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Motivation

Why do I come across this problem?

I Quantum property testing [e.g., survey [Montanaro, de
Wolf]] (Quantum testers of classical properties !)

I Testing of distributional properties. A well-motivated
branch in the classical property testing literature !! also
connected to learning problems.

I Objects are distributions, rather than boolean functions.
Might bring new insights or call for new techniques!
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Entropies

Given any distribution p over a discrete set X, the Shannon
entropy of this distribution p is defined by

H(p) :=
∑

x∈X:p(x)>0

−px log px.

One important generalization of Shannon entropy is the Rényi
entropy of order α, denoted Hα(p), which is defined by

Hα(p) =

{
1

1−α log
∑

x∈X p
α
x , when α 6= 1.

H(p), when α = 1.
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Problem Statement

For convenience, assume X = [n].

A natural question: Given access to samples obtained by tak-
ing independent draws from p, determine the necessary number
of independent draws to estimate H(p) or Hα(p) within error
ε, with high probability.

Motivations: this is a theoretically appealing topic with intimate
connections to statistics, information theory, learning theory, and
algorithm design.
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Our Question

Main Question: is there any quantum speed-up of
estimation of Shannon and Rényi entropies ?

Our question aligns with the emerging topic called “quantum
property testing” and focuses on investigating the quantum
advantage in testing classical statistical properties.

The first research paper on this topic is by Bravyi, Harrow, and
Hassidim [BHH 11], where they have discovered quantum
speed-ups of testing uniformity, orthogonality, and statistical
difference on unknown distributions, followed by Chakraborty
et al. [CFMdW 10].
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Classical results

Classically, this fundamental question has been intensively stud-
ied in both the communities of theoretical computer science and
information theory.

If ε is a constant, then the classical query complexity

I for Shannon entropy [VV 11], [JVHW 15]: Θ( n
logn).

I for Rényi entropy [AOST 17]:
O( n

1
α

logn) and Ω(n
1
α
−o(1)), when 0 < α < 1.

O( n
logn) and Ω(n1−o(1)), when α > 1, α /∈ N.

Θ(n1−
1
α ), when α > 1, α ∈ N.
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I for Rényi entropy [AOST 17]:
O( n

1
α

logn) and Ω(n
1
α
−o(1)), when 0 < α < 1.

O( n
logn) and Ω(n1−o(1)), when α > 1, α /∈ N.

Θ(n1−
1
α ), when α > 1, α ∈ N.



Classical results

Classically, this fundamental question has been intensively stud-
ied in both the communities of theoretical computer science and
information theory.

If ε is a constant, then the classical query complexity

I for Shannon entropy [VV 11], [JVHW 15]: Θ( n
logn).
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Quantum results

Our results:

α classical bounds quantum bounds (this talk)

0 < α < 1 O( n
1
α

logn), Ω(n
1
α
−o(1)) [AOST 17] Õ(n

1
α
− 1

2 ), Ω(max{n
1
7α
−o(1), n

1
3 })

α = 1 Θ( n
logn) [VV 11, JVHW 15] Õ(

√
n), Ω(n

1
3 )

α > 1, α /∈ N O( n
logn), Ω(n1−o(1)) [AOST 17] Õ(n1−

1
2α

)
, Ω(max{n

1
3 ,Ω(n

1
2
− 1

2α )})
α = 2 Θ(

√
n)[AOST 17] Θ̃(n

1
3 )

α > 2, α ∈ N Θ(n1−1/α) [AOST 17] Õ(nν(1−1/α)), Ω(n
1
2
− 1

2α ), ν < 3/4

α =∞ Θ( n
logn) [VV 11] Õ(Q(dlog ne-distinctness)), Ω(

√
n)

Table 1: Summary of classical and quantum query complexity of
Hα(p) for α > 0, assuming ε = Θ(1).



Quantum results

Quantum lower bounds

Quantum upper bounds

Classical tight bounds
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Figure 1: Visualization of classical and quantum query complexity of
Hα(p). The x-axis represents α and the y-axis represents the
exponent of n. Red curves and points represent quantum upper
bounds. Green curves and points represent classical tight bounds.
The Magenta curve represents quantum lower bounds.



Quantum results: in my April talk at MSR

Quantum lower bounds

Quantum upper bounds
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Figure 2: Visualization of classical and quantum query complexity of
Hα(p). The x-axis represents α and the y-axis represents the
exponent of n. Red curves and points represent quantum upper
bounds. Green curves and points represent classical tight bounds.
The Magenta curve represents quantum lower bounds.
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Sample vs Query model

Ref. [BHH 11] models any discrete distribution p = (pi)
n
i=1 on

[n] by an oracle Op : [S] → [n]. Any probability pi (i ∈ [n]) is
thus proportional to the size of pre-image of i under Op:

pi =
|{s ∈ [S] : Op(s) = i}|

S
∀ i ∈ [n].

If one samples s uniformly from [S] and outputs Op(s), then one
obtains a sample drawn from distribution p.

It is shown in [BHH 11] that the query complexity of the oracle
model above and the sample complexity of independent samples
are in fact equivalent classically.
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Quantum Query Model

Quantumly, Op is transformed into a unitary operator Ôp acting
on CS ⊗ Cn+1 such that

Ôp|s〉|0〉 = |s〉|Op(s)〉 ∀ s ∈ [S].

This is more powerful than Op because we may take a superpo-
sition of states as an input.



Roadmap of quantum entropy estimation: for all α > 0
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High-level Framework

A general distribution property estimation problem:

Given a discrete distribution p = (pi)
n
i=1 on [n] and a function

f : (0, 1]→ R, estimate F (p) :=
∑

i∈[n] pif(pi) with small
additive or multiplicative error with high success probability.

If f(x) = − log x, F (p) is the Shannon entropy H(p) (additive
error); if f(x) = xα−1 for some α > 0, α 6= 1, Hα(p) ∝ logF (p)
(multiplicative error).

Inspired by BHH, we formulate a framework for approximating
F (p).



High-level Framework

A general distribution property estimation problem:

Given a discrete distribution p = (pi)
n
i=1 on [n] and a function

f : (0, 1]→ R, estimate F (p) :=
∑

i∈[n] pif(pi) with small
additive or multiplicative error with high success probability.

If f(x) = − log x, F (p) is the Shannon entropy H(p) (additive
error); if f(x) = xα−1 for some α > 0, α 6= 1, Hα(p) ∝ logF (p)
(multiplicative error).

Inspired by BHH, we formulate a framework for approximating
F (p).



High-level Framework

A general distribution property estimation problem:

Given a discrete distribution p = (pi)
n
i=1 on [n] and a function

f : (0, 1]→ R, estimate F (p) :=
∑

i∈[n] pif(pi) with small
additive or multiplicative error with high success probability.

If f(x) = − log x, F (p) is the Shannon entropy H(p) (additive
error); if f(x) = xα−1 for some α > 0, α 6= 1, Hα(p) ∝ logF (p)
(multiplicative error).

Inspired by BHH, we formulate a framework for approximating
F (p).



High-level Framework

Algorithm: Estimate F (p) =
∑

i pif(pi).

1 Set l,M ∈ N;
2 Regard the following subroutine as A:
3 Draw a sample i ∈ [n] according to p;
4 Use amplitude estimation with M queries to obtain an estimation

p̃i of pi;
5 Output X = f(p̃i);

6 Use A for l times in “quantum speedup of Chebyshev’s inequality” and

outputs an estimation F̃ (p̃) of F (p);

Intuitively, performance depends on E(F̃ (p̃)) and σ(F̃ (p̃)).

Want: E(F̃ (p̃)) close to F (p) and σ(F̃ (p̃)) small.

Pros: intuitively correct; (tedious) calculation only !?

Cons: very limited quantum speedup with only the basic framework.
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Quantum algorithm for Shannon entropy estimation

Two new ingredients (c.f. BHH) when f(p) = − log p

I Montanaro’s quantum speedup of Monte Carlo methods.
Let A be a quantum algorithm outputting X such that
Var(X) ≤ σ2. For ε s.t. 0 < ε < 4σ, by using Õ(σ/ε) times
of A and A−1, one can output estimate Ẽ(X) of E(X) s.t.

Pr
[
|Ẽ(X)− E(X)| ≥ ε

]
≤ 1/4.

Classically, one needs to use Θ(σ2/ε2) times of A.

I a fine-tuned analysis to bound the value of log(1/p) when
p→ 0. Analyze the full distribution of amplitude
amplification.

Complexity: Classical Θ(n/ log(n)) vs Quantum Õ(
√
n).
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√
n).



Roadmap of quantum entropy estimation: for all α > 0

Amplitude

amplification

Quantum speedup of

Chebyshev’s inequality

Quantum

counting

Chebyshev

cooling

Simulated

annealing

Phase

estimation

Learning graph

for k-distinctness

Span programs
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Quantum algorithm for α-Rényi entropy: α /∈ N

Issue w/ the basic framework for Rényi entropy

multiplicative errors (Montanaro’s algorithm yields no speedup
in the worst case) → quantum advantage when 1/2 < α < 2.

New observations

I given E[X] ∈ [a, b] s.t. b = O(a), we develop a variant of
Montanaro’s algorithm with a quadratic speedup.

I Let Pα(p) =
∑

i p
α
i , α1, α2 > 0 s.t. α1/α2 = 1± 1/ log(n),

Pα1(p) = Θ(Pα2(p)α1/α2)

Use Pα2 to estimate [a, b] for Pα1 where α2 is closer to 1.

I Recursively solve the Pα2 case until α2 ≈ 1 where a
speed-up is already known.
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Quantum algorithm for α-Rényi entropy: α /∈ N

Recursively call roughly O(log(n)) times until α ≈ 1

I α > 1: α→ α(1 + 1
logn)−1 → α(1 + 1

logn)−2 · · · ;
I 0 < α < 1: α→ α(1− 1

logn)−1 → α(1− 1
logn)−2 · · · .

Similarity and difference: cooling schedules in simulated
annealing, volume estimation

I multi-section, multiplicative factors, similar design
principle.

I adapt this design principle to our context.
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Quantum algorithm for α-Rényi entropy: α ≥ 2 ∈ N

In the sample model, this problem has a good empirical
estimator based on α-th frequency moment.

Frequency moments

A sequence a1, . . . , aM ∈ [n] are given with the occurrences of
1, . . . , n to be m1, . . . ,mn respectively. You are asked to give a
good approximation of Fk =

∑
i∈[n]m

k
i for k ∈ N.

Empirical Estimation

Key observation:∑
i∈[n]

pαi ≈
∑
i∈[n]

(
mi

M
)k = Fk/M

k

Note: this is not the best classical estimator. Why?
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Quantum algorithm for α-Rényi entropy: α ≥ 2 ∈ N

Want to use this empirical estimator in the query model !!

Issues and Solutions

I Issue 1: How to generate M samples? cannot query M
times (the same complexity as classical).

Key observation: treat our quantum oracle Op as a
sequence of S samples. The α-frequency moment of
Op(1), . . . , Op(S) is exactly Sα

∑
i∈[n] p

α
i .

I Issue 2: quantum algorithm for α-frequency moment with
query complexity (e.g., o(n

3
4
(1− 1

α
)) [Montanaro 16]) where

the ”n” is actually ”S” in this context.
Key observation: Roughly replace S by αn in the
algorithm and redo the analysis.
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The min-entropy (i.e., α = +∞) case: find the maxi pi

How about using integer α algorithm?

Intuitively, exists some α s.t., Hα(p) (sub-linear for any α) is a
good enough approximation of Hmin(p).

NO, Õ(·) hides an exponential dependence on α.

Another reduction to log(n)-distinctness

I ”Poissonized sampling”: the numbers of occurrences of ith
point are pair-wise independent Poisson distributions,
parameterized by a guess value λ and pi, i ∈ [n].

I log(n) is a natural cut-off threshold for Poisson
distribution.

I When λ ·maxi pi passes this threshold, a log(n)-collision
can be found w.h.p.. Otherwise, update λ and try again.
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Quantum lower bounds

Any quantum algorithm that approximates α-Rényi entropy of
a discrete distribution on [n] with success probability at least
2/3 must use

I Ω(n
1
7α
−o(1)) quantum queries when 0 < α < 3

7 .

I Ω(n
1
3 ) quantum queries when 3

7 ≤ α ≤ 3.

I Ω(n
1
2
− 1

2α ) quantum queries when α ≥ 3.

I Ω(
√
n) quantum queries when α = +∞.

Techniques:

I Reductions to the collision, Hamming weight, symmetry
function problems.

I The polynomial method inspired by the collision lower
bound for a better error dependence.
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a discrete distribution on [n] with success probability at least
2/3 must use

I Ω(n
1
7α
−o(1)) quantum queries when 0 < α < 3

7 .

I Ω(n
1
3 ) quantum queries when 3

7 ≤ α ≤ 3.

I Ω(n
1
2
− 1

2α ) quantum queries when α ≥ 3.

I Ω(
√
n) quantum queries when α = +∞.

Techniques:

I Reductions to the collision, Hamming weight, symmetry
function problems.

I The polynomial method inspired by the collision lower
bound for a better error dependence.



Quantum lower bounds

Any quantum algorithm that approximates α-Rényi entropy of
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A problem interesting on its own. Our reduction to the
min-entropy case just adds another motivation!
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Belovs when k = log(n)

differences between quantum and classical?

At a high level, we want testers with correct expectations but
small variances. Many techniques are proposed classically, and
so different from ours.

Can we leverage the design principle of classical testers?
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Classical estimators for Shannon entropy

A first choice: empirical estimator. If we take M samples and oc-
curences of 1, . . . , n are m1, . . . ,mn respectively, then empirically
the distribution is (m1

M , . . . , mnM ), and

Hemp(p) = −
∑
i∈[n]

mi

M
log

mi

M
.

To approximate H(p) within error ε with high probability, need
M = Θ( n

ε2
).

Not that bad compared to the best estimator, whereM = Θ( n
ε2 logn

).
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Classical estimators for Shannon entropy

Construction of the best estimator:

I [VV 11]: A very clever (but complicated) application of
linear programming under Poissonized samples (will
explain later)

I [JVHW 15]: polynomial approximation
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Classical estimators for Rényi entropy

Still, we can first consider the empirical estimator: Hα,emp(p) =
1

1−α log
∑

i∈[n]
(
mi
M

)α
.

In [AOST 17], it is shown that the query complexity of the em-
pirical estimator is{

Θ(n
1
α ), when 0 < α < 1.

Θ(n), when α > 1.

Recall that the classical query complexity of Rényi entropy:
O( n

1
α

logn) and Ω(n
1
α
−o(1)), when 0 < α < 1.

O( n
logn) and Ω(n1−o(1)), when α > 1, α /∈ N.

Θ(n1−
1
α ), when α > 1, α ∈ N.
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Classical estimators for Rényi entropy

Main difference happens only when α > 1, α ∈ N.

This is not a minor point. In particular, 2-Rényi entropy (also
known as the collision entropy) has classical query complexity
Θ(
√
n), which is much less than that of Shannon entropy (Θ( n

logn)).

Collision entropy gives a rough estimation of Shannon entropy,
and it measures the quality of random number generators and
key derivation in cryptographic applications.
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Classical estimators for Rényi entropy

When α > 1 and α ∈ N, [AOST 17] proposes the following “bias-
corrected” estimator:

Hα,bias(p) =
1

1− α
log
∑
i∈[n]

mi(mi − 1) · · · (mi − α+ 1)

Mα
.

This is actually the best estimator with query complexity Θ(n1−
1
α ).

The analysis is mainly based on a “Possionization” technique.
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An intuition of Possionization

When you are taking M samples where M is fixed, then the
occurences of 1, . . . , n are not independent. But if you take M ∼
Poi(λ), then the occurence of i is mi ∼ Poi(λpi), and all mi are
pairwise independent.

Moreover, with high probability λ/2 ≤ M ≤ 2λ, so Possioniza-
tion does not influence query complexity up to a constant.

A key reason to use bias-corrected estimator: if a random variable
X ∼ Poi(λ), then ∀ r ∈ N,

E[X(X − 1) · · · (X − r + 1)] = λr.

This property helps a lot for the analysis in [AOST 17] based on
Chernoff-Hoeffding inequality.
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