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Entanglement Detection

Definition (Separable and Entangled States)
A bi-partitie state ρ ∈ D (X ⊗ Y) is separable if ∃ dist. {pi},

ρ =
∑

piσ
i
X ⊗ σ

i
Y , s.t. σi

X ∈ D (X ) , σi
Y ∈ D (Y) .

Otherwise, ρ is entangled. Let Sep def
= { separable states }.

Definition (Entanglement Detection)
A KEY problem: given the description of ρ ∈ D (X ⊗ Y), decide

Either ρ ∈ Sep, or ρ is far away from Sep.
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Alternative Formulation

Definition (Weak Membership)
WMem(ε, ‖·‖) : for any ρ ∈ D (X ⊗ Y), decide either ρ ∈ Sep or
‖ρ− Sep‖ ≥ ε.

Via standard techniques in convex optimization, equivalent to

Definition (Weak Optimization)
WOpt(M, ε) : for any M ∈ Herm (X ⊗ Y), estimate the value of

max
ρ∈Sep

〈M, ρ〉 ,

with additive error ε.

From now on, we focus on WOpt(M, ε).
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The Problem: alternative formulation

Recall that hSep(d)(M) refers to

max 〈M, ρ〉 s.t. ρ ∈ Sep(X ⊗ Y).

For any M ∈ Cd×d , there exists M ′ ∈ C2d×2d s.t.

hProdSym(2d)(M ′) =
1
4

hSep(d)(M),

where ProdSym(d , k) := conv{(|ψ〉 〈ψ|)⊗2 : |ψ〉 ∈ B(Cd )}.
[HM]

REDUCE our problem to the mathematically simpler
hProdSym(d).
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Reduce hProdSym(d) further

Let |ψ〉 =
∑d

i=1 ai |i〉 such that ∀i ,ai ∈ C and
∑

i |ai |2 = 1. It is
easy to see that hProdSym(d) is equivalent to

max
a∈Cd

∑
i1,i2,j1,j2

M(i1,i2),(j1,j2)a∗i1a∗i2aj1aj2

subject to ||a||2 = 1.
(1)

Now reduce from C to R by observing:
M is a Hermitian so the objective function is real.
Decomposing the complex number into real and imaginary
parts.
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hProdSym(n) with real variables

By renaming, we arrive at the hProdSym(n) with real variables:

max
x∈Rn

f0(x) =
∑

i1,i2,j1,j2

M(i1,i2),(j1,j2)xi1xi2xj1xj2

subject to f1(x) = ||x ||2 − 1 = 0.
(2)

REMARK: this is an instance of polynomial optimization
problems with a homogenous degree 4 objective polynomial
and a degree 2 constraint polynomial.
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Connections

Quantum Information:
Ground energy that is achieved by non-entangled states.
Mean-field approximation in statistical quantum mechanics.
Positivity test of quantum channels.
17 more examples in quantum information in [HM10].

Quantum Complexity:
Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:
Unique Game Conjecture and Small-set Expansion.
(`2 → `4 norm)

A. Harrow, A. Natarajan, and X. Wu New Upper and Lower bounds for Entanglement Testing
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Early Attempts

Separability Criterions:

Positive Partial Transpose (PPT) : ρTY = ρ? [PH]
Reduction Criterions: IX ⊗ ρY ≥ ρ ? [HH]
· · · · · ·
FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:
ρ is k -extendible if ∃ symmetric σ ∈ D (X ⊗ Y1 ⊗ · · · ⊗ Yk ),
∀i , ρ = σXYi .
ρ ∈ Sep if and only if ρ is k -extendible for any k ≥ 0.
Semidefinite program (SDP): size exponential in k .
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Hardness

Let hSep(d)(M) denote the value of

max 〈M, ρ〉 s.t. ρ ∈ D (X ⊗ Y) is separable,

where d refers to the dimension of X ⊗ Y.

Hardness
NP-hard to approximate hSep(d)(M) with additive error
ε = 1/poly(d). [Gur03,Ioa07,Gha10], [deK08, LQNY09].
Assuming Exponential Time Hypothesis (ETH), for
constant ε, approximate hSep(d)(M) needs dΩ(log(d)) time.
via the connection to QMA(2). [HM, AB+]
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Upper bounds

When ε = 1/poly(d)

DPS to O(d/
√
ε) level: time (d/

√
ε)O(d) → dO(d). [NOP]

Epsilon-net (brute-force): time (1/ε)O(d) → dO(d).

When ε = const

DPS to O(log(d)/ε2) level for 1-LOCC M: time
dO(log(d)/ε2) → dO(log(d)). [BYC, BH]
Epsilon-net for 1-LOCC M or M with small ‖M‖F: time
similar to above. [SW, BH]

REMARK: all DPS results correspond to variants of quantum
de Finetti theorem.
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Landscape

Table: Known results about approximating hSep(d) to error ε

Error ε Lower bounds Upper b. (DPS) Upper b. (ε-net)
1/poly(d) NP-hard (d/

√
ε)O(d) (1/ε)O(d)

const dO(log(d)) dO(log(d)/ε2) similar to left
(ETH) (1-LOCC) (1-LOCC)

REMARK: previous results focus on the dependence on d ,
which is sufficient for their purpose. However, the dependence
on ε could be bad.
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Table: Known results about approximating hSep(d) to error ε

Error ε Lower bounds Upper b. (DPS) Upper b. (ε-net)
1/poly(d) NP-hard poly(1/ε) poly(1/ε)

const dO(log(d)) exp(1/ε) similar to left
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Angle I: Error MATTERs!

Complexity could grow with 1/ε

Infinite translationally invariant Hamiltonian: the
complexity grows rapidly with 1/ε even with fixed local
dimension. [CPW]
Quantum Interactive Proof: the complexity jumps from
PSPACE to EXP with smaller ε. [IKW]

Will approximating hSep(d) be such a case?

REMARK: It is not clear how to improve the error dependence
for either DPS or epsilon-net approach.

DPS hard due to tightness of de Finetti and k -extendibility.

A. Harrow, A. Natarajan, and X. Wu New Upper and Lower bounds for Entanglement Testing



Introduction
Proof Technique

Conclusions

Motivations
Related Work
Main Result

Angle I: Error MATTERs!

Complexity could grow with 1/ε

Infinite translationally invariant Hamiltonian: the
complexity grows rapidly with 1/ε even with fixed local
dimension. [CPW]
Quantum Interactive Proof: the complexity jumps from
PSPACE to EXP with smaller ε. [IKW]

Will approximating hSep(d) be such a case?

REMARK: It is not clear how to improve the error dependence
for either DPS or epsilon-net approach.

DPS hard due to tightness of de Finetti and k -extendibility.
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Main Result I:

Error dependence about hSep(d)

NO error dependence except numerical errors.
For analytical purposes, there is no error at all.
Numerically, the dependence is polylog(1/ε), exponential
improvement from best known poly(1/ε),exp(1/ε).

Moreover, the dependence on d remains the same.

Theorem (Main I)
There exist two algorithms that estimate hSep(d)(M) to error ε in
time exp(poly(d)) poly log(1/ε). similar for the multi-partite case.
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DPS+ hierarchy

DPS+ hierarchy level k for hSep(d)(M)

max
ρ

〈
ρXY1 ,M

〉
such that ρ ∈ D (X ⊗ Y1 ⊗ · · · ⊗ Yk ) ,

ρ is symmetric on Y1 ⊗ · · · ⊗ Yk ,

〈ρ, Γi〉 = 0,∀i . KKT conditions

(3)

Remarks
The new hierarchy is exact when k = exp(poly(d)).
KKT conditions Γi depend on M.
KKT conditions are written without multipliers.
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Result II: Hardness w/o ASSUMPTIONs?

Will the hardness of hSep(d) for const ε hold w/o ETH?

Theorem (Main II.1)
DPS hierarchies (or general Sum-of-Squares SDP) require
Ω(log(d)) levels to solve hSep(d) with constant precision.

Theorem (Main II.2)
Any SDP that estimate hSep(d)(M) with constant errors requires
size dΩ(log(d)).

Remark: Match dΩ(log(d)) time bound when assuming ETH.
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Principle of Sum-of-Squares

One way to show that a polynomial f (x) is nonnegative could be

f (x) =
∑

ai(x)2 ≥ 0.

Example

f (x) = 2x2 − 6x + 5
= (x2 − 2x + 1) + (x2 − 4x + 4)

= (x − 1)2 + (x − 2)2 ≥ 0.

Such a decomposition is called a sum of squares (SOS)
certificate for the non-negativity of f . The min degree, degsos.
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Principle of SoS : constrained domain

Definition (Variety)
A set V ⊆ Cn is called an algebraic variety if
V = {x ∈ Cn : g1(x) = · · · = gk (x) = 0}.

Non-negativity of f (x) on V could be shown by

f (x) =
∑

ai(x)2 +
∑

bj(x)gj(x) ≥ 0.

Question: whether all nonnegative polynomials on certain
variety have a SOS certificate? Hilbert 17th problem!

A. Harrow, A. Natarajan, and X. Wu New Upper and Lower bounds for Entanglement Testing
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SoS in Optimization

max f (x)

subject to gi(x) = 0 ∀i
(4)

is equivalent to (justified by Positivstellensatz)

min ν

such that ν − f (x) = σ(x) +
∑

i

bi(x)gi(x), (5)

where σ(x) is SOS and bi(x) is any polynomial.
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SoS relaxation: Lasserre/Parrilo Hierarchy

If σ(x),bi(x) have any degrees (or degsos(v − f )), then
problem (5) is equivalent to problem (4).
By bounding the degrees, we get the Lasserre/Parrilo
hierarchy.

min ν

such that ν − f (x) = σ(x) +
∑

i

bi(x)gi(x), (6)

where σ(x) is SOS and bi(x) is any polynomial and deg(σ(x)),
deg(bi(x)gi(x)) ≤ 2D.
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Why it is a SDP?

Observation

Any p(x) (of degree 2D) = mT Qm, where m is the vector
of monomials of degree up to 2D and Q is the coefficients.
p(x) is a SOS iff Q ≥ 0.

min
ν,biα∈R

ν

such that νA0 − F −
∑
iα

biαGiα ≥ 0.
(7)

Complexity: poly(m) poly log(1/ε), where m =
(n+D

D

)
.
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Dual of the SDP: moment

Dual of the SOS cone
Let Σd ,2D be the cone of all PSD matrices representing
SOS polynomials with degree up to 2D.
The dual cone Σ∗d ,2D is moment MD(x) ≥ 0, where entry
(α, β) of Md (x) is

∫
xα+βµ(dx), |α|, |β| ≤ d .

Pseudo-expectation
Expectation on moment MD(x) gives rise to
pseudo-expectation.
Behave similar to expectation for low-degree polynomials.
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Full Symmetry =⇒ DPS

Example
Now each entry is labelled with ((i , j), (k , l)) for degree 4 case,
i.e., Md (x) = ρ ∈ D (Cn ⊗ Cn).

ρ =
∑

(i,j),(k ,l)

xixjxkxl |i〉 |j〉 〈k | 〈l | .

Note that entry ((i , j), (k , l)) and ((i , l), (k , j)) have the same
value xixjxkxl . This is PPT condition. Similar for DPS.

Remark: more symmetry because in ProdSym. Flexible in
choosing more or less symmetry.

A. Harrow, A. Natarajan, and X. Wu New Upper and Lower bounds for Entanglement Testing
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Karush-Kuhn-Tucker Conditions

For any optimization problem

max f (x) s.t. gi(x) ≤ 0,hj(x) = 0,∀i , j ,

if x∗ is a local optimizer, then ∃µi , λj ,

∇f (x∗) =
∑

µi∇gi(x∗) +
∑

λj∇hj(x∗)

gi(x∗) ≤ 0,hj(x∗) = 0,
µi ≥ 0, µigi(x∗) = 0.

Remark: for convex optimization (our case), any global
optimizer satisfies KKT.
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Our case

Recall our optimization problem is

max f0(x) s.t. f1(x) = 0.

The KKT condition is ∇f0(x) = λ∇f1(x), which is equivalent to

rank


∂f0(x)
∂x1

∂f1(x)
∂x1

...
...

∂f0(x)
∂x2n

∂f1(x)
∂x2n

 < 2.

gij(x) =
∂f0(x)

∂xi

∂f1(x)

∂xj
− ∂f0(x)

∂xj

∂f1(x)

∂xi
, ∀i , j
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Optimization Problem with KKT constraints

min ν

such that ν − f0(x) ≥ 0
f1(x) = 0

KKT gij(x) = 0 ∀1 ≤ i 6= j ≤ 2d

Apply the degree bound D, we get the SoS SDP hierarchy.
Will show finite convergence when D = exp(poly(d)). Then
m =

(d+D
D

)
= exp(poly(d)). Thus the final time is

exp(poly(d)) poly log(1/ε).
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Proof Overview

KKT conditions are necessary for critical points.
KKT conditions imply finite convergence (tri-exponential
or higher) for a generic optimization problem. [N, NR]
Bring down the level for our problem to exponential.

KKT shrinks the feasible set to isolated points. (Bézout
and Bertini)
Exponential level suffices. (Grobner basis)

Handle arbitrary inputs rather than generic ones.
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Generic input M

Theorem (Zero-dimensional of generic IK )

For a generic M, |V (IK )| <∞ and IK is zero-dimensional.

Theorem (Degree bound)

There exists m = O(exp(poly(n))), s.t. for a generic M, ε > 0,

v − f0(x) + ε = σ(x) + g(x),

where σ(x) is SoS and deg(σ(x)) ≤ m,g(x) ∈ Im
K .

Corollary (SDP solution)
Estimate hProdSym(n)(M) for a generic M to error ε needs
exp(poly(n))poly log(1/ε).

A. Harrow, A. Natarajan, and X. Wu New Upper and Lower bounds for Entanglement Testing
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Arbitrary input M

Observations
Generic M is dense. The opt of SDP could be continuous.
Issue: SOS SDP might be infeasible up to degree m for
arbitrary input M.

Solutions
Switch to the dual SDP (moment): satisfies Slater’s
condition, i.e, strictly feasible.
For a generic M, by strong duality,
hProdSym(n)(M) =OPTmom(M).
For any input M, use the continuity of the dual SDP then.

A. Harrow, A. Natarajan, and X. Wu New Upper and Lower bounds for Entanglement Testing
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Result II: Hardness w/o ASSUMPTIONs!

Theorem (Main II.1)
DPS hierarchies (or general Sum-of-Squares SDP) require
Ω(log(d)) levels to solve hSep(d) with constant precision.

Theorem (Main II.2)
Any SDP that estimate hSep(d)(M) with constant errors requires
size dΩ(log(d)).

Remark: Theorem II.1⇒ Theorem II.2 due to a recent result on
psd rank (SDP) lower bound [LRS].
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Proof Overview

LB: instance w/ true value small, SoS (or SDP) value large.
Start w/ such an instance: random 3XOR w/ true value
∼ 1/2 + ε, SoS value= 1 for large sos degree.
Goal to embed such random 3XOR to an instance of
hSep(d)(M)! How?
Make use of a QMA(2) protocol (for 2-out-of-4 SAT) [AB+]
to solve this 3XOR.
Step 1: a random 3XOR⇒ a 2-out-of-4 SAT instance.
Step 2: QMA(2) protocol as a reduction!

Step 2.1: Embed it further as an instance to hSep(d)(M).
(Theorem II.1)
Step 2.2: Apply LRS to the resultant problem. Then reduce
it to hSep(d)(M). (Theorem II.2)
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Step 1: 3XOR⇒ 2-out-of-4 SAT

A random 3XOR on n vars with O(n) clauses: sos-deg Ω(n),
true value ∼ 1/2, pseudo-expectation value 1.

A random 3XOR (each var appears in const clauses) has
sos-deg Ω(n).
Replace each clause x1 ⊕ x2 ⊕ x3 = zc with 2o4(x1,b, c, z),
2o4(x2,a, c, z),2o4(x3,a,b, z).
Use 2o4 clauses to make all auxiliary zc the same. Use
expander graphs to force const appearances.
Extending the pseudo-expectation:
Ẽ [y1(x)y2(x)] =

∑
α∈y1y2

Ẽ [xα].

A. Harrow, A. Natarajan, and X. Wu New Upper and Lower bounds for Entanglement Testing
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Step 2: QMA(2) protocol as a reduction

A QMA(2) protocol solves this 2-out-of-4 SAT w/ completeness
1, soundness 1/2. [AB+]

The acceptance probability of this QMA(2) protocol as the
output function.
By soundness, the true value should be at most 1/2.
This QMA(2) protocol has three tests. One is testing
whether any 2o4 clause is satisfied.
The other two have ”low-degree” test-measures.
By natural extension of pseudo-expectation⇒
pseudo-value 1.
Caveat: the function domain is still on {0,1}n.
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Step 2: DPS and SDP lower bounds

DPS lower bound

Embed this pseudo-distribution on {0,1}n to Rd .
(d = n

√
npolylog(n))

Thus hSep(d)(M) has sos degree Ω(log(d)).

SDP lower bound
Apply LRS to this function on {0,1}n. Obtain SDP size
lower bound (d/ log log(d))Ω(log(d)).
By soundness, a general hSep(d)(M) can solve this
problem, thus has the same lower bound.

A. Harrow, A. Natarajan, and X. Wu New Upper and Lower bounds for Entanglement Testing
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Step 2: DPS and SDP lower bounds

DPS lower bound

Embed this pseudo-distribution on {0,1}n to Rd .
(d = n

√
npolylog(n))

Thus hSep(d)(M) has sos degree Ω(log(d)).

SDP lower bound
Apply LRS to this function on {0,1}n. Obtain SDP size
lower bound (d/ log log(d))Ω(log(d)).
By soundness, a general hSep(d)(M) can solve this
problem, thus has the same lower bound.

A. Harrow, A. Natarajan, and X. Wu New Upper and Lower bounds for Entanglement Testing



Introduction
Proof Technique

Conclusions
Open Questions

Open Questions

DPS+
Analyze the low levels of DPS+.
Advantages of adding KKT conditions other than
presented here.
Extension to the non-commutative case?

SoS, SDP lower bound
Any hope for a better bound?
Extension to general algorithms?
Any other applications to quantum information?

A. Harrow, A. Natarajan, and X. Wu New Upper and Lower bounds for Entanglement Testing



Introduction
Proof Technique

Conclusions
Open Questions

Question And Answer

Thank you!
Q & A
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Proof of Theorem 1

Let U = {f1(x) = 0},W = {∀ i , j ,gij = 0}. then V (IK ) ⊆ U ∩W.

It suffices to show |U ∩W| <∞. Construct A =X ∩U s.t.

A ∩W = ∅ and dim(X ) = n − 1. NoteW ∩A = (W ∩ U) ∩ X .

By Bézout’s theorem, two varieties with dimension sum≥ n
must intersect. Thus

dim(W ∩ U) + dim(X ) = dim(W ∩ U) + n − 1 < n.

This implies dim(W ∩ U) = 0 and thus |V (IK )| <∞.
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Proof of Theorem 1: construct X

Let X = {f0(x) = µ} for generic (µ,M). dim(X ) = n − 1.

By Bertini’s theorem, dim(A) = dim(U ∩ X ) = n − 2.

The Jacobian matrix JA =


∂f0
∂x1

∂f1
∂x1

...
...

∂f0
∂xn

∂f1
∂xn

has rank(JA) = 2.

W by definition says rank(JA) = 1. Thus no intersection!

Subtly: genericity; projective space; homogenization!
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Proof of Theorem 2

Let {γi} be a Grobner basis for IK .

|V (IK )| <∞ =⇒ max deg{γi} ≤ D = exp(poly(n)).

Now, want to bound deg(σ(x)),deg(g(x)) in

v − f0(x) = σ(x) + g(x). s.t. σ(x) SOS ,g(x) ∈ Im
K .

Let σ(x) =
∑

sa(x)2. By property of Grobner basis

sa(x) = ga(x) + ua(x), s.t. ga(x) ∈ IK ,deg(ua(x)) ≤ nD.

Thus

v − f0(x) = σ′(x) + g′(x),deg(σ′(x)) ≤ exp(poly(n)),g′ ∈ IK .
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Proof of Theorem 2: g′ ∈ Im
K

All we need is to show g′ ∈ Im
K ,m = exp(poly(n)).

deg(g′(x)) = deg(σ′(x)) = m.
In Grobner basis, g′(x) =

∑
tkγk (x), deg(tkγk (x)) ≤ m.

(Omitted) γk (x) =
∑

uij(x)gij(x), deg(uij) ≤ m.

Thus, g′(x) =
∑

tkuijgij(x),deg(tkuij) ≤ m, =⇒ g′(x) ∈ Im
K .

Im
K = {v(x)f1(x) +

∑
hij(x)gij(x) : deg(v(x)f1(x)) ≤ m,

∀ i , j ,deg(hijgij) ≤ m}.
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