Epsilon-net method for optimizations over separable states

Yaoyun Shi and Xiaodi Wu

Department of Electrical Engineering and Computer Science University of Michigan, Ann Arbor

ICALP 2012, July 2012

A (10) A (10)

Main Motivation: QMA(2) vs QMA

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

(\verifier Q-Verifier

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states

Main Motivation: QMA(2) vs QMA

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Main Motivation: QMA(2) vs QMA

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states

A (10) A (10)

Main Motivation: QMA(2) vs QMA

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states

A (10) + A (10) +

Main Motivation: QMA(2) vs QMA

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states

Main Motivation: QMA(2) vs QMA

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states

A (10) A (10)

Main Motivation: QMA(2) vs QMA

< 同 > < 三 > < 三 >

Main Motivation: QMA(2) vs QMA

Main Motivation: QMA(2) vs QMA

Main Motivation: QMA(2) vs QMA

History about QMA(2)

• Introduced in [KMY01, KMY03].

- **Surprising**: NP \subseteq QMA(2)_{log} [BT09] comparing with QMA_{log} = BQP [MW05]. Trivially, NP_{log} \subseteq P.
- Various improvements [Bei10, ABD+09, CD10, CF11, GNN11, ...].

Trivially, QMA(2)⊆NEXP.

- Variants of QMA(2), e.g. BellQMA, LOCC-QMA, collapse to QMA (Bra08, ABD+09, BCY11).
- OMA(2)=OMA(poly) [HM10].

Better upper bounds, such as EXP, PSPACE, are expected.

< 日 > < 回 > < 回 > < 回 > < 回 > <

History about QMA(2)

- Introduced in [KMY01, KMY03].
- **Surprising**: NP \subseteq QMA(2)_{log} [BT09] comparing with QMA_{log} = BQP [MW05]. Trivially, NP_{log} \subseteq P.
- Various improvements [Bei10, ABD+09, CD10, CF11, GNN11, ...].
- Trivially, QMA(2)⊆NEXP.
 - Variants of QMA(2); e.g. BellQMA, LOCC-QMA; eelapse to QMA (Brubb, 664086); BCY10;
 - QMA(2)=QMA(poly) [HM10].
- Better upper bounds, such as EXP, PSPACE, are expected.

・ロト ・四ト ・ヨト ・ヨト

History about QMA(2)

- Introduced in [KMY01, KMY03].
- **Surprising**: NP \subseteq QMA(2)_{log} [BT09] comparing with QMA_{log} = BQP [MW05]. Trivially, NP_{log} \subseteq P.
- Various improvements [Bei10, ABD+09, CD10, CF11, GNN11, ...].

Trivially, QMA(2)⊆NEXP.

- Variants of QMA(2), e.g. BellQMA, LOCC-QMA, collapse to QMA [Bra08, ABD+09, BCY11].
- QMA(2)=QMA(poly) [HM10].
- Better upper bounds, such as EXP, PSPACE, are expected.

・ロト ・四ト ・ヨト ・ヨト

History about QMA(2)

- Introduced in [KMY01, KMY03].
- **Surprising**: NP \subseteq QMA(2)_{log} [BT09] comparing with QMA_{log} = BQP [MW05]. Trivially, NP_{log} \subseteq P.
- Various improvements [Bei10, ABD+09, CD10, CF11, GNN11, ...].

Trivially, QMA(2)⊆NEXP.

- Variants of QMA(2) , e.g. BellQMA, LOCC-QMA, collapse to QMA [Bra08, ABD+09, BCY11].
- QMA(2)=QMA(poly) [HM10].

Better upper bounds, such as EXP, PSPACE, are expected.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

3

History about QMA(2)

- Introduced in [KMY01, KMY03].
- **Surprising**: NP \subseteq QMA(2)_{log} [BT09] comparing with QMA_{log} = BQP [MW05]. Trivially, NP_{log} \subseteq P.
- Various improvements [Bei10, ABD+09, CD10, CF11, GNN11, ...].
- Trivially, QMA(2)⊆NEXP.
 - Variants of QMA(2), e.g. BellQMA, LOCC-QMA, collapse to QMA [Bra08, ABD+09, BCY11].
 - QMA(2)=QMA(poly) [HM10].

Better upper bounds, such as EXP, PSPACE, are expected.

・ロト ・四ト ・ヨト ・ヨト

History about QMA(2)

- Introduced in [KMY01, KMY03].
- **Surprising**: NP \subseteq QMA(2)_{log} [BT09] comparing with QMA_{log} = BQP [MW05]. Trivially, NP_{log} \subseteq P.
- Various improvements [Bei10, ABD+09, CD10, CF11, GNN11, ...].
- Trivially, QMA(2)⊆NEXP.
 - Variants of QMA(2) , e.g. BellQMA, LOCC-QMA, collapse to QMA [Bra08, ABD+09, BCY11].
 - QMA(2)=QMA(poly) [HM10].

Better upper bounds, such as EXP, PSPACE, are expected.

・ロット (母) ・ ヨ) ・ コ)

History about QMA(2)

- Introduced in [KMY01, KMY03].
- **Surprising**: NP \subseteq QMA(2)_{log} [BT09] comparing with QMA_{log} = BQP [MW05]. Trivially, NP_{log} \subseteq P.
- Various improvements [Bei10, ABD+09, CD10, CF11, GNN11, ...].
- Trivially, QMA(2)⊆NEXP.
 - Variants of QMA(2) , e.g. BellQMA, LOCC-QMA, collapse to QMA [Bra08, ABD+09, BCY11].
 - QMA(2)=QMA(poly) [HM10].

Better upper bounds, such as EXP, PSPACE, are expected.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Quantum Notations

- Density Operators: Representation of quantum states.
 Note: n-qubit quantum state requires 2ⁿ by 2ⁿ matrix.
- Measurements: The outcome (e.g., probability) of a quantum circuit is given by the *inner product* (M, ρ) where M is a PSD defined by the circuit.
- Tensor Product: For any isolated two systems, the quantum state of the whole state is $\rho \otimes \sigma$ where ρ is the density operator from the first system while σ is from the other one.

Quantum Notations

- Density Operators: Representation of quantum states.
 Note: n-qubit quantum state requires 2ⁿ by 2ⁿ matrix.
- Measurements: The outcome (e.g., probability) of a quantum circuit is given by the inner product (M, ρ) where M is a PSD defined by the circuit.
- Tensor Product: For any isolated two systems, the quantum state of the whole state is $\rho \otimes \sigma$ where ρ is the density operator from the first system while σ is from the other one.

Quantum Notations

- Density Operators: Representation of quantum states.
 Note: n-qubit quantum state requires 2ⁿ by 2ⁿ matrix.
- Measurements: The outcome (e.g., probability) of a quantum circuit is given by the inner product (M, ρ) where M is a PSD defined by the circuit.
- *Tensor Product:* For any *isolated* two systems, the quantum state of the whole state is $\rho \otimes \sigma$ where ρ is the density operator from the first system while σ is from the other one.

A (10) + A (10) +

Motivations The Problem

Formulation of QMA(2)

Definition (QMA(2))

A language \mathcal{L} is in QMA(2) if there exists a polynomial-time generated two-outcome measurement $\{Q_x^{acc}, I - Q_x^{acc}\}$ s.t.,

- If $x \in \mathcal{L}, \exists \rho_1, \rho_2, \langle Q_x^{acc}, \rho_1 \otimes \rho_2 \rangle \geq \frac{2}{3}$.
- If $x \notin \mathcal{L}, \forall \rho_1, \rho_2, \langle Q_x^{\text{acc}}, \rho_1 \otimes \rho_2 \rangle \leq \frac{1}{3}$.

Roughly equivalent to computing $\max \langle \mathbf{Q}_{\mathbf{x}}^{\text{acc}}, \rho_{\mathbf{1}} \otimes \rho_{\mathbf{2}} \rangle$, except

- Larger additive error allowed.
- Special and possibly nicer Q^{mask} by manipulating the prototol.

Formulation of QMA(2)

Definition (QMA(2))

A language \mathcal{L} is in QMA(2) if there exists a polynomial-time generated two-outcome measurement $\{Q_x^{acc}, I - Q_x^{acc}\}$ s.t.,

- If $x \in \mathcal{L}, \exists \rho_1, \rho_2, \langle Q_x^{acc}, \rho_1 \otimes \rho_2 \rangle \geq \frac{2}{3}$.
- If $x \notin \mathcal{L}, \forall \rho_1, \rho_2, \langle Q_x^{\text{acc}}, \rho_1 \otimes \rho_2 \rangle \leq \frac{1}{3}$.

Roughly equivalent to computing $\max \langle \mathbf{Q}_{\mathbf{x}}^{\text{acc}}, \rho_{\mathbf{1}} \otimes \rho_{\mathbf{2}} \rangle$, except

- Larger additive error allowed.
- Special and possibly nicer Q_x^{acc} s by *manipulating the protocol.*

Formulation of QMA(2)

Definition (QMA(2))

A language \mathcal{L} is in QMA(2) if there exists a polynomial-time generated two-outcome measurement $\{Q_x^{acc}, I - Q_x^{acc}\}$ s.t.,

- If $x \in \mathcal{L}, \exists \rho_1, \rho_2, \langle Q_x^{acc}, \rho_1 \otimes \rho_2 \rangle \geq \frac{2}{3}$.
- If $x \notin \mathcal{L}, \forall \rho_1, \rho_2, \langle Q_X^{\text{acc}}, \rho_1 \otimes \rho_2 \rangle \leq \frac{1}{3}$.

Roughly equivalent to computing $\max \langle \mathbf{Q}_{\mathbf{x}}^{\text{acc}}, \rho_{\mathbf{1}} \otimes \rho_{\mathbf{2}} \rangle$, except

- Larger additive error allowed.
- Special and possibly nicer Q_x^{acc} s by *manipulating the protocol.*

Formulation of QMA(2)

Definition (QMA(2))

A language \mathcal{L} is in QMA(2) if there exists a polynomial-time generated two-outcome measurement $\{Q_x^{acc}, I - Q_x^{acc}\}$ s.t.,

• If
$$x \in \mathcal{L}, \exists \rho_1, \rho_2, \langle Q_x^{acc}, \rho_1 \otimes \rho_2 \rangle \geq \frac{2}{3}$$
.

• If
$$x \notin \mathcal{L}, \forall \rho_1, \rho_2, \langle Q_x^{\text{acc}}, \rho_1 \otimes \rho_2 \rangle \leq \frac{1}{3}$$
.

Roughly equivalent to computing $\max \langle \mathbf{Q}_{\mathbf{x}}^{\text{acc}}, \rho_{\mathbf{1}} \otimes \rho_{\mathbf{2}} \rangle$, except

- Larger additive error allowed.
- Special and possibly nicer Q_x^{acc} s by *manipulating the protocol*.

Motivations The Problem

The Problem

Problem (Quantum Formulation)

Given $\mathbf{H} \in \operatorname{Herm}(\mathcal{X} \otimes \mathcal{Y})$ as input, compute

 $\max \langle \mathbf{H}, \rho \otimes \sigma \rangle \text{ subject to } \rho \in \mathrm{D}(\mathcal{X}), \sigma \in \mathrm{D}(\mathcal{Y}),$

where $D(\mathcal{X})$ is the set of trace-one psd matrices over \mathcal{X} .

- Ground energy that is achieved by non-entangled states.
- Mean-field approximation in statistical quantum mechanics.
- Bositivity test of quantum channels
- 17 more examples in guantum information in [HM10].

Motivations The Problem

The Problem

Problem (Quantum Formulation)

Given $\mathbf{H} \in \operatorname{Herm} (\mathcal{X} \otimes \mathcal{Y})$ as input, compute

 $\max \langle \mathbf{H}, \rho \otimes \sigma \rangle \text{ subject to } \rho \in \mathrm{D}(\mathcal{X}), \sigma \in \mathrm{D}(\mathcal{Y}),$

where $D(\mathcal{X})$ is the set of trace-one psd matrices over \mathcal{X} .

- Ground energy that is achieved by *non-entangled* states.
- *Mean-field* approximation in statistical quantum mechanics.
- *Positivity* test of quantum channels.
- 17 more examples in quantum information in [HM10].

Motivations The Problem

The Problem

Problem (Quantum Formulation)

Given $\mathbf{H} \in \operatorname{Herm} (\mathcal{X} \otimes \mathcal{Y})$ as input, compute

 $\max \langle \mathbf{H}, \rho \otimes \sigma \rangle$ subject to $\rho \in D(\mathcal{X}), \sigma \in D(\mathcal{Y}),$

where $D(\mathcal{X})$ is the set of trace-one psd matrices over \mathcal{X} .

- Ground energy that is achieved by *non-entangled* states.
- *Mean-field* approximation in statistical quantum mechanics.
- *Positivity* test of quantum channels.
- 17 more examples in quantum information in [HM10].

Motivations The Problem

The Problem

Problem (Quantum Formulation)

Given $\mathbf{H} \in \operatorname{Herm}(\mathcal{X} \otimes \mathcal{Y})$ as input, compute

 $\max \langle \mathbf{H}, \rho \otimes \sigma \rangle \text{ subject to } \rho \in \mathrm{D}(\mathcal{X}), \sigma \in \mathrm{D}(\mathcal{Y}),$

where $D(\mathcal{X})$ is the set of trace-one psd matrices over \mathcal{X} .

- Ground energy that is achieved by *non-entangled* states.
- *Mean-field* approximation in statistical quantum mechanics.
- *Positivity* test of quantum channels.
- *17 more examples* in quantum information in [HM10].

Motivations The Problem

The Problem

Problem (Quantum Formulation)

Given $\mathbf{H} \in \operatorname{Herm}(\mathcal{X} \otimes \mathcal{Y})$ as input, compute

 $\max \langle \mathbf{H}, \rho \otimes \sigma \rangle \text{ subject to } \rho \in \mathrm{D}(\mathcal{X}), \sigma \in \mathrm{D}(\mathcal{Y}),$

where $D(\mathcal{X})$ is the set of trace-one psd matrices over \mathcal{X} .

- Ground energy that is achieved by *non-entangled* states.
- *Mean-field* approximation in statistical quantum mechanics.
- *Positivity* test of quantum channels.
- 17 more examples in quantum information in [HM10].

< 日 > < 回 > < 回 > < 回 > < 回 > <

= nar

The Problem : Classical Formulation

Problem (Quantum Formulation)

Given $\mathbf{H} \in \operatorname{Herm} (\mathcal{X} \otimes \mathcal{Y})$ as input, compute

 $\max \left\langle \mathbf{H}, \rho \otimes \sigma \right\rangle \text{ subject to } \rho \in \mathrm{D}\left(\mathcal{X}\right), \sigma \in \mathrm{D}\left(\mathcal{Y}\right),$

where $D(\mathcal{X})$ is the set of trace-one psd matrices over \mathcal{X} .

is roughly equivalent to

Problem (Classical Formulation)

Given $\mathbf{H} \in Sym(\mathcal{X} \otimes \mathcal{Y})$ as input, compute

$$\label{eq:max_ijkl} \mbox{max} \sum_{i,j,k,l} H_{ij,kl} x_i y_j x_k y_l \mbox{ subject to } \sum_i x_i^2 = \sum_i y_i^2 = 1.$$

A special class of the polynomial optimization problems.

Motivations The Problem

More Motivations

Quantum Information : more examples in [HM10].

- Quantum Computational Complexity: QMA(2).
- Operations Research: "Bi-Quadratic Optimization over Unit Spheres" [LNQY09]. Polynomial Optimization with Quadratic Constraints.
- Unique Game Conjecture: 2-to-4 norm, Small-Set Expansion-hardness [BBHKSZ12].

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Motivations The Problem

More Motivations

- Quantum Information : more examples in [HM10].
- Quantum Computational Complexity: QMA(2).
- **Operations Research**: "Bi-Quadratic Optimization over Unit Spheres" [LNQY09]. Polynomial Optimization with Quadratic Constraints.
- Unique Game Conjecture: 2-to-4 norm, Small-Set Expansion-hardness [BBHKSZ12].

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Motivations The Problem

More Motivations

- Quantum Information : more examples in [HM10].
- Quantum Computational Complexity: QMA(2).
- **Operations Research**: "Bi-Quadratic Optimization over Unit Spheres" [LNQY09]. Polynomial Optimization with Quadratic Constraints.
- Unique Game Conjecture: 2-to-4 norm, Small-Set Expansion-hardness [BBHKSZ12].

Motivations The Problem

More Motivations

- Quantum Information : more examples in [HM10].
- Quantum Computational Complexity: QMA(2).
- **Operations Research**: "Bi-Quadratic Optimization over Unit Spheres" [LNQY09]. Polynomial Optimization with Quadratic Constraints.
- Unique Game Conjecture: 2-to-4 norm, Small-Set Expansion-hardness [BBHKSZ12].

(日本) (日本) (日本)

The Problem: Easiness vs Hardness

EASY:

$\max \left< \mathbf{H}, \rho \right> \text{ s.t. } \rho \in \mathrm{D}\left(\mathcal{X} \otimes \mathcal{Y} \right)$

• Efficiently solvable via the *spectral decomposition* of *H*. ARD:

$\max \left\langle \mathbf{H}, \rho \otimes \sigma \right\rangle \text{ s.t. } \rho \in \mathrm{D}\left(\mathcal{X}\right), \sigma \in \mathrm{D}\left(\mathcal{Y}\right)$

- NP-hard even to approximate the optimum value with inverse-polynomial additive error.
- Hardness via quantum information [Gur03,loa07,Gha10] or operation research [deK08, LQNY09].

The Problem: Easiness vs Hardness

EASY:

$$\max \langle \mathbf{H}, \rho \rangle \text{ s.t. } \rho \in \mathrm{D}\left(\mathcal{X} \otimes \mathcal{Y} \right)$$

• Efficiently solvable via the *spectral decomposition* of *H*. **HARD:**

$$\max \left\langle \mathbf{H}, \rho \otimes \sigma \right\rangle \text{ s.t. } \rho \in \mathrm{D}\left(\mathcal{X}\right), \sigma \in \mathrm{D}\left(\mathcal{Y}\right)$$

- **NP-hard** even to approximate the optimum value with *inverse-polynomial* additive error.
- Hardness via quantum information [Gur03, loa07, Gha10] or operation research [deK08, LQNY09].

(日)

The Problem: Easiness vs Hardness

EASY:

$$\max \langle \mathbf{H}, \rho \rangle \text{ s.t. } \rho \in \mathrm{D}\left(\mathcal{X} \otimes \mathcal{Y} \right)$$

• Efficiently solvable via the *spectral decomposition* of *H*. **HARD:**

$$\max \left\langle \mathbf{H}, \rho \otimes \sigma \right\rangle \text{ s.t. } \rho \in \mathrm{D}\left(\mathcal{X}\right), \sigma \in \mathrm{D}\left(\mathcal{Y}\right)$$

- **NP-hard** even to approximate the optimum value with *inverse-polynomial* additive error.
- Hardness via quantum information [Gur03, loa07, Gha10] or operation research [deK08, LQNY09].

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Overview Decomposability

Our Results

RESULT 1: making use of the **DECOMPOSABILITY** of **H**.

• Time and Space -efficient algorithms when $\mathbf{H} = \sum_{i=1}^{M} H_i^1 \otimes H_i^2$ with small M.

 Applied in *quantum computational complexity*, we prove QMA(2)[poly(n),O(log(n))]⊆ PSPACE

RESULT 2: making use of the **EIGENSPACE** of **H**.

- Time complexity exp(O(log(d) + δ⁻²||H||²_F ln(||H||_F/δ))) with additive error δ for H ≥ 0.
- Conceptually simpler and botter running time than an earlier algorithm. [BCX11] (time complexity: exp(O(log²(d))²([H][2)), using symmetric extension, duentum de Finett bounds).

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Overview Decomposability

Our Results

RESULT 1: making use of the **DECOMPOSABILITY** of **H**.

- Time and Space -efficient algorithms when $\mathbf{H} = \sum_{i=1}^{M} H_i^1 \otimes H_i^2$ with small M.
- Applied in *quantum computational complexity*, we prove QMA(2)[poly(n),O(log(n))]⊆ PSPACE
- **RESULT 2:** making use of the **EIGENSPACE** of **H**.
 - Time complexity exp(O(log(d) + δ⁻²||H||²_F ln(||H||_F/δ))) with additive error δ for H ≥ 0.
 - Conceptually simpler and better running time than an earlier algorithm [BCY11] (time complexity exp(O(log²(d)δ⁻²||H||²_F)), using symmetric extension, quantum de Finetti bounds).

Overview Decomposability

Our Results

RESULT 1: making use of the **DECOMPOSABILITY** of **H**.

- Time and Space -efficient algorithms when $\mathbf{H} = \sum_{i=1}^{M} H_i^1 \otimes H_i^2$ with small M.
- Applied in *quantum computational complexity*, we prove QMA(2)[poly(n),O(log(n))]⊆ PSPACE

RESULT 2: making use of the **EIGENSPACE** of **H**.

- Time complexity exp(O(log(d) + δ⁻² ||**H**||²_F ln(||**H**||_F/δ))) with additive error δ for **H** ≥ 0.
- Conceptually simpler and better running time than an earlier algorithm [BCY11] (time complexity exp(O(log²(d)δ⁻²||H||_F²)), using symmetric extension, quantum de Finetti bounds).

・ロト ・四ト ・ヨト ・ヨト

Overview Decomposability

Our Results

RESULT 1: making use of the **DECOMPOSABILITY** of **H**.

- Time and Space -efficient algorithms when $\mathbf{H} = \sum_{i=1}^{M} H_i^1 \otimes H_i^2$ with small M.
- Applied in *quantum computational complexity*, we prove QMA(2)[poly(n),O(log(n))]⊆ PSPACE
- **RESULT 2:** making use of the **EIGENSPACE** of **H**.
 - Time complexity exp(O(log(d) + δ⁻² ||**H**||²_F ln(||**H**||_F/δ))) with additive error δ for **H** ≥ 0.
 - Conceptually simpler and better running time than an earlier algorithm [BCY11] (time complexity exp(O(log²(d)δ⁻²||H||²_F)), using symmetric extension, quantum de Finetti bounds).

・ロト ・四ト ・ヨト ・ヨト

Overview Decomposability

Our Results

RESULT 1: making use of the **DECOMPOSABILITY** of **H**.

- Time and Space -efficient algorithms when $\mathbf{H} = \sum_{i=1}^{M} H_i^1 \otimes H_i^2$ with small M.
- Applied in *quantum computational complexity*, we prove QMA(2)[poly(n),O(log(n))]⊆ PSPACE

RESULT 2: making use of the **EIGENSPACE** of **H**. Omitted!

- Time complexity $\exp(O(\log(d) + \delta^{-2} \|\mathbf{H}\|_{\mathsf{F}}^2 \ln(\|\mathbf{H}\|_{\mathsf{F}}/\delta)))$ with additive error δ for $\mathbf{H} \ge 0$.
- Conceptually simpler and better running time than an earlier algorithm [BCY11] (time complexity exp(O(log²(d)δ⁻²||H||²_F)), using symmetric extension, quantum de Finetti bounds).

・ロト ・四ト ・ヨト ・ヨト

Overview Decomposability

High-level Technique Overview

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states

Overview Decomposability

High-level Technique Overview

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states

Overview Decomposability

High-level Technique Overview

Overview Decomposability

High-level Technique Overview

< 17 >

Definition

We call **H** is (M, \vec{w}) -decomposable if $H = \sum_{i=1}^{M} H_i^1 \otimes H_i^2$ where $\|H_i^1\| \le w_1, \|H_i^2\| \le w_2$.

Intuition: the smaller $M \Rightarrow$ the more "local" **H** and the less connection between the two parties.

- Enumerate and then fix the connection, and solve the optimization separably.
- Assume the decomposition is given or easily computable. Not necessarily the smallest M.

We obtain efficient algorithms in both **TIME** and **SPACE** when *M* is small.

・ロト ・四ト ・ヨト ・ヨト

Definition

We call **H** is (M, \vec{w}) -decomposable if $H = \sum_{i=1}^{M} H_i^1 \otimes H_i^2$ where $||H_i^1|| \le w_1, ||H_i^2|| \le w_2$.

Intuition: the smaller $M \Rightarrow$ the more "local" **H** and the less connection between the two parties.

- Enumerate and then fix the connection, and solve the optimization separably.
- Assume the decomposition is given or easily computable. *Not necessarily the smallest M.*

We obtain efficient algorithms in both **TIME** and **SPACE** when *M* is small.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition

We call **H** is (M, \vec{w}) -decomposable if $H = \sum_{i=1}^{M} H_i^1 \otimes H_i^2$ where $||H_i^1|| \le w_1, ||H_i^2|| \le w_2$.

Intuition: the smaller $M \Rightarrow$ the more "local" **H** and the less connection between the two parties.

- Enumerate and then fix the connection, and solve the optimization separably.
- Assume the decomposition is given or easily computable. *Not necessarily the smallest M*.

We obtain efficient algorithms in both **TIME** and **SPACE** when *M* is small.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Definition

We call **H** is (M, \vec{w}) -decomposable if $H = \sum_{i=1}^{M} H_i^1 \otimes H_i^2$ where $||H_i^1|| \le w_1, ||H_i^2|| \le w_2$.

Intuition: the smaller $M \Rightarrow$ the more "local" **H** and the less connection between the two parties.

- Enumerate and then fix the connection, and solve the optimization separably.
- Assume the decomposition is given or easily computable. *Not necessarily the smallest M*.

We obtain efficient algorithms in both **TIME** and **SPACE** when *M* is small.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

As a result, we prove $QMA(2)[poly(n),O(log(n))] \subseteq PSPACE$.

Restricted verifier that only performs *poly(n)* type-I elementary gates and *O*(log(*n*)) type-II elementary gates.

Type-I: *local gates* Type-II: *crossing gates*

< 17 ×

• Stronger verifier than those in **BellQMA** and **LOCC-QMA**.

• **PSPACE** upper bound.

As a result, we prove $QMA(2)[poly(n),O(log(n))] \subseteq PSPACE$.

 Restricted verifier that only performs *poly(n)* type-I elementary gates and *O*(log(*n*)) type-II elementary gates.

Type-I: *local gates* Type-II: *crossing gates*

- Stronger verifier than those in BellQMA and LOCC-QMA.
- **PSPACE** upper bound.

As a result, we prove $QMA(2)[poly(n),O(log(n))] \subseteq PSPACE$.

 Restricted verifier that only performs *poly(n)* type-I elementary gates and *O*(log(*n*)) type-II elementary gates.

Type-I: *local gates* Type-II: *crossing gates*

- Stronger verifier than those in **BellQMA** and **LOCC-QMA**.
- **PSPACE** upper bound.

As a result, we prove $QMA(2)[poly(n),O(log(n))] \subseteq PSPACE$.

 Restricted verifier that only performs *poly(n)* type-I elementary gates and *O*(log(*n*)) type-II elementary gates.

Type-I: *local gates* Type-II: *crossing gates*

- Stronger verifier than those in **BellQMA** and **LOCC-QMA**.
- **PSPACE** upper bound.

Assume $H = \sum_{i=1}^{M} H_i^1 \otimes H_i^2$,

 $\max \langle H, \rho_1 \otimes \rho_2 \rangle = \max \left\langle H_1^1, \rho_1 \right\rangle \left\langle H_1^2, \rho_2 \right\rangle + \dots + \left\langle H_M^1, \rho_1 \right\rangle \left\langle \mathcal{H}_M^2, \rho_2 \right\rangle$

- HARD: because of the product (O) terms.
- EASY (efficiently solvable) : when the Ovalues are fixed.
- Enumerate the valid values of the terms. Details later.
- Small $M \Rightarrow$ enumeration space is small.

(日本) (日本) (日本)

Assume $H = \sum_{i=1}^{M} H_i^1 \otimes H_i^2$,

 $\max \langle H, \rho_1 \otimes \rho_2 \rangle = \max \left\langle H_1^1, \rho_1 \right\rangle \left\langle H_1^2, \rho_2 \right\rangle + \dots + \left\langle H_M^1, \rho_1 \right\rangle \left\langle \mathcal{H}_M^2, \rho_2 \right\rangle$

- HARD: because of the product (\bigcirc \bigcirc) terms.
- EASY (*efficiently solvable*) : when the Ovalues are fixed.
- Enumerate the valid values of the barrent terms. Details later.
- Small $M \Rightarrow$ enumeration space is small.

• (10) • (10)

Assume $H = \sum_{i=1}^{M} H_i^1 \otimes H_i^2$,

 $\max \langle H, \rho_1 \otimes \rho_2 \rangle = \max \left\langle H_1^1, \rho_1 \right\rangle \left\langle H_1^2, \rho_2 \right\rangle + \dots + \left\langle H_M^1, \rho_1 \right\rangle \left\langle \mathcal{H}_M^2, \rho_2 \right\rangle$

- HARD: because of the product (\bigcirc) terms.
- EASY (*efficiently solvable*) : when the Ovalues are fixed.
- Enumerate the valid values of the O terms. Details later.
- Small $M \Rightarrow$ enumeration space is small.

・ 戸 ト ・ 三 ト ・ 三 ト

Assume $H = \sum_{i=1}^{M} H_i^1 \otimes H_i^2$,

 $\max \langle H, \rho_1 \otimes \rho_2 \rangle = \max \left\langle H_1^1, \rho_1 \right\rangle \left\langle H_1^2, \rho_2 \right\rangle + \dots + \left\langle H_M^1, \rho_1 \right\rangle \left\langle \mathcal{H}_M^2, \rho_2 \right\rangle$

- HARD: because of the product (\bigcirc \bigcirc) terms.
- EASY (*efficiently solvable*) : when the Ovalues are fixed.
- Enumerate the valid values of the O terms. *Details later.*
- Small $M \Rightarrow$ enumeration space is small.

< 同 > < 回 > < 回 > <

CONNECTION enumeration, SPACE efficiency

- Enumerate raw values of
 berms from a bounded set.
- Validness checking by using the multiplicative weight update method to compute a min-max form.
- Spectral Decomposition after the Ovalues are fixed.

• (10) • (10)

CONNECTION enumeration, SPACE efficiency

- Enumerate raw values of
 berms from a bounded set.
- Validness checking by using the multiplicative weight update method to compute a min-max form.
- Spectral Decomposition after the Ovalues are fixed.

• (10) • (10)

CONNECTION enumeration, SPACE efficiency

- Enumerate raw values of
 berms from a bounded set.
- Validness checking by using the multiplicative weight update method to compute a min-max form.
- Spectral Decomposition after the Ovalues are fixed.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

CONNECTION enumeration, SPACE efficiency

from some $\rho_1 \in D(\mathcal{X})$

- Enumerate raw values of \bigcirc terms from a **bounded** set. Efficient in both **TIME** and **SPACE**.
- Validness checking by using the multiplicative weight update method to compute a min-max form.
 Efficient in both TIME and SPACE.
- Spectral Decomposition after the Ovalues are fixed. Efficient in both TIME and SPACE.

In this talk, we provide two algorithms based on the following structures of $\ensuremath{\textbf{H}}.$

- The decomposability of **H**. PSPACE upper bound of a new and potentially more powerful QMA(2) variant.
- The eigenspace of high eigenvalues of **H**.

Open Problems:

- Algorithm or Hardness for larger additive error.
- Upper bound for QMA(2).

Overview Decomposability

Question And Answer

Thank you!

Yaoyun Shi and Xiaodi Wu Epsilon-net method for optimizations over separable states

< 同 > < 三 > < 三