

Yaoyun Shi and Xiaodi Wu

Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor

ICALP 2012, July 2012

Main Motivation: QMA(2) vs QMA

C-Prover

Main Motivation: QMA(2) vs QMA

C-Prover

C-Verifier

quantum message
Q-Prove•

Main Motivation: QMA(2) vs QMA

NP
quantum message
Q-Prove•

Main Motivation: QMA(2) vs QMA

NP

QMA

Q-Prover
 quantum message $|\psi\rangle$
 Q-Verifier

Main Motivation: QMA(2) vs QMA

$$
\begin{aligned}
& C-P_{1} \\
& C-P_{2}
\end{aligned}
$$

C-Verifier
quantum message

Main Motivation: QMA(2) vs QMA

C- $P_{1} \quad$ classical message
 C-Verifier
 C- P_{2} classical message m_{2}

 NP(2)quantum message
Q-Prover
Q-Verifier

Main Motivation: QMA(2) vs QMA

C- $P_{1} \xrightarrow{\text { classical message } m_{1}}$
 NP(2)
 C-Verifier
 C- P_{2} classical message m_{2}

QMA(2)
Q- P_{1} quantum message $\left|\psi_{1}\right\rangle$
Q-Verifier
Q- P_{2} quantum message $\left|\psi_{2}\right\rangle$

Main Motivation: QMA(2) vs QMA

$$
\mathrm{C}-\mathrm{P}_{1} \circ \mathrm{P}_{2} \xrightarrow{ } \text { C-Verifier }
$$

classical

classical message m_{2}

NP(2)

QMA(2)

Q- P_{1} quantum message $\left|\psi_{1}\right\rangle$
Q-Verifier
Q- P_{2} quantum message $\left|\psi_{2}\right\rangle$

Main Motivation: QMA(2) vs QMA

$N P(2)=N P$

$$
\text { C-P } P_{1} \circ P_{2} \xrightarrow{m_{1}+m_{2}} \text { C-Verifier }
$$

QMA(2)

Q- P_{1} quantum message $\left|\psi_{1}\right\rangle$
Q-Verifier
Q- P_{2} quantum message $\left\langle\psi_{2}\right\rangle$

Main Motivation: QMA(2) vs QMA

$N P(2)=N P$

$$
\text { C-P } P_{1} \circ P_{2} \xrightarrow{m_{1}+m_{2}} \text { C-Verifier }
$$

QMA(2)?=QMA

quantum message $\left|\psi_{1}\right\rangle$

$$
\mathbf{Q}-Q_{1} \otimes Q_{2}
$$

Q-Verifier

quantum message $\left|\psi_{2}\right\rangle$

History about QMA(2)

- Introduced in [KMY01, KMY03].

History about QMA(2)

- Introduced in [KMY01, KMY03].
- Surprising: NP \subseteq QMA $(2)_{\log }$ [BT09] comparing with QMA $_{\text {log }}=\mathrm{BQP}$ [MW05]. Trivially, $\mathrm{NP}_{\log } \subseteq \mathrm{P}$.

History about QMA(2)

- Introduced in [KMY01, KMY03].
- Surprising: NP \subseteq QMA(2) $)_{\log }$ [BT09] comparing with QMA $_{\text {log }}=\mathrm{BQP}$ [MW05]. Trivially, $\mathrm{NP}_{\text {log }} \subseteq \mathrm{P}$.
- Various improvements [Bei10, ABD+09, CD10, CF11, GNN11, ...].

History about QMA(2)

- Introduced in [KMY01, KMY03].
- Surprising: NP \subseteq QMA $(2)_{\log }$ [BT09] comparing with QMA $_{\text {log }}=B Q P$ [MW05]. Trivially, $\mathrm{NP}_{\log } \subseteq \mathrm{P}$.
- Various improvements [Bei10, ABD+09, CD10, CF11, GNN11, ...].

Trivially, QMA(2) \subseteq NEXP.

History about QMA(2)

- Introduced in [KMY01, KMY03].
- Surprising: NP \subseteq QMA(2) $)_{\log }$ [BT09] comparing with $\mathrm{QMA}_{\log }=\mathrm{BQP}$ [MW05]. Trivially, $\mathrm{NP}_{\log } \subseteq \mathrm{P}$.
- Various improvements [Bei10, ABD+09, CD10, CF11, GNN11, ...].

Trivially, QMA(2) \subseteq NEXP.

- Variants of QMA(2) , e.g. BellQMA, LOCC-QMA, collapse to QMA [Bra08, ABD+09, BCY11].

History about QMA(2)

- Introduced in [KMY01, KMY03].
- Surprising: $N P \subseteq Q M A(2)_{\log }$ [BT09] comparing with QMA $_{\text {log }}=B Q P$ [MW05]. Trivially, $\mathrm{NP}_{\log } \subseteq \mathrm{P}$.
- Various improvements [Bei10, ABD+09, CD10, CF11, GNN11, ...].

Trivially, QMA(2) \subseteq NEXP.

- Variants of QMA(2) , e.g. BellQMA, LOCC-QMA, collapse to QMA [Bra08, ABD+09, BCY11].
- QMA(2)=QMA(poly) [HM10].

History about QMA(2)

- Introduced in [KMY01, KMY03].
- Surprising: $N P \subseteq Q M A(2)_{\log }$ [BT09] comparing with QMA $_{\text {log }}=B Q P$ [MW05]. Trivially, $\mathrm{NP}_{\log } \subseteq \mathrm{P}$.
- Various improvements [Bei10, ABD+09, CD10, CF11, GNN11, ...].

Trivially, QMA(2) \subseteq NEXP.

- Variants of QMA(2) , e.g. BellQMA, LOCC-QMA, collapse to QMA [Bra08, ABD+09, BCY11].
- QMA(2)=QMA(poly) [HM10].

Better upper bounds, such as EXP, PSPACE, are expected.

Quantum Notations

- Density Operators: Representation of quantum states. Note: n-qubit quantum state requires 2^{n} by 2^{n} matrix. quantum circuit is given by the inn
M is a PSD defined by the circuit. Tensor Product: For anv isolated two systems, the quantum state of the whole state is $\rho \otimes \sigma$ where ρ is the density operator from the first system while σ is from the

Quantum Notations

- Density Operators: Representation of quantum states. Note: n-qubit quantum state requires 2^{n} by 2^{n} matrix.
- Measurements: The outcome (e.g., probability) of a quantum circuit is given by the inner product $\langle M, \rho\rangle$ where M is a PSD defined by the circuit.

Quantum Notations

- Density Operators: Representation of quantum states. Note: n-qubit quantum state requires 2^{n} by 2^{n} matrix.
- Measurements: The outcome (e.g., probability) of a quantum circuit is given by the inner product $\langle M, \rho\rangle$ where M is a PSD defined by the circuit.
- Tensor Product: For any isolated two systems, the quantum state of the whole state is $\rho \otimes \sigma$ where ρ is the density operator from the first system while σ is from the other one.

Formulation of QMA(2)

Definition (QMA(2))

A language \mathcal{L} is in $\mathrm{QMA}(2)$ if there exists a polynomial-time generated two-outcome measurement $\left\{Q_{X}^{\text {acc }}, I-Q_{X}^{\text {acc }}\right\}$ s.t.,

- If $x \in \mathcal{L}, \exists \rho_{1}, \rho_{2},\left\langle Q_{X}^{\text {acc }}, \rho_{1} \otimes \rho_{2}\right\rangle \geq \frac{2}{3}$.
- If $x \notin \mathcal{L}, \forall \rho_{1}, \rho_{2},\left\langle Q_{x}^{\text {acc }}, \rho_{1} \otimes \rho_{2}\right\rangle \leq \frac{1}{3}$.

Formulation of QMA(2)

Definition (QMA(2))

A language \mathcal{L} is in $\mathrm{QMA}(2)$ if there exists a polynomial-time generated two-outcome measurement $\left\{Q_{X}^{\text {acc }}, I-Q_{X}^{\text {acc }}\right\}$ s.t.,

- If $x \in \mathcal{L}, \exists \rho_{1}, \rho_{2},\left\langle Q_{X}^{\text {acc }}, \rho_{1} \otimes \rho_{2}\right\rangle \geq \frac{2}{3}$.
- If $x \notin \mathcal{L}, \forall \rho_{1}, \rho_{2},\left\langle Q_{X}^{\text {acc }}, \rho_{1} \otimes \rho_{2}\right\rangle \leq \frac{1}{3}$.

Roughly equivalent to computing $\max \left\langle\mathbf{Q}_{\mathbf{X}}^{\text {acc }}, \rho_{\mathbf{1}} \otimes \rho_{\mathbf{2}}\right\rangle$, except
Larger additive error allowed.

- Special and possibly nicer $Q_{X}^{\text {acc }}$ s by manipulating the protocol.

Formulation of QMA(2)

Definition (QMA(2))

A language \mathcal{L} is in $\mathrm{QMA}(2)$ if there exists a polynomial-time generated two-outcome measurement $\left\{Q_{X}^{\text {acc }}, I-Q_{X}^{\text {acc }}\right\}$ s.t.,

- If $x \in \mathcal{L}, \exists \rho_{1}, \rho_{2},\left\langle Q_{X}^{\text {acc }}, \rho_{1} \otimes \rho_{2}\right\rangle \geq \frac{2}{3}$.
- If $x \notin \mathcal{L}, \forall \rho_{1}, \rho_{2},\left\langle Q_{x}^{\text {acc }}, \rho_{1} \otimes \rho_{2}\right\rangle \leq \frac{1}{3}$.

Roughly equivalent to computing $\max \left\langle\mathbf{Q}_{\mathbf{x}}^{\text {acc }}, \rho_{\mathbf{1}} \otimes \rho_{\mathbf{2}}\right\rangle$, except

- Larger additive error allowed.

Formulation of QMA(2)

Definition (QMA(2))

A language \mathcal{L} is in $\mathrm{QMA}(2)$ if there exists a polynomial-time generated two-outcome measurement $\left\{Q_{X}^{\text {acc }}, I-Q_{X}^{\text {acc }}\right\}$ s.t.,

- If $x \in \mathcal{L}, \exists \rho_{1}, \rho_{2},\left\langle Q_{X}^{\text {acc }}, \rho_{1} \otimes \rho_{2}\right\rangle \geq \frac{2}{3}$.
- If $x \notin \mathcal{L}, \forall \rho_{1}, \rho_{2},\left\langle Q_{x}^{\text {acc }}, \rho_{1} \otimes \rho_{2}\right\rangle \leq \frac{1}{3}$.

Roughly equivalent to computing $\max \left\langle\mathbf{Q}_{\mathbf{X}}^{\text {acc }}, \rho_{\mathbf{1}} \otimes \rho_{\mathbf{2}}\right\rangle$, except

- Larger additive error allowed.
- Special and possibly nicer $Q_{X}^{\text {acc }}$ s by manipulating the protocol.

The Problem

Problem (Quantum Formulation)

Given $\mathbf{H} \in \operatorname{Herm}(\mathcal{X} \otimes \mathcal{Y})$ as input, compute

$$
\max \langle\mathbf{H}, \rho \otimes \sigma\rangle \text { subject to } \rho \in \mathrm{D}(\mathcal{X}), \sigma \in \mathrm{D}(\mathcal{Y})
$$

where $\mathrm{D}(\mathcal{X})$ is the set of trace-one psd matrices over \mathcal{X}.

The Problem

Problem (Quantum Formulation)

Given $\mathbf{H} \in \operatorname{Herm}(\mathcal{X} \otimes \mathcal{Y})$ as input, compute

$$
\max \langle\mathbf{H}, \rho \otimes \sigma\rangle \text { subject to } \rho \in \mathrm{D}(\mathcal{X}), \sigma \in \mathrm{D}(\mathcal{Y})
$$

where $\mathrm{D}(\mathcal{X})$ is the set of trace-one psd matrices over \mathcal{X}.

- Ground energy that is achieved by non-entangled states.

Mean-field approximation in statistical quantum mechanics

The Problem

Problem (Quantum Formulation)

Given $\mathbf{H} \in \operatorname{Herm}(\mathcal{X} \otimes \mathcal{Y})$ as input, compute

$$
\max \langle\mathbf{H}, \rho \otimes \sigma\rangle \text { subject to } \rho \in \mathrm{D}(\mathcal{X}), \sigma \in \mathrm{D}(\mathcal{Y})
$$

where $\mathrm{D}(\mathcal{X})$ is the set of trace-one psd matrices over \mathcal{X}.

- Ground energy that is achieved by non-entangled states.
- Mean-field approximation in statistical quantum mechanics.

Positivity test of quantum channels.

The Problem

Problem (Quantum Formulation)

Given $\mathbf{H} \in \operatorname{Herm}(\mathcal{X} \otimes \mathcal{Y})$ as input, compute

$$
\max \langle\mathbf{H}, \rho \otimes \sigma\rangle \text { subject to } \rho \in \mathrm{D}(\mathcal{X}), \sigma \in \mathrm{D}(\mathcal{Y})
$$

where $\mathrm{D}(\mathcal{X})$ is the set of trace-one psd matrices over \mathcal{X}.

- Ground energy that is achieved by non-entangled states.
- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.

The Problem

Problem (Quantum Formulation)

Given $\mathbf{H} \in \operatorname{Herm}(\mathcal{X} \otimes \mathcal{Y})$ as input, compute

$$
\max \langle\mathbf{H}, \rho \otimes \sigma\rangle \text { subject to } \rho \in \mathrm{D}(\mathcal{X}), \sigma \in \mathrm{D}(\mathcal{Y})
$$

where $\mathrm{D}(\mathcal{X})$ is the set of trace-one psd matrices over \mathcal{X}.

- Ground energy that is achieved by non-entangled states.
- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- 17 more examples in quantum information in [HM10].

The Problem :Classical Formulation

Problem (Quantum Formulation)

Given $\mathbf{H} \in \operatorname{Herm}(\mathcal{X} \otimes \mathcal{Y})$ as input, compute

$$
\max \langle\mathbf{H}, \rho \otimes \sigma\rangle \text { subject to } \rho \in \mathrm{D}(\mathcal{X}), \sigma \in \mathrm{D}(\mathcal{Y})
$$

where $\mathrm{D}(\mathcal{X})$ is the set of trace-one psd matrices over \mathcal{X}.
is roughly equivalent to

Problem (Classical Formulation)

Given $\mathbf{H} \in \operatorname{Sym}(\mathcal{X} \otimes \mathcal{Y})$ as input, compute

$$
\max \sum_{\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathbf{I}} \mathbf{H}_{\mathrm{ij}, \mathrm{k}} \mathbf{x}_{\mathrm{i}} \mathbf{y}_{\mathrm{j}} \mathbf{x}_{\mathrm{k}} \mathbf{y}_{\mathbf{l}} \text { subject to } \sum_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}^{2}=\sum_{\mathbf{i}} \mathbf{y}_{\mathbf{i}}^{2}=\mathbf{1} .
$$

A special class of the polynomial optimization problems.

More Motivations

- Quantum Information : more examples in [HM10].

More Motivations

- Quantum Information : more examples in [HM10].
- Quantum Computational Complexity: QMA(2).

More Motivations

- Quantum Information : more examples in [HM10].
- Quantum Computational Complexity: QMA(2).
- Operations Research: "Bi-Quadratic Optimization over Unit Spheres" [LNQY09]. Polynomial Optimization with Quadratic Constraints.

More Motivations

- Quantum Information : more examples in [HM10].
- Quantum Computational Complexity: QMA(2).
- Operations Research: "Bi-Quadratic Optimization over Unit Spheres" [LNQY09]. Polynomial Optimization with Quadratic Constraints.
- Unique Game Conjecture: 2-to-4 norm, Small-Set Expansion-hardness [BBHKSZ12].

The Problem: Easiness vs Hardness

EASY:

$$
\max \langle\mathbf{H}, \rho\rangle \text { s.t. } \rho \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y})
$$

- Efficiently solvable via the spectral decomposition of H.

The Problem: Easiness vs Hardness

EASY:

$$
\max \langle\mathbf{H}, \rho\rangle \text { s.t. } \rho \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y})
$$

- Efficiently solvable via the spectral decomposition of H. HARD:

$$
\max \langle\mathbf{H}, \rho \otimes \sigma\rangle \text { s.t. } \rho \in \mathrm{D}(\mathcal{X}), \sigma \in \mathrm{D}(\mathcal{Y})
$$

- NP-hard even to approximate the optimum value with inverse-polynomial additive error.

The Problem: Easiness vs Hardness

EASY:

$$
\max \langle\mathbf{H}, \rho\rangle \text { s.t. } \rho \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y})
$$

- Efficiently solvable via the spectral decomposition of H. HARD:

$$
\max \langle\mathbf{H}, \rho \otimes \sigma\rangle \text { s.t. } \rho \in \mathrm{D}(\mathcal{X}), \sigma \in \mathrm{D}(\mathcal{Y})
$$

- NP-hard even to approximate the optimum value with inverse-polynomial additive error.
- Hardness via quantum information [Gur03,loa07,Gha10] or operation research [deK08, LQNY09].

Our Results

RESULT 1: making use of the DECOMPOSABILITY of \mathbf{H}.

- Time and Space -efficient algorithms when

$$
\mathbf{H}=\sum_{i=1}^{M} H_{i}^{1} \otimes H_{i}^{2} \text { with small } M .
$$

Our Results

RESULT 1: making use of the DECOMPOSABILITY of \mathbf{H}.

- Time and Space -efficient algorithms when $\mathbf{H}=\sum_{i=1}^{M} H_{i}^{1} \otimes H_{i}^{2}$ with small M.
- Applied in quantum computational complexity, we prove QMA(2)[poly(n), $O(\log (n))] \subseteq$ PSPACE

Our Results

RESULT 1: making use of the DECOMPOSABILITY of \mathbf{H}.

- Time and Space -efficient algorithms when $\mathbf{H}=\sum_{i=1}^{M} H_{i}^{1} \otimes H_{i}^{2}$ with small M.
- Applied in quantum computational complexity, we prove QMA(2)[poly(n), O(log(n))]؟ PSPACE
RESULT 2: making use of the EIGENSPACE of \mathbf{H}.
- Time complexity $\exp \left(O\left(\log (d)+\delta^{-2}\|\mathbf{H}\|_{\mathrm{F}}^{2} \ln \left(\|\mathbf{H}\|_{F} / \delta\right)\right)\right)$ with additive error δ for $\mathbf{H} \geq 0$.

Conceptually simpler and better running time than an earlier algorithm [BCY11] (time complexity quantum de Finetti bounds)

Our Results

RESULT 1: making use of the DECOMPOSABILITY of \mathbf{H}.

- Time and Space -efficient algorithms when $\mathbf{H}=\sum_{i=1}^{M} H_{i}^{1} \otimes H_{i}^{2}$ with small M.
- Applied in quantum computational complexity, we prove QMA(2)[poly(n), O(log(n))]؟ PSPACE
RESULT 2: making use of the EIGENSPACE of \mathbf{H}.
- Time complexity $\exp \left(O\left(\log (d)+\delta^{-2}\|\mathbf{H}\|_{F}^{2} \ln \left(\|\mathbf{H}\|_{F} / \delta\right)\right)\right)$ with additive error δ for $\mathbf{H} \geq 0$.
- Conceptually simpler and better running time than an earlier algorithm [BCY11] (time complexity $\exp \left(O\left(\log ^{2}(d) \delta^{-2}\|\mathbf{H}\|_{\mathrm{F}}^{2}\right)\right)$, using symmetric extension, quantum de Finetti bounds).

Our Results

RESULT 1: making use of the DECOMPOSABILITY of \mathbf{H}.

- Time and Space -efficient algorithms when $\mathbf{H}=\sum_{i=1}^{M} H_{i}^{1} \otimes H_{i}^{2}$ with small M.
- Applied in quantum computational complexity, we prove QMA(2)[poly(n), O(log(n))]؟ PSPACE
RESULT 2: making use of the EIGENSPACE of \mathbf{H}. Omitted!
- Time complexity $\exp \left(O\left(\log (d)+\delta^{-2}\|\mathbf{H}\|_{\mathrm{F}}^{2} \ln \left(\|\mathbf{H}\|_{F} / \delta\right)\right)\right)$ with additive error δ for $\mathbf{H} \geq 0$.
- Conceptually simpler and better running time than an earlier algorithm [BCY11] (time complexity $\exp \left(O\left(\log ^{2}(d) \delta^{-2}\|\mathbf{H}\|_{\mathrm{F}}^{2}\right)\right)$, using symmetric extension, quantum de Finetti bounds).

High-level Technique Overview

High-level Technique Overview

High-level Technique Overview

High-level Technique Overview

Result based on the DECOMPOSABILITY of H

Definition

We call \mathbf{H} is (M, \vec{w})-decomposable if $H=\sum_{i=1}^{M} H_{i}^{1} \otimes H_{i}^{2}$ where $\left\|H_{i}^{1}\right\| \leq w_{1},\left\|H_{i}^{2}\right\| \leq w_{2}$.

Intuition: the smaller $M \Rightarrow$ the more "local" \mathbf{H} and the less connection between the two parties.

Result based on the DECOMPOSABILITY of \mathbf{H}

Definition

We call \mathbf{H} is (M, \vec{w})-decomposable if $H=\sum_{i=1}^{M} H_{i}^{1} \otimes H_{i}^{2}$ where $\left\|H_{i}^{1}\right\| \leq w_{1},\left\|H_{i}^{2}\right\| \leq w_{2}$.

Intuition: the smaller $M \Rightarrow$ the more "local" \mathbf{H} and the less connection between the two parties.

- Enumerate and then fix the connection, and solve the optimization separably.
- Assume the decomposition is given or easily computable. Not necessarily the smallest M.

We obtain exicient algorithms in both "IINE and SPACE when
M is small.

Result based on the DECOMPOSABILITY of \mathbf{H}

Definition

We call \mathbf{H} is (M, \vec{w})-decomposable if $H=\sum_{i=1}^{M} H_{i}^{1} \otimes H_{i}^{2}$ where $\left\|H_{i}^{1}\right\| \leq w_{1},\left\|H_{i}^{2}\right\| \leq w_{2}$.

Intuition: the smaller $M \Rightarrow$ the more "local" \mathbf{H} and the less connection between the two parties.

- Enumerate and then fix the connection, and solve the optimization separably.
- Assume the decomposition is given or easily computable. Not necessarily the smallest M.

Result based on the DECOMPOSABILITY of \mathbf{H}

Definition

We call \mathbf{H} is (M, \vec{w})-decomposable if $H=\sum_{i=1}^{M} H_{i}^{1} \otimes H_{i}^{2}$ where $\left\|H_{i}^{1}\right\| \leq w_{1},\left\|H_{i}^{2}\right\| \leq w_{2}$.

Intuition: the smaller $M \Rightarrow$ the more "local" \mathbf{H} and the less connection between the two parties.

- Enumerate and then fix the connection, and solve the optimization separably.
- Assume the decomposition is given or easily computable. Not necessarily the smallest M.
We obtain efficient algorithms in both TIME and SPACE when M is small.

Result based on the DECOMPOSABILITY of \mathbf{H}

As a result, we prove QMA(2)[poly(n),O(log(n))] \subseteq PSPACE.

- Restricted verifier that only performs poly(n) type-I elementary gates and $O(\log (n))$ type-II elementary gates.

Result based on the DECOMPOSABILITY of H

As a result, we prove QMA(2)[poly(n),O(log(n))] \subseteq PSPACE.

- Restricted verifier that only performs poly(n) type-I elementary gates and $O(\log (n))$ type-II elementary gates.

Type-I: local gates
Type-II: crossing gates

Stronger verifier than those in BellQMA and LOCC-QMA.
PSPACE upper bound.

Result based on the DECOMPOSABILITY of H

As a result, we prove QMA(2)[poly(n),O(log(n))] \subseteq PSPACE.

- Restricted verifier that only performs poly(n) type-I elementary gates and $O(\log (n))$ type-II elementary gates.

Type-I: local gates
Type-II: crossing gates

- Stronger verifier than those in BelIQMA and LOCC-QMA.

Result based on the DECOMPOSABILITY of H

As a result, we prove QMA(2)[poly(n),O(log(n))] \subseteq PSPACE.

- Restricted verifier that only performs poly(n) type-I elementary gates and $O(\log (n))$ type-II elementary gates.

Type-I: local gates
Type-II: crossing gates

- Stronger verifier than those in BelIQMA and LOCC-QMA.
- PSPACE upper bound.

CONNECTION enumeration, TIME efficiency

Assume $H=\sum_{i=1}^{M} H_{i}^{1} \otimes H_{i}^{2}$,
$\max \left\langle H, \rho_{1} \otimes \rho_{2}\right\rangle=\max \left\langle H_{1}^{1}, \rho_{1}\right\rangle\left\langle H_{1}^{2}, \rho_{2}\right\rangle+\cdots+\left\langle H_{M}^{1}, \rho_{1}\right\rangle\left\langle\mathcal{H}_{M}^{2}, \rho_{2}\right\rangle$

- HARD: because of the product $(\bigcirc \bigcirc)$ terms.
- Enumerate the valid values of the \bigcirc terms. Details later.

CONNECTION enumeration, TIME efficiency

Assume $H=\sum_{i=1}^{M} H_{i}^{1} \otimes H_{i}^{2}$,
$\max \left\langle H, \rho_{1} \otimes \rho_{2}\right\rangle=\max \left\langle H_{1}^{1}, \rho_{1}\right\rangle\left\langle H_{1}^{2}, \rho_{2}\right\rangle+\cdots+\left\langle H_{M}^{1}, \rho_{1}\right\rangle\left\langle\mathcal{H}_{M}^{2}, \rho_{2}\right\rangle$

- HARD: because of the product $(\bigcirc \bigcirc)$ terms.
- EASY (efficiently solvable) : when the \bigcirc values are fixed.

- Small $M \Rightarrow$ enumeration space is small

CONNECTION enumeration, TIME efficiency

Assume $H=\sum_{i=1}^{M} H_{i}^{1} \otimes H_{i}^{2}$,
$\max \left\langle H, \rho_{1} \otimes \rho_{2}\right\rangle=\max \left\langle H_{1}^{1}, \rho_{1}\right\rangle\left\langle H_{1}^{2}, \rho_{2}\right\rangle+\cdots+\left\langle H_{M}^{1}, \rho_{1}\right\rangle\left\langle\mathcal{H}_{M}^{2}, \rho_{2}\right\rangle$

- HARD: because of the product $(\bigcirc \bigcirc)$ terms.
- EASY (efficiently solvable) : when the \bigcirc values are fixed.
- Enumerate the valid values of the \bigcirc terms. Details later.
- Small $M \Rightarrow$ enumeration space is small

CONNECTION enumeration, TIME efficiency

Assume $H=\sum_{i=1}^{M} H_{i}^{1} \otimes H_{i}^{2}$,
$\max \left\langle H, \rho_{1} \otimes \rho_{2}\right\rangle=\max \left\langle H_{1}^{1}, \rho_{1}\right\rangle\left\langle H_{1}^{2}, \rho_{2}\right\rangle+\cdots+\left\langle H_{M}^{1}, \rho_{1}\right\rangle\left\langle\mathcal{H}_{M}^{2}, \rho_{2}\right\rangle$

- HARD: because of the product $(\bigcirc \bigcirc)$ terms.
- EASY (efficiently solvable) : when the \bigcirc values are fixed.
- Enumerate the valid values of the \bigcirc terms. Details later.
- Small $M \Rightarrow$ enumeration space is small.

CONNECTION enumeration, SPACE efficiency

- Enumerate raw values of \bigcirc terms from a bounded set.

CONNECTION enumeration, SPACE efficiency

- Enumerate raw values of \bigcirc terms from a bounded set.
- Validness checking by using the multiplicative weight update method to compute a min-max form.

CONNECTION enumeration, SPACE efficiency

- Enumerate raw values of \bigcirc terms from a bounded set.
- Validness checking by using the multiplicative weight update method to compute a min-max form.
- Spectral Decomposition after the \bigcirc values are fixed.

CONNECTION enumeration, SPACE efficiency

- Enumerate raw values of \bigcirc terms from a bounded set. Efficient in both TIME and SPACE.
- Validness checking by using the multiplicative weight update method to compute a min-max form. Efficient in both TIME and SPACE.
- Spectral Decomposition after the \bigcirc values are fixed. Efficient in both TIME and SPACE.

Summary

In this talk, we provide two algorithms based on the following structures of \mathbf{H}.

- The decomposability of \mathbf{H}. PSPACE upper bound of a new and potentially more powerful QMA(2) variant.
- The eigenspace of high eigenvalues of \mathbf{H}.

Open Problems:

- Algorithm or Hardness for larger additive error.
- Upper bound for QMA(2).

Question And Answer

Thank you!

