New Upper and Lower bounds for Entanglement Testing

Aram W. Harrow, Anand Natarajan, Xiaodi Wu

MIT Center for Theoretical Physics

MSR Redmond, May, 2015

Motivations Related Work Main Result

Entanglement Detection

Definition (Separable and Entangled States)

A bi-partitie state $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$ is *separable* if \exists dist. $\{p_i\}$,

$$\rho = \sum \boldsymbol{p}_{i} \sigma_{\boldsymbol{X}}^{i} \otimes \sigma_{\boldsymbol{Y}}^{i}, \text{ s.t. } \sigma_{\boldsymbol{X}}^{i} \in \mathrm{D}\left(\boldsymbol{\mathcal{X}}\right), \sigma_{\boldsymbol{Y}}^{i} \in \mathrm{D}\left(\boldsymbol{\mathcal{Y}}\right).$$

Otherwise, ρ is *entangled*. Let Sep $\stackrel{\text{def}}{=} \{$ separable states $\}$.

Definition (Entanglement Detection)

A KEY problem: given the description of $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$, decide

イロト イヨト イヨト イヨト

Motivations Related Work Main Result

Entanglement Detection

Definition (Separable and Entangled States)

A bi-partitie state $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$ is *separable* if \exists dist. $\{p_i\}$,

$$\rho = \sum \boldsymbol{p}_{i} \sigma_{\boldsymbol{X}}^{i} \otimes \sigma_{\boldsymbol{Y}}^{i}, \text{ s.t. } \sigma_{\boldsymbol{X}}^{i} \in \mathrm{D}\left(\boldsymbol{\mathcal{X}}\right), \sigma_{\boldsymbol{Y}}^{i} \in \mathrm{D}\left(\boldsymbol{\mathcal{Y}}\right).$$

Otherwise, ρ is *entangled*. Let Sep $\stackrel{\text{def}}{=}$ { separable states }.

Definition (Entanglement Detection)

A KEY problem: given the description of $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$, decide Either $\rho \in$ Sep, or ρ is far away from Sep.

イロト イヨト イヨト イヨト

Motivations Related Work Main Result

Alternative Formulation

Definition (Weak Membership)

 $WMem(\epsilon, \|\cdot\|)$: for any $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$, decide either $\rho \in Sep$ or $\|\rho - Sep\| \ge \epsilon$.

Via standard techniques in convex optimization, equivalent to

Definition (Weak Optimization)

WOpt(M, ϵ) : for any $M \in \text{Herm}(\mathcal{X} \otimes \mathcal{Y})$, estimate the value of

 $\max_{\rho \in \mathsf{Sep}} \langle \boldsymbol{M}, \rho \rangle \,,$

with additive error ϵ .

From now on, we focus on WOpt(M, ϵ).

Motivations Related Work Main Result

Alternative Formulation

Definition (Weak Membership)

 $WMem(\epsilon, \|\cdot\|)$: for any $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$, decide either $\rho \in Sep$ or $\|\rho - Sep\| \ge \epsilon$.

Via standard techniques in convex optimization, equivalent to

Definition (Weak Optimization)

WOpt(M, ϵ): for any $M \in \text{Herm}(\mathcal{X} \otimes \mathcal{Y})$, estimate the value of

 $\max_{\boldsymbol{\rho}\in \operatorname{Sep}}\left\langle \textit{\textit{M}},\boldsymbol{\rho}\right\rangle ,$

with additive error ϵ .

From now on, we focus on $\mathsf{WOpt}(M,\epsilon)$.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

Motivations Related Work Main Result

Alternative Formulation

Definition (Weak Membership)

 $WMem(\epsilon, \|\cdot\|)$: for any $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$, decide either $\rho \in Sep$ or $\|\rho - Sep\| \ge \epsilon$.

Via standard techniques in convex optimization, equivalent to

Definition (Weak Optimization)

WOpt(M, ϵ): for any $M \in \text{Herm}(\mathcal{X} \otimes \mathcal{Y})$, estimate the value of

 $\max_{\boldsymbol{\rho}\in \operatorname{Sep}}\left\langle \textit{\textit{M}},\boldsymbol{\rho}\right\rangle ,$

with additive error ϵ .

From now on, we focus on $WOpt(M, \epsilon)$.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Motivations Related Work Main Result

The Problem: alternative formulation

Recall that $h_{\text{Sep}(d)}(M)$ refers to

$$\max \langle \mathbf{M}, \rho \rangle \text{ s.t. } \rho \in \text{Sep}(\mathcal{X} \otimes \mathcal{Y}).$$

For any $M \in \mathbb{C}^{d \times d}$, there exists $M' \in \mathbb{C}^{2d \times 2d}$ s.t.

$$h_{\operatorname{ProdSym}(2d)}(M') = rac{1}{4}h_{\operatorname{Sep}(d)}(M),$$

where $\operatorname{ProdSym}(d, k) := \operatorname{conv}\{(|\psi\rangle \langle \psi|)^{\otimes 2} : |\psi\rangle \in B(\mathbb{C}^d)\}.$ [HM]

REDUCE our problem to the mathematically simpler h_{ProdSym(d)}.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Motivations Related Work Main Result

The Problem: alternative formulation

Recall that $h_{\text{Sep}(d)}(M)$ refers to

$$\max \langle \mathbf{M}, \rho \rangle \text{ s.t. } \rho \in \text{Sep}(\mathcal{X} \otimes \mathcal{Y}).$$

For any $M \in \mathbb{C}^{d \times d}$, there exists $M' \in \mathbb{C}^{2d \times 2d}$ s.t.

$$h_{\operatorname{ProdSym}(2d)}(M') = rac{1}{4}h_{\operatorname{Sep}(d)}(M),$$

where $\operatorname{ProdSym}(d, k) := \operatorname{conv}\{(|\psi\rangle \langle \psi|)^{\otimes 2} : |\psi\rangle \in B(\mathbb{C}^d)\}.$ [HM]

REDUCE our problem to the mathematically simpler $h_{\text{ProdSym}(d)}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Motivations Related Work Main Result

Reduce *h*_{ProdSym(*d*)} further

Let $|\psi\rangle = \sum_{i=1}^{d} a_i |i\rangle$ such that $\forall i, a_i \in \mathbb{C}$ and $\sum_i |a_i|^2 = 1$. It is easy to see that $h_{\text{ProdSym}(d)}$ is equivalent to

$$\max_{a \in \mathbb{C}^d} \sum_{i_1, i_2, j_1, j_2} M_{(i_1, i_2), (j_1, j_2)} a_{i_1}^* a_{i_2}^* a_{j_1} a_{j_2}$$
(1) subject to $||a||^2 = 1.$

Now reduce from \mathbb{C} to \mathbb{R} by observing:

- *M* is a Hermitian so the objective function is real.
- Decomposing the complex number into real and imaginary parts.

Motivations Related Work Main Result

Reduce *h*_{ProdSym(*d*)} further

Let $|\psi\rangle = \sum_{i=1}^{d} a_i |i\rangle$ such that $\forall i, a_i \in \mathbb{C}$ and $\sum_i |a_i|^2 = 1$. It is easy to see that $h_{\text{ProdSym}(d)}$ is equivalent to

$$\max_{a \in \mathbb{C}^d} \sum_{i_1, i_2, j_1, j_2} M_{(i_1, i_2), (j_1, j_2)} a_{i_1}^* a_{i_2}^* a_{j_1} a_{j_2}$$
(1)
subject to $||a||^2 = 1.$

Now reduce from \mathbb{C} to \mathbb{R} by observing:

- *M* is a Hermitian so the objective function is real.
- Decomposing the complex number into real and imaginary parts.

・ロト ・四ト ・ヨト ・ヨト

Motivations Related Work Main Result

*h*ProdSym(*n*) with real variables

By renaming, we arrive at the $h_{ProdSym(n)}$ with real variables:

$$\max_{x \in \mathbb{R}^n} f_0(x) = \sum_{i_1, i_2, j_1, j_2} M_{(i_1, i_2), (j_1, j_2)} x_{i_1} x_{i_2} x_{j_1} x_{j_2}$$
subject to $f_1(x) = ||x||^2 - 1 = 0.$
(2)

REMARK: this is an instance of *polynomial optimization* problems with a homogenous degree 4 objective polynomial and a degree 2 constraint polynomial.

Motivations Related Work Main Result

Connections

Quantum Information:

- Ground energy that is achieved by *non-entangled* states.
- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- 17 more examples in quantum information in [HM10].

Quantum Complexity:

• Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:

• Unique Game Conjecture and Small-set Expansion. $(\ell_2 \rightarrow \ell_4 \text{ norm})$

(日) (四) (三) (三)

Motivations Related Work Main Result

Connections

Quantum Information:

- Ground energy that is achieved by non-entangled states.
- *Mean-field* approximation in statistical quantum mechanics.
- *Positivity* test of quantum channels.
- 17 more examples in quantum information in [HM10].

Quantum Complexity:

• Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:

• Unique Game Conjecture and Small-set Expansion. $(\ell_2 \rightarrow \ell_4 \text{ norm})$

(日) (四) (三) (三)

Motivations Related Work Main Result

Connections

Quantum Information:

- Ground energy that is achieved by *non-entangled* states.
- *Mean-field* approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- 17 more examples in quantum information in [HM10].

Quantum Complexity:

• Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:

• Unique Game Conjecture and Small-set Expansion. $(\ell_2 \rightarrow \ell_4 \text{ norm})$

Motivations Related Work Main Result

Connections

Quantum Information:

- Ground energy that is achieved by *non-entangled* states.
- *Mean-field* approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- 17 more examples in quantum information in [HM10].

Quantum Complexity:

Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:

• Unique Game Conjecture and Small-set Expansion. $(\ell_2 \rightarrow \ell_4 \text{ norm})$

Motivations Related Work Main Result

Connections

Quantum Information:

- Ground energy that is achieved by *non-entangled* states.
- *Mean-field* approximation in statistical quantum mechanics.
- *Positivity* test of quantum channels.
- 17 more examples in quantum information in [HM10].

Quantum Complexity:

• Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:

• Unique Game Conjecture and Small-set Expansion. $(\ell_2 \rightarrow \ell_4 \text{ norm})$

・ロ・ ・ 四・ ・ 回・ ・ 回・

Motivations Related Work Main Result

Connections

Quantum Information:

- Ground energy that is achieved by *non-entangled* states.
- *Mean-field* approximation in statistical quantum mechanics.
- *Positivity* test of quantum channels.
- 17 more examples in quantum information in [HM10].

Quantum Complexity:

• Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:

• Unique Game Conjecture and Small-set Expansion. ($\ell_2 \rightarrow \ell_4$ norm)

(日)

Motivations Related Work Main Result

Early Attempts

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{\mathcal{Y}}} = \rho$? [PH]
- Reduction Criterions: $I_{\mathcal{X}} \otimes \rho_Y \ge \rho$? [HH]
- • • • •
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

- ρ is *k*-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$, $\forall i, \rho = \sigma_{XY_i}$.
- $\phi \in \mathrm{Sep}$ if and only if ρ is to extend ble for any $k \geq 0.1$

<ロ> <同> <同> < 同> < 同> < 同> <

Motivations Related Work Main Result

Early Attempts

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{\mathcal{Y}}} = \rho$? [PH]
- Reduction Criterions: $I_X \otimes \rho_Y \ge \rho$? [HH]

• • • • • • •

FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

• ρ is *k*-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$, $\forall i, \rho = \sigma_{XY_i}$.

 $0 \geq 0$, $q \in \mathrm{Septif}$ and only if q is to extend ble for any $k \geq 0$.

<ロ> <同> <同> < 同> < 同> < 同> <

Motivations Related Work Main Result

Early Attempts

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{\mathcal{Y}}} = \rho$? [PH]
- Reduction Criterions: $I_X \otimes \rho_Y \ge \rho$? [HH]
- • • • •
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

• ρ is *k*-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$, $\forall i, \rho = \sigma_{XY_i}$.

 $\rho \in \operatorname{Sep}$ if and only if ρ is k-extendible for any $k \geq 0.1$

<ロ> <同> <同> < 同> < 同> < 同> < □> <

Motivations Related Work Main Result

Early Attempts

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{\mathcal{Y}}} = \rho$? [PH]
- Reduction Criterions: $I_X \otimes \rho_Y \ge \rho$? [HH]
- • • • • •
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

- ρ is *k*-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$, $\forall i, \rho = \sigma_{XY_i}$.
- $\rho \in$ Sep if and only if ρ is k-extendible for any $k \geq 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Motivations Related Work Main Result

Early Attempts

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{\mathcal{Y}}} = \rho$? [PH]
- Reduction Criterions: $I_X \otimes \rho_Y \ge \rho$? [HH]
- • • • •
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

- ρ is *k*-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$, $\forall i, \rho = \sigma_{XY_i}$.
- $\rho \in$ Sep if and only if ρ is k-extendible for any $k \ge 0$.
- Semidefinite program (SDP): size exponential in k.

(日)

Motivations Related Work Main Result

Early Attempts

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{\mathcal{Y}}} = \rho$? [PH]
- Reduction Criterions: $I_X \otimes \rho_Y \ge \rho$? [HH]
- • • • •
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

- ρ is *k*-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$, $\forall i, \rho = \sigma_{XY_i}$.
- $\rho \in$ Sep if and only if ρ is *k*-extendible for any $k \ge 0$.
- Semidefinite program (SDP): size exponential in k.

Motivations Related Work Main Result

Early Attempts

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{\mathcal{Y}}} = \rho$? [PH]
- Reduction Criterions: $I_X \otimes \rho_Y \ge \rho$? [HH]
- • • • •
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

- ρ is *k*-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$, $\forall i, \rho = \sigma_{XY_i}$.
- $\rho \in$ Sep if and only if ρ is *k*-extendible for any $k \ge 0$.
- Semidefinite program (SDP): size exponential in k.

Motivations Related Work Main Result

Hardness

Let $h_{\text{Sep}(d)}(M)$ denote the value of

 $\max \langle \mathbf{M}, \rho \rangle$ s.t. $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$ is *separable*,

where *d* refers to the dimension of $\mathcal{X} \otimes \mathcal{Y}$.

Hardness

NP-hard to approximate h_{Sep(d)}(M) with additive error ε = 1/poly(d). [Gur03,loa07,Gha10], [deK08, LONY09].
 Assuming Exponential Time Hypothesis (ETH), for constant ε, approximate h_{Sep(d)}(M) needs d^{Ω(log(d))} time. via the connection to QMA(2). [HM, AB+]

A. Harrow, A. Natarajan, and X. Wu New Upper and Lower bounds for Entanglement Testing

Motivations Related Work Main Result

Hardness

Let $h_{\text{Sep}(d)}(M)$ denote the value of

 $\max \langle \mathbf{M}, \rho \rangle$ s.t. $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$ is *separable*,

where *d* refers to the dimension of $\mathcal{X} \otimes \mathcal{Y}$.

Hardness

• **NP-hard** to approximate $h_{\text{Sep}(d)}(M)$ with additive error $\epsilon = 1/\text{poly}(d)$. [Gur03,Ioa07,Gha10], [deK08, LQNY09].

 Assuming Exponential Time Hypothesis (ETH), for constant ε, approximate h_{Sep(d)}(M) needs d^{Ω(log(d))} time. via the connection to QMA(2). [HM, AB+]

Motivations Related Work Main Result

Hardness

Let $h_{\text{Sep}(d)}(M)$ denote the value of

 $\max \langle \mathbf{M}, \rho \rangle$ s.t. $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$ is *separable*,

where *d* refers to the dimension of $\mathcal{X} \otimes \mathcal{Y}$.

Hardness

- **NP-hard** to approximate $h_{\text{Sep}(d)}(M)$ with additive error $\epsilon = 1/\text{poly}(d)$. [Gur03,Ioa07,Gha10], [deK08, LQNY09].
- Assuming Exponential Time Hypothesis (ETH), for constant *ε*, approximate h_{Sep(d)}(M) needs d^{Ω(log(d))} time. via the connection to QMA(2). [HM, AB+]

(日)

Motivations Related Work Main Result

Upper bounds

When $\epsilon = 1/poly(d)$

• DPS to $O(d/\sqrt{\epsilon})$ level: time $(d/\sqrt{\epsilon})^{O(d)} \rightarrow d^{O(d)}$. [NOP]

• Epsilon-net (brute-force): time $(1/\epsilon)^{O(d)}
ightarrow d^{O(d)}$

When $\epsilon = \text{const}$

- Epsilon-net for 1-LOOC M set M with small [M] More set in terms of the set of the set

REMARK: all DPS results correspond to variants of quantum de Finetti theorem.

Motivations Related Work Main Result

Upper bounds

When $\epsilon = 1/poly(d)$

- DPS to $O(d/\sqrt{\epsilon})$ level: time $(d/\sqrt{\epsilon})^{O(d)} \rightarrow d^{O(d)}$. [NOP]
- Epsilon-net (brute-force): time $(1/\epsilon)^{O(d)} \rightarrow d^{O(d)}$.

When $\epsilon = \text{const}$

- DPS to O(log(d)/ε²) level for 1-LOCC M: time d^{O(log(d)/ε²)} → d^{O(log(d))}. [BYC, BH]
- emit :=[[M]] Berne dife M or M octor interesting and [[M]]. Similar to evode (303,303)

REMARK: all DPS results correspond to variants of quantum de Finetti theorem.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

Motivations Related Work Main Result

Upper bounds

When $\epsilon = 1/poly(d)$

- DPS to $O(d/\sqrt{\epsilon})$ level: time $(d/\sqrt{\epsilon})^{O(d)} \rightarrow d^{O(d)}$. [NOP]
- Epsilon-net (brute-force): time $(1/\epsilon)^{O(d)} \rightarrow d^{O(d)}$.

When $\epsilon = \text{const}$

- DPS to O(log(d)/ε²) level for 1-LOCC M: time d^{O(log(d)/ε²)} → d^{O(log(d))}. [BYC, BH]
- Epsilon-net for 1-LOCC M or M with small || M ||_F: time similar to above. [SW, BH]

REMARK: all DPS results correspond to variants of quantum de Finetti theorem.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Motivations Related Work Main Result

Upper bounds

When $\epsilon = 1/poly(d)$

- DPS to $O(d/\sqrt{\epsilon})$ level: time $(d/\sqrt{\epsilon})^{O(d)} \rightarrow d^{O(d)}$. [NOP]
- Epsilon-net (brute-force): time $(1/\epsilon)^{O(d)} \rightarrow d^{O(d)}$.

When $\epsilon = \text{const}$

- DPS to $O(log(d)/\epsilon^2)$ level for **1-LOCC** *M*: time $d^{O(log(d)/\epsilon^2)} \rightarrow d^{O(log(d))}$. [BYC, BH]
- Epsilon-net for 1-LOCC *M* or *M* with small ||*M*||_F: time similar to above. [SW, BH]

REMARK: all DPS results correspond to variants of quantum de Finetti theorem.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

Motivations Related Work Main Result

Upper bounds

When $\epsilon = 1/poly(d)$

- DPS to $O(d/\sqrt{\epsilon})$ level: time $(d/\sqrt{\epsilon})^{O(d)} \rightarrow d^{O(d)}$. [NOP]
- Epsilon-net (brute-force): time $(1/\epsilon)^{O(d)} \rightarrow d^{O(d)}$.

When $\epsilon = \text{const}$

- DPS to $O(log(d)/\epsilon^2)$ level for **1-LOCC** *M*: time $d^{O(log(d)/\epsilon^2)} \rightarrow d^{O(log(d))}$. [BYC, BH]
- Epsilon-net for 1-LOCC *M* or *M* with small ||*M*||_F: time similar to above. [SW, BH]

REMARK: all DPS results correspond to variants of quantum de Finetti theorem.

Motivations Related Work Main Result

Upper bounds

When $\epsilon = 1/poly(d)$

- DPS to $O(d/\sqrt{\epsilon})$ level: time $(d/\sqrt{\epsilon})^{O(d)} \rightarrow d^{O(d)}$. [NOP]
- Epsilon-net (brute-force): time $(1/\epsilon)^{O(d)} \rightarrow d^{O(d)}$.

When $\epsilon = \text{const}$

- DPS to $O(log(d)/\epsilon^2)$ level for **1-LOCC** *M*: time $d^{O(log(d)/\epsilon^2)} \rightarrow d^{O(log(d))}$. [BYC, BH]
- Epsilon-net for 1-LOCC *M* or *M* with small ||*M*||_F: time similar to above. [SW, BH]

REMARK: all DPS results correspond to variants of quantum de Finetti theorem.

Motivations Related Work Main Result

Upper bounds

When $\epsilon = 1/poly(d)$

- DPS to $O(d/\sqrt{\epsilon})$ level: time $(d/\sqrt{\epsilon})^{O(d)} \rightarrow d^{O(d)}$. [NOP]
- Epsilon-net (brute-force): time $(1/\epsilon)^{O(d)} \rightarrow d^{O(d)}$.

When $\epsilon = \text{const}$

- DPS to $O(log(d)/\epsilon^2)$ level for **1-LOCC** *M*: time $d^{O(log(d)/\epsilon^2)} \rightarrow d^{O(log(d))}$. [BYC, BH]
- Epsilon-net for 1-LOCC *M* or *M* with small ||*M*||_F: time similar to above. [SW, BH]

REMARK: all DPS results correspond to variants of quantum de Finetti theorem.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

Motivations Related Work Main Result

Landscape

Table: Known results about approximating $h_{\text{Sep}(d)}$ to error ϵ

Error ϵ	Lower bounds	Upper b. (DPS)	Upper b. (ϵ -net)
1/poly(d)	NP-hard	$(d/\sqrt{\epsilon})^{O(d)}$	$(1/\epsilon)^{O(d)}$
const	$d^{O(log(d))}$	$d^{O(log(d)/\epsilon^2)}$	similar to left
	(ETH)	(1-LOCC)	(1-LOCC)

REMARK: previous results focus on the *dependence on d*, which is sufficient for their purpose. However, the *dependence* on ϵ could be bad.

Motivations Related Work Main Result

Landscape

Table: Known results about approximating $h_{\text{Sep}(d)}$ to error ϵ

Error ϵ	Lower bounds	Upper b. (DPS)	Upper b. (ϵ -net)
1/poly(d)	NP-hard	$(d/\sqrt{\epsilon})^{O(d)}$	$(1/\epsilon)^{O(d)}$
const	$d^{O(log(d))}$	$d^{O(log(d)/\epsilon^2)}$	similar to left
	(ETH)	(1-LOCC)	(1-LOCC)

REMARK: previous results focus on the *dependence on d*, which is sufficient for their purpose. However, the *dependence on* ϵ could be bad.
Motivations Related Work Main Result

Landscape

Table: Known results about approximating $h_{\text{Sep}(d)}$ to error ϵ

Error ϵ	Lower bounds	Upper b. (DPS)	Upper b. (ϵ -net)
1/poly(d)	NP-hard	poly $(1/\epsilon)$	poly $(1/\epsilon)$
const	$d^{O(log(d))}$	$\exp(1/\epsilon)$	similar to left
	(ETH)	(1-LOCC)	(1-LOCC)

REMARK: previous results focus on the *dependence on d*, which is sufficient for their purpose. However, the *dependence on* ϵ could be bad. Is such dependence necessary?

Motivations Related Work Main Result

Landscape

Table: Known results about approximating $h_{\text{Sep}(d)}$ to error ϵ

Error ϵ	Lower bounds	Upper b. (DPS)	Upper b. (ϵ -net)
1/poly(d)	NP-hard	poly $(1/\epsilon)$	poly $(1/\epsilon)$
const	$d^{O(log(d))}$	$\exp(1/\epsilon)$	similar to left
	(ETH)	(1-LOCC)	(1-LOCC)

REMARK: previous results focus on the *dependence on d*, which is sufficient for their purpose. However, the *dependence on* ϵ could be bad. Is such dependence necessary?

Motivations Related Work Main Result

Angle I: Error MATTERs!

Complexity could grow with $1/\epsilon$

- Infinite translationally invariant Hamiltonian: the complexity grows rapidly with 1/ε even with fixed local dimension. [CPW]
- Quantum Interactive Proof: the complexity jumps from PSPACE to EXP with smaller *e*. [IKW]

Will approximating $h_{\text{Sep}(d)}$ be such a case?

REMARK: It is not clear how to improve the error dependence for either DPS or epsilon-net approach.

Motivations Related Work Main Result

Angle I: Error MATTERs!

Complexity could grow with $1/\epsilon$

- Infinite translationally invariant Hamiltonian: the complexity grows rapidly with 1/ε even with fixed local dimension. [CPW]
- Quantum Interactive Proof: the complexity jumps from PSPACE to EXP with smaller *e*. [IKW]

Will approximating $h_{\text{Sep}(d)}$ be such a case?

REMARK: It is not clear how to improve the error dependence for either DPS or epsilon-net approach.

Motivations Related Work Main Result

Angle I: Error MATTERs!

Complexity could grow with $1/\epsilon$

- Infinite translationally invariant Hamiltonian: the complexity grows rapidly with 1/ε even with fixed local dimension. [CPW]
- Quantum Interactive Proof: the complexity jumps from PSPACE to EXP with smaller *e*. [IKW]

Will approximating $h_{\text{Sep}(d)}$ be such a case?

REMARK: It is not clear how to improve the error dependence for either DPS or epsilon-net approach.

DPS hard due to tightness of de Finetti and k-extendibility

Motivations Related Work Main Result

Angle I: Error MATTERs!

Complexity could grow with $1/\epsilon$

- Infinite translationally invariant Hamiltonian: the complexity grows rapidly with 1/ε even with fixed local dimension. [CPW]
- Quantum Interactive Proof: the complexity jumps from PSPACE to EXP with smaller *e*. [IKW]

Will approximating $h_{\text{Sep}(d)}$ be such a case?

REMARK: It is not clear how to improve the error dependence for either DPS or epsilon-net approach.

DPS hard due to tightness of de Finetti and k-extendibility.

(日)

Motivations Related Work Main Result

Angle I: Error MATTERs!

Complexity could grow with $1/\epsilon$

- Infinite translationally invariant Hamiltonian: the complexity grows rapidly with 1/ε even with fixed local dimension. [CPW]
- Quantum Interactive Proof: the complexity jumps from PSPACE to EXP with smaller *\epsilon*. [IKW]

Will approximating $h_{\text{Sep}(d)}$ be such a case?

REMARK: It is not clear how to improve the error dependence for either DPS or epsilon-net approach.

DPS hard due to tightness of de Finetti and k-extendibility.

(日)

Motivations Related Work Main Result

Main Result I:

Error dependence about h_{Sep(d)}

- NO error dependence except numerical errors.
- For analytical purposes, there is no error at all.
- Numerically, the dependence is polylog(1/ε), *exponential* improvement from best known poly(1/ε), exp(1/ε).

Moreover, the dependence on *d* remains the same.

Theorem (Main I)

There exist two algorithms that estimate $h_{\text{Sep}(d)}(M)$ to error ϵ in time $\exp(\text{poly}(d))$ poly $\log(1/\epsilon)$. similar for the multi-partite case.

(日) (四) (三) (三)

Motivations Related Work Main Result

Main Result I:

Error dependence about h_{Sep(d)}

- NO error dependence except numerical errors.
- For analytical purposes, there is *no error* at all.
- Numerically, the dependence is polylog(1/ε), *exponential* improvement from best known poly(1/ε), exp(1/ε).

Moreover, the dependence on *d* remains the same.

Theorem (Main I)

There exist two algorithms that estimate $h_{\text{Sep}(d)}(M)$ to error ϵ in time $\exp(\text{poly}(d))$ poly $\log(1/\epsilon)$. similar for the multi-partite case.

Motivations Related Work Main Result

Main Result I:

Error dependence about *h*_{Sep(*d*)}

- NO error dependence except *numerical* errors.
- For analytical purposes, there is *no error* at all.
- Numerically, the dependence is polylog(1/ε), *exponential* improvement from best known poly(1/ε), exp(1/ε).

Moreover, the dependence on *d* remains the same.

Theorem (Main I)

There exist two algorithms that estimate $h_{\text{Sep}(d)}(M)$ to error ϵ in time $\exp(\text{poly}(d))$ poly $\log(1/\epsilon)$. similar for the multi-partite case.

Motivations Related Work Main Result

Main Result I:

Error dependence about *h*_{Sep(*d*)}

- NO error dependence except *numerical* errors.
- For analytical purposes, there is *no error* at all.
- Numerically, the dependence is polylog(1/ε), *exponential* improvement from best known poly(1/ε), exp(1/ε).

Moreover, the dependence on *d* remains the same.

Theorem (Main I)

There exist two algorithms that estimate $h_{\text{Sep}(d)}(M)$ to error ϵ in time $\exp(\text{poly}(d))$ poly $\log(1/\epsilon)$. similar for the multi-partite case.

Motivations Related Work Main Result

Main Result I:

Error dependence about *h*_{Sep(*d*)}

- NO error dependence except *numerical* errors.
- For analytical purposes, there is *no error* at all.
- Numerically, the dependence is polylog(1/ε), *exponential* improvement from best known poly(1/ε), exp(1/ε).

Moreover, the dependence on *d* remains the same.

Theorem (Main I)

There exist two algorithms that estimate $h_{\text{Sep}(d)}(M)$ to error ϵ in time $\exp(\text{poly}(d)) \operatorname{poly} \log(1/\epsilon)$. similar for the multi-partite case.

Motivations Related Work Main Result

DPS+ hierarchy

DPS+ hierarchy level \overline{k} for $h_{\text{Sep}(d)}(\overline{M})$

$\max_{ ho}$	$\left< ho_{\boldsymbol{X} \mathcal{Y}_1}, \boldsymbol{M} \right>$	
such that	$ \rho \in \mathrm{D}\left(\mathcal{X}\otimes\mathcal{Y}_{1}\otimes\cdots\otimes\mathcal{Y}_{k}\right), $	(3)
	$ \rho $ is symmetric on $\mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k$,	(-)
	$\langle \rho, \Gamma_i \rangle = 0, \forall i.$ KKT conditions	

Remarks

- The new hierarchy is exact when k = exp(poly(d)).
- KKT conditions Γ_i depend on *M*.
- KIC conditions are written without multipliers.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

크

Motivations Related Work Main Result

DPS+ hierarchy

DPS+ hierarchy level k for $h_{\text{Sep}(d)}(M)$

$\max_{ ho}$	$\left< ho_{X \mathcal{Y}_1}, M \right>$	
such that	$ \rho \in \mathrm{D}\left(\mathcal{X}\otimes\mathcal{Y}_{1}\otimes\cdots\otimes\mathcal{Y}_{k}\right), $	(3)
	$ \rho $ is symmetric on $\mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k$,	(-)
	$\langle \rho, \Gamma_i \rangle = 0, \forall i.$ KKT conditions	

Remarks

- The new hierarchy is **exact** when $k = \exp(\operatorname{poly}(d))$.
- KKT conditions Γ_i depend on *M*.
- KKT conditions are written without multipliers.

• • • • • • • • • • • •

Motivations Related Work Main Result

DPS+ hierarchy

DPS+ hierarchy level k for $h_{\text{Sep}(d)}(M)$

$\max_{ ho}$	$\left< ho_{X \mathcal{Y}_1}, M \right>$	
such that	$ \rho \in \mathrm{D}\left(\mathcal{X}\otimes\mathcal{Y}_{1}\otimes\cdots\otimes\mathcal{Y}_{k}\right), $	(3)
	$ \rho $ is symmetric on $\mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k$,	(-)
	$\langle \rho, \Gamma_i \rangle = 0, \forall i.$ KKT conditions	

Remarks

- The new hierarchy is exact when k = exp(poly(d)).
- KKT conditions Γ_i depend on *M*.
- KKT conditions are written without *multipliers*.

• • • • • • • • • • • •

Motivations Related Work Main Result

DPS+ hierarchy

DPS+ hierarchy level k for $h_{\text{Sep}(d)}(M)$

$\max_{ ho}$	$\left< ho_{X \mathcal{Y}_1}, M \right>$	
such that	$ \rho \in \mathrm{D}\left(\mathcal{X}\otimes\mathcal{Y}_{1}\otimes\cdots\otimes\mathcal{Y}_{k}\right), $	(3)
	$ \rho $ is symmetric on $\mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k$,	(-)
	$\langle \rho, \Gamma_i \rangle = 0, \forall i.$ KKT conditions	

Remarks

- The new hierarchy is **exact** when $k = \exp(\operatorname{poly}(d))$.
- KKT conditions Γ_i depend on *M*.
- KKT conditions are written without multipliers.

• • • • • • • • • • • • •

Motivations Related Work Main Result

Result II: Hardness w/o ASSUMPTIONs?

Will the hardness of $h_{\text{Sep}(d)}$ for const ϵ hold w/o ETH?

Theorem (Main II.1)

DPS hierarchies (or general Sum-of-Squares SDP) require $\Omega(\log(d))$ levels to solve $h_{Sep(d)}$ with constant precision.

Theorem (Main II.2)

Any SDP that estimate $h_{\text{Sep}(d)}(M)$ with constant errors requires size $d^{\Omega(\log(d))}$.

Remark: Match $d^{\Omega(\log(d))}$ time bound when assuming ETH.

A. Harrow, A. Natarajan, and X. Wu New Upper and Lower bounds for Entanglement Testing

Motivations Related Work Main Result

Result II: Hardness w/o ASSUMPTIONs?

Will the hardness of $h_{\text{Sep}(d)}$ for const ϵ hold w/o ETH?

Theorem (Main II.1)

DPS hierarchies (or general Sum-of-Squares SDP) require $\Omega(\log(d))$ levels to solve $h_{\text{Sep}(d)}$ with constant precision.

Theorem (Main II.2)

Any SDP that estimate $h_{\text{Sep}(d)}(M)$ with constant errors requires size $d^{\Omega(\log(d))}$.

Remark: Match $d^{\Omega(\log(d))}$ time bound when assuming ETH.

Motivations Related Work Main Result

Result II: Hardness w/o ASSUMPTIONs?

Will the hardness of $h_{\text{Sep}(d)}$ for const ϵ hold w/o ETH?

Theorem (Main II.1)

DPS hierarchies (or general Sum-of-Squares SDP) require $\Omega(\log(d))$ levels to solve $h_{\text{Sep}(d)}$ with constant precision.

Theorem (Main II.2)

Any SDP that estimate $h_{\text{Sep}(d)}(M)$ with constant errors requires size $d^{\Omega(\log(d))}$.

Remark: Match $d^{\Omega(\log(d))}$ time bound when assuming ETH.

Motivations Related Work Main Result

Result II: Hardness w/o ASSUMPTIONs?

Will the hardness of $h_{\text{Sep}(d)}$ for const ϵ hold w/o ETH?

Theorem (Main II.1)

DPS hierarchies (or general Sum-of-Squares SDP) require $\Omega(\log(d))$ levels to solve $h_{\text{Sep}(d)}$ with constant precision.

Theorem (Main II.2)

Any SDP that estimate $h_{\text{Sep}(d)}(M)$ with constant errors requires size $d^{\Omega(\log(d))}$.

Remark: Match $d^{\Omega(\log(d))}$ time bound when assuming ETH.

(日)

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Principle of Sum-of-Squares

One way to show that a polynomial f(x) is *nonnegative* could be

$$f(x)=\sum a_i(x)^2\geq 0.$$

Example

$$\begin{split} f(x) &= 2x^2 - 6x + 5 \\ &= (x^2 - 2x + 1) + (x^2 - 4x + 4) \\ &= (x - 1)^2 + (x - 2)^2 \geq 0. \end{split}$$

Such a decomposition is called a *sum of squares (SOS) certificate* for the non-negativity of *f*. The min degree, deg_{sos} .

(日)

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Principle of SoS : constrained domain

Definition (Variety)

A set $V \subseteq \mathbb{C}^n$ is called an *algebraic variety* if $V = \{x \in \mathbb{C}^n : g_1(x) = \cdots = g_k(x) = 0\}.$

Non-negativity of f(x) on V could be shown by

$$f(x) = \sum a_i(x)^2 + \sum b_j(x)g_j(x) \ge 0.$$

Question: whether all nonnegative polynomials on certain variety have a SOS certificate? Hilbert 17th problem!

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Principle of SoS : constrained domain

Definition (Variety)

A set $V \subseteq \mathbb{C}^n$ is called an *algebraic variety* if $V = \{x \in \mathbb{C}^n : g_1(x) = \cdots = g_k(x) = 0\}.$

Non-negativity of f(x) on V could be shown by

$$f(x) = \sum a_i(x)^2 + \sum b_j(x)g_j(x) \ge 0.$$

Question: whether all nonnegative polynomials on certain variety have a SOS certificate? Hilbert 17th problem!

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Principle of SoS : constrained domain

Definition (Variety)

A set $V \subseteq \mathbb{C}^n$ is called an *algebraic variety* if $V = \{x \in \mathbb{C}^n : g_1(x) = \cdots = g_k(x) = 0\}.$

Non-negativity of f(x) on V could be shown by

$$f(x) = \sum a_i(x)^2 + \sum b_j(x)g_j(x) \ge 0.$$

Question: whether all nonnegative polynomials on certain variety have a SOS certificate? Hilbert 17th problem!

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

SoS in Optimization

$$\begin{array}{ll} \max & f(x) \\ \text{subject to} & g_i(x) = 0 \quad \forall i \end{array} \tag{4}$$

is equivalent to (justified by Positivstellensatz)

min
$$\nu$$

such that $\nu - f(x) = \sigma(x) + \sum_{i} b_i(x)g_i(x),$ (5)

where $\sigma(x)$ is SOS and $b_i(x)$ is any polynomial.

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

SoS relaxation: Lasserre/Parrilo Hierarchy

- If σ(x), b_i(x) have any degrees (or deg_{sos}(v f)), then problem (5) is equivalent to problem (4).
- By bounding the degrees, we get the Lasserre/Parrilo hierarchy.

min
$$\nu$$

such that $\nu - f(x) = \sigma(x) + \sum_{i} b_i(x)g_i(x)$, (6)
where $\sigma(x)$ is SOS and $b_i(x)$ is any polynomial and deg $(\sigma(x))$,
deg $(b_i(x)g_i(x)) \le 2D$.

(日) (四) (三) (三)

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

SoS relaxation: Lasserre/Parrilo Hierarchy

- If σ(x), b_i(x) have any degrees (or deg_{sos}(v f)), then problem (5) is equivalent to problem (4).
- By bounding the degrees, we get the Lasserre/Parrilo hierarchy.

min
$$\nu$$

such that $\nu - f(x) = \sigma(x) + \sum_{i} b_i(x)g_i(x)$, (6)
where $\sigma(x)$ is SOS and $b_i(x)$ is any polynomial and deg $(\sigma(x))$,
deg $(b_i(x)g_i(x)) \le 2D$.

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

SoS relaxation: Lasserre/Parrilo Hierarchy

- If σ(x), b_i(x) have any degrees (or deg_{sos}(v f)), then problem (5) is equivalent to problem (4).
- By bounding the degrees, we get the Lasserre/Parrilo hierarchy.

min
$$\nu$$

such that $\nu - f(x) = \sigma(x) + \sum_{i} b_i(x)g_i(x)$, (6)
where $\sigma(x)$ is SOS and $b_i(x)$ is any polynomial and deg $(\sigma(x))$,
deg $(b_i(x)g_i(x)) \le 2D$.

(日) (四) (三) (三)

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

SoS relaxation: Lasserre/Parrilo Hierarchy

- If σ(x), b_i(x) have any degrees (or deg_{sos}(v f)), then problem (5) is equivalent to problem (4).
- By bounding the degrees, we get the Lasserre/Parrilo hierarchy.

min
$$\nu$$

such that $\nu - f(x) = \sigma(x) + \sum_{i} b_i(x)g_i(x)$, (6)

where $\sigma(x)$ is SOS and $b_i(x)$ is any polynomial and deg($\sigma(x)$), deg($b_i(x)g_i(x)$) $\leq 2D$.

<ロト <回 > < 回 > < 回 > .

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Why it is a SDP?

Observation

- Any p(x) (of degree 2D) = $m^T Qm$, where *m* is the vector of monomials of degree up to 2D and *Q* is the coefficients.
- p(x) is a SOS iff $Q \ge 0$.

$$\begin{array}{ll} \min_{\nu, b_{i\alpha} \in \mathbb{R}} & \nu \\ \text{such that} & \nu A_0 - F - \sum_{i\alpha} b_{i\alpha} G_{i\alpha} \ge 0. \end{array} (7)$$

Complexity: poly(m) poly log(1/ ϵ), where $m = \binom{n+D}{D}$.

A. Harrow, A. Natarajan, and X. Wu New Upper and Lower bounds for Entanglement Testing

(日) (四) (三) (三)

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Why it is a SDP?

Observation

- Any p(x) (of degree 2D) = $m^T Qm$, where *m* is the vector of monomials of degree up to 2D and *Q* is the coefficients.
- p(x) is a SOS iff $Q \ge 0$.

$$\min_{\nu, b_{i\alpha} \in \mathbb{R}} \quad \nu$$

such that $\nu A_0 - F - \sum_{i\alpha} b_{i\alpha} G_{i\alpha} \ge 0.$ (7)

Complexity: poly(m) poly log($1/\epsilon$), where $m = \binom{n+D}{D}$.

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Why it is a SDP?

Observation

- Any p(x) (of degree 2D) = $m^T Qm$, where *m* is the vector of monomials of degree up to 2D and *Q* is the coefficients.
- p(x) is a SOS iff $Q \ge 0$.

$$\min_{\nu, b_{i\alpha} \in \mathbb{R}} \quad \nu$$

such that $\nu A_0 - F - \sum_{i\alpha} b_{i\alpha} G_{i\alpha} \ge 0.$ (7)

Complexity: poly(*m*) poly log($1/\epsilon$), where $m = \binom{n+D}{D}$.

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Dual of the SDP: moment

Dual of the SOS cone

- Let Σ_{d,2D} be the cone of all PSD matrices representing SOS polynomials with degree up to 2D.
- The dual cone $\Sigma_{d,2D}^*$ is moment $M_D(x) \ge 0$, where entry (α, β) of $M_d(x)$ is $\int x^{\alpha+\beta} \mu(dx), |\alpha|, |\beta| \le d$.

Pseudo-expectation

- Expectation on moment $M_D(x)$ gives rise to pseudo-expectation.
- Behave similar to expectation for low-degree polynomials.

・ロト ・四ト ・ヨト ・ヨト

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Dual of the SDP: moment

Dual of the SOS cone

- Let Σ_{d,2D} be the cone of all PSD matrices representing SOS polynomials with degree up to 2D.
- The dual cone $\Sigma_{d,2D}^*$ is moment $M_D(x) \ge 0$, where entry (α, β) of $M_d(x)$ is $\int x^{\alpha+\beta} \mu(dx), |\alpha|, |\beta| \le d$.

Pseudo-expectation

- Expectation on moment *M_D*(*x*) gives rise to *pseudo-expectation*.
- Behave similar to expectation for low-degree polynomials.

・ロ・ ・ 四・ ・ 回・ ・ 回・

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Full Symmetry \implies DPS

Example

Now each entry is labelled with ((i, j), (k, l)) for degree 4 case, i.e., $M_d(x) = \rho \in D(\mathbb{C}^n \otimes \mathbb{C}^n)$.

$$\rho = \sum_{(i,j),(k,l)} x_i x_j x_k x_l \ket{i} \ket{j} \langle k | \langle l |.$$

Note that entry ((i, j), (k, l)) and ((i, l), (k, j)) have the same value $x_i x_j x_k x_l$. This is **PPT** condition. Similar for **DPS**.

Remark: more symmetry because in ProdSym. Flexible in choosing more or less symmetry.

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Full Symmetry \implies DPS

Example

Now each entry is labelled with ((i, j), (k, l)) for degree 4 case, i.e., $M_d(x) = \rho \in D(\mathbb{C}^n \otimes \mathbb{C}^n)$.

$$\rho = \sum_{(i,j),(k,l)} x_i x_j x_k x_l \ket{i} \ket{j} \langle k | \langle l |.$$

Note that entry ((i, j), (k, l)) and ((i, l), (k, j)) have the same value $x_i x_j x_k x_l$. This is **PPT** condition. Similar for **DPS**.

Remark: more symmetry because in ProdSym. Flexible in choosing more or less symmetry.
Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Karush-Kuhn-Tucker Conditions

For any optimization problem

$$\max f(x) \text{ s.t. } g_i(x) \leq 0, h_j(x) = 0, \forall i, j,$$

if x^* is a *local* optimizer, then $\exists \mu_i, \lambda_j$,

$$\begin{aligned} \nabla f(\boldsymbol{x}^*) &= \sum \mu_i \nabla g_i(\boldsymbol{x}^*) + \sum \lambda_j \nabla h_j(\boldsymbol{x}^*) \\ g_i(\boldsymbol{x}^*) &\leq 0, h_j(\boldsymbol{x}^*) = 0, \\ \mu_i &\geq 0, \mu_i g_i(\boldsymbol{x}^*) = 0. \end{aligned}$$

Remark: for convex optimization (our case), any global optimizer satisfies KKT.

(日) (四) (三) (三)

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Karush-Kuhn-Tucker Conditions

For any optimization problem

$$\max f(x) \text{ s.t. } g_i(x) \leq 0, h_j(x) = 0, \forall i, j,$$

if x^* is a *local* optimizer, then $\exists \mu_i, \lambda_j$,

$$\begin{aligned} \nabla f(\boldsymbol{x}^*) &= \sum \mu_i \nabla g_i(\boldsymbol{x}^*) + \sum \lambda_j \nabla h_j(\boldsymbol{x}^*) \\ g_i(\boldsymbol{x}^*) &\leq 0, h_j(\boldsymbol{x}^*) = 0, \\ \mu_i &\geq 0, \mu_i g_i(\boldsymbol{x}^*) = 0. \end{aligned}$$

Remark: for convex optimization (our case), any global optimizer satisfies KKT.

(日) (四) (三) (三)

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Our case

Recall our optimization problem is

 $\max f_0(x)$ s.t. $f_1(x) = 0$.

The KKT condition is $\nabla f_0(x) = \lambda \nabla f_1(x)$, which is equivalent to

$$\operatorname{rank}\begin{pmatrix} \frac{\partial f_0(x)}{\partial x_1} & \frac{\partial f_1(x)}{\partial x_1}\\ \vdots & \vdots\\ \frac{\partial f_0(x)}{\partial x_{2n}} & \frac{\partial f_1(x)}{\partial x_{2n}} \end{pmatrix} < 2.$$

 $g_{ij}(x) = \frac{\partial f_0(x)}{\partial x_i} \frac{\partial f_1(x)}{\partial x_j} - \frac{\partial f_0(x)}{\partial x_j} \frac{\partial f_1(x)}{\partial x_i}, \quad \forall i, j$

A. Harrow, A. Natarajan, and X. Wu New Upper and Lower bounds for Entanglement Testing

<ロ> <同> <同> < 同> < 同> < 同> 、

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Our case

Recall our optimization problem is

 $\max f_0(x)$ s.t. $f_1(x) = 0$.

The KKT condition is $\nabla f_0(x) = \lambda \nabla f_1(x)$, which is equivalent to

$$\operatorname{rank}\begin{pmatrix} \frac{\partial f_0(x)}{\partial x_1} & \frac{\partial f_1(x)}{\partial x_1}\\ \vdots & \vdots\\ \frac{\partial f_0(x)}{\partial x_{2n}} & \frac{\partial f_1(x)}{\partial x_{2n}} \end{pmatrix} < 2.$$

$$g_{ij}(x) = \frac{\partial f_0(x)}{\partial x_i} \frac{\partial f_1(x)}{\partial x_j} - \frac{\partial f_0(x)}{\partial x_j} \frac{\partial f_1(x)}{\partial x_i}, \quad \forall i, j$$

< □ > < □ > < □ > < □ > < □ >

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Optimization Problem with KKT constraints

• Apply the degree bound *D*, we get the SoS SDP hierarchy.

 Will show finite convergence when D = exp(poly(d)). Then m = (^{d+D}_D) = exp(poly(d)). Thus the final time is exp(poly(d)) poly log(1/ϵ).

<ロ> <同> <同> < 同> < 同> < 同> < □> <

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Optimization Problem with KKT constraints

$$\begin{array}{ll} \min & \nu \\ \text{such that} & \nu - f_0(x) \geq 0 \\ & f_1(x) = 0 \\ \\ \text{KKT} & g_{ij}(x) = 0 \quad \forall \, 1 \leq i \neq j \leq 2d \end{array}$$

- Apply the degree bound D, we get the SoS SDP hierarchy.
- Will show finite convergence when D = exp(poly(d)). Then m = (^{d+D}_D) = exp(poly(d)). Thus the final time is exp(poly(d)) poly log(1/ϵ).

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Proof Overview

• KKT conditions are necessary for *critical* points.

- KKT conditions imply finite convergence (tri-exponential or higher) for a generic optimization problem. [N, NR]
- Bring down the level for our problem to exponential.
 - KRT shrinks the leasible set to testal points. (Bézout to Beating Beating)
 - Exponential level suffices: (Grobner basis)
- Handle arbitrary inputs rather than generic ones.

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Proof Overview

- KKT conditions are necessary for *critical* points.
- KKT conditions imply **finite convergence** (tri-exponential or higher) for a **generic** optimization problem. [N, NR]
- Bring down the level for our problem to exponential.
 KKT shrinks the feasible set to isolated points. (Bézou and Portio)
 - Exponential level suffices. (Grobner basis)
- Handle arbitrary inputs rather than generic ones.

(日) (四) (三) (三)

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Proof Overview

- KKT conditions are necessary for *critical* points.
- KKT conditions imply **finite convergence** (tri-exponential or higher) for a **generic** optimization problem. [N, NR]
- Bring down the level for our problem to exponential.
 - KKT shrinks the feasible set to isolated points. (Bézout and Bertini)
 - Exponential level suffices. (Grobner basis)
- Handle arbitrary inputs rather than generic ones.

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Proof Overview

- KKT conditions are necessary for *critical* points.
- KKT conditions imply **finite convergence** (tri-exponential or higher) for a **generic** optimization problem. [N, NR]
- Bring down the level for our problem to exponential.
 - KKT shrinks the feasible set to isolated points. (Bézout and Bertini)
 - Exponential level suffices. (Grobner basis)
- Handle arbitrary inputs rather than generic ones.

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Proof Overview

- KKT conditions are necessary for *critical* points.
- KKT conditions imply **finite convergence** (tri-exponential or higher) for a **generic** optimization problem. [N, NR]
- Bring down the level for our problem to exponential.
 - KKT shrinks the feasible set to isolated points. (Bézout and Bertini)
 - Exponential level suffices. (Grobner basis)
- Handle arbitrary inputs rather than generic ones.

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Proof Overview

- KKT conditions are necessary for *critical* points.
- KKT conditions imply **finite convergence** (tri-exponential or higher) for a **generic** optimization problem. [N, NR]
- Bring down the level for our problem to exponential.
 - KKT shrinks the feasible set to isolated points. (Bézout and Bertini)
 - Exponential level suffices. (Grobner basis)
- Handle arbitrary inputs rather than generic ones.

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Generic input M

Theorem (Zero-dimensional of generic I_K)

For a generic M, $|V(I_K)| < \infty$ and I_K is zero-dimensional.

Theorem (Degree bound)

There exists $m = O(\exp(poly(n)))$, s.t. for a generic M, $\epsilon > 0$,

 $v - f_0(x) + \epsilon = \sigma(x) + g(x),$

where $\sigma(x)$ is SoS and deg $(\sigma(x)) \leq m, g(x) \in I_K^m$.

Corollary (SDP solution)

Estimate $h_{ProdSym(n)}(M)$ for a generic M to error ϵ needs $exp(poly(n))poly log(1/\epsilon)$.

A. Harrow, A. Natarajan, and X. Wu New Upper and Lower bounds for Entanglement Testing

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Generic input M

Theorem (Zero-dimensional of generic I_K)

For a generic M, $|V(I_K)| < \infty$ and I_K is zero-dimensional.

Theorem (Degree bound)

There exists $m = O(\exp(\text{poly}(n)))$, s.t. for a generic M, $\epsilon > 0$,

$$\mathbf{v} - f_0(\mathbf{x}) + \epsilon = \sigma(\mathbf{x}) + g(\mathbf{x}),$$

where $\sigma(x)$ is SoS and deg $(\sigma(x)) \leq m, g(x) \in I_{K}^{m}$.

Corollary (SDP solution)

Estimate $h_{ProdSym(n)}(M)$ for a generic M to error ϵ needs $exp(poly(n))poly log(1/\epsilon)$.

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Generic input M

Theorem (Zero-dimensional of generic I_K)

For a generic M, $|V(I_K)| < \infty$ and I_K is zero-dimensional.

Theorem (Degree bound)

There exists $m = O(\exp(\text{poly}(n)))$, s.t. for a generic M, $\epsilon > 0$,

$$\mathbf{v} - \mathbf{f}_0(\mathbf{x}) + \epsilon = \sigma(\mathbf{x}) + \mathbf{g}(\mathbf{x}),$$

where $\sigma(x)$ is SoS and deg $(\sigma(x)) \leq m, g(x) \in I_{\mathcal{K}}^m$.

Corollary (SDP solution)

Estimate $h_{\text{ProdSym}(n)}(M)$ for a generic M to error ϵ needs $\exp(\text{poly}(n))\text{poly}\log(1/\epsilon)$.

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Arbitrary input M

Observations

• Generic *M* is *dense*. The opt of SDP could be continuous.

 Issue: SOS SDP might be *infeasible* up to degree *m* for arbitrary input *M*.

Solutions

- enterlation (a contraction) "RIGE lauber (more and a contraction of the contraction of th
- For a generic $M_{\rm c}$ by strong duality. $h_{\rm backgrupp}(M) = OPT_{\rm back}(M)$.

For any input M, use the continuity of the dual SDP them.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Arbitrary input M

Observations

- Generic *M* is *dense*. The opt of SDP could be continuous.
- Issue: SOS SDP might be *infeasible* up to degree *m* for arbitrary input *M*.

Solutions

- Switch to the dual SDP (moment): satisfies Slater's condition, i.e, strictly feasible.
- For a generic M, by strong duality, $P_{\text{TotS}}(M) = OPT_{\text{max}}(M)$:

For any input M, use the continuity of the dual SOP then.

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Arbitrary input M

Observations

- Generic *M* is *dense*. The opt of SDP could be continuous.
- Issue: SOS SDP might be *infeasible* up to degree *m* for arbitrary input *M*.

Solutions

- Switch to the dual SDP (moment): satisfies Slater's condition, i.e, strictly feasible.
- For a generic M, by strong duality, h_{ProdSym(n)}(M) = OPT_{mom}(M).
- For any input M, use the continuity of the dual SDP then.

イロト イヨト イヨト イヨ

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Arbitrary input M

Observations

- Generic *M* is *dense*. The opt of SDP could be continuous.
- Issue: SOS SDP might be *infeasible* up to degree *m* for arbitrary input *M*.

Solutions

- Switch to the dual SDP (moment): satisfies Slater's condition, i.e, strictly feasible.
- For a generic M, by strong duality, h_{ProdSym(n)}(M) = OPT_{mom}(M).
- For any input M, use the continuity of the dual SDP then.

(日) (四) (三) (三)

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Arbitrary input M

Observations

- Generic *M* is *dense*. The opt of SDP could be continuous.
- Issue: SOS SDP might be *infeasible* up to degree *m* for arbitrary input *M*.

Solutions

- Switch to the dual SDP (moment): satisfies Slater's condition, i.e, strictly feasible.
- For a generic *M*, by strong duality, $h_{\text{ProdSym}(n)}(M) = OPT_{\text{mom}}(M).$
- For any input *M*, use the continuity of the dual SDP then.

(日) (四) (三) (三)

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Arbitrary input M

Observations

- Generic *M* is *dense*. The opt of SDP could be continuous.
- Issue: SOS SDP might be *infeasible* up to degree *m* for arbitrary input *M*.

Solutions

- Switch to the dual SDP (moment): satisfies Slater's condition, i.e, strictly feasible.
- For a generic M, by strong duality, $h_{\text{ProdSym}(n)}(M) = OPT_{\text{mom}}(M).$
- For any input *M*, use the continuity of the dual SDP then.

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Result II: Hardness w/o ASSUMPTIONs!

Theorem (Main II.1)

DPS hierarchies (or general Sum-of-Squares SDP) require $\Omega(\log(d))$ levels to solve $h_{\text{Sep}(d)}$ with constant precision.

Theorem (Main II.2)

Any SDP that estimate $h_{\text{Sep}(d)}(M)$ with constant errors requires size $d^{\Omega(\log(d))}$.

Remark: Theorem II.1 \Rightarrow Theorem II.2 due to a recent result on psd rank (SDP) lower bound [LRS].

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

-

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Proof Overview

• LB: instance w/ true value small, SoS (or SDP) value large.

- Start w/ such an instance: random 3XOR w/ true value $\sim 1/2 + \epsilon$, SoS value= 1 for large sos degree.
- Goal to embed such random 3XOR to an instance of h_{Sep(d)}(M)! How?
- Make use of a QMA(2) protocol (for 2-out-of-4 SAT) [AB+] to solve this 3XOR.
- Step 1: a random 3XOR \Rightarrow a 2-out-of-4 SAT instance.
- Step 2: QMA(2) protocol as a reduction!

Step 2.1: Embed it further as an instance to h_{ear(i)}(M).
 (Theorem 1.1)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Proof Overview

- LB: instance w/ true value small, SoS (or SDP) value large.
- Start w/ such an instance: random 3XOR w/ true value $\sim 1/2 + \epsilon$, SoS value= 1 for large sos degree.
- Goal to embed such random 3XOR to an instance of h_{Sep(d)}(M)! How?
- Make use of a QMA(2) protocol (for 2-out-of-4 SAT) [AB+] to solve this 3XOR.
- Step 1: a random $3XOR \Rightarrow a 2$ -out-of-4 SAT instance.
- Step 2: QMA(2) protocol as a reduction!

Step 2.1: Embed it further as an instance to b_{ent of} (M).
 (Theorem IL1)

Step 2.2: Apply LRS to the resultant problem. Then reduces

A D N A D N A D N A D

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Proof Overview

- LB: instance w/ true value small, SoS (or SDP) value large.
- Start w/ such an instance: random 3XOR w/ true value ~ 1/2 + ε, SoS value= 1 for large sos degree.
- Goal to embed such random 3XOR to an instance of h_{Sep(d)}(M)! How?
- Make use of a QMA(2) protocol (for 2-out-of-4 SAT) [AB+] to solve this 3XOR.
- Step 1: a random $3XOR \Rightarrow$ a 2-out-of-4 SAT instance.
- Step 2: QMA(2) protocol as a reduction!

 Step 2.1: Embed it further as an instance to *b_{back}*(*M*). (Theorem IL1)

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Proof Overview

- LB: instance w/ true value small, SoS (or SDP) value large.
- Start w/ such an instance: random 3XOR w/ true value ~ 1/2 + ε, SoS value= 1 for large sos degree.
- Goal to embed such random 3XOR to an instance of h_{Sep(d)}(M)! How?
- Make use of a QMA(2) protocol (for 2-out-of-4 SAT) [AB+] to solve this 3XOR.
- Step 1: a random $3XOR \Rightarrow$ a 2-out-of-4 SAT instance.
- Step 2: QMA(2) protocol as a reduction!

Step 2.1: Embed It/further as an instance to h_{Sep(1)}(M).

Step 2.2: Apply LRS to the resultant problem. Then reduce

• • • • • • • • • • • • •

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Proof Overview

- LB: instance w/ true value small, SoS (or SDP) value large.
- Start w/ such an instance: random 3XOR w/ true value ~ 1/2 + ε, SoS value= 1 for large sos degree.
- Goal to embed such random 3XOR to an instance of h_{Sep(d)}(M)! How?
- Make use of a QMA(2) protocol (for 2-out-of-4 SAT) [AB+] to solve this 3XOR.
- Step 1: a random 3XOR \Rightarrow a 2-out-of-4 SAT instance.
- Step 2: QMA(2) protocol as a reduction!
 - Step 2.1: Embed it further as an instance to h_{Sep(d)}(M). (Theorem II.1)

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Proof Overview

- LB: instance w/ true value small, SoS (or SDP) value large.
- Start w/ such an instance: random 3XOR w/ true value ~ 1/2 + ε, SoS value= 1 for large sos degree.
- Goal to embed such random 3XOR to an instance of h_{Sep(d)}(M)! How?
- Make use of a QMA(2) protocol (for 2-out-of-4 SAT) [AB+] to solve this 3XOR.
- Step 1: a random 3XOR \Rightarrow a 2-out-of-4 SAT instance.
- Step 2: QMA(2) protocol as a reduction!
 - Step 2.1: Embed it further as an instance to $h_{\text{Sep}(d)}(M)$. (Theorem II.1)
 - Step 2.2: Apply LRS to the resultant problem. Then reduce it to h_{Sep(d)}(M). (Theorem II.2)

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Proof Overview

- LB: instance w/ true value small, SoS (or SDP) value large.
- Start w/ such an instance: random 3XOR w/ true value ~ 1/2 + ε, SoS value= 1 for large sos degree.
- Goal to embed such random 3XOR to an instance of h_{Sep(d)}(M)! How?
- Make use of a QMA(2) protocol (for 2-out-of-4 SAT) [AB+] to solve this 3XOR.
- Step 1: a random 3XOR \Rightarrow a 2-out-of-4 SAT instance.
- Step 2: QMA(2) protocol as a reduction!
 - Step 2.1: Embed it further as an instance to $h_{\text{Sep}(d)}(M)$. (Theorem II.1)
 - Step 2.2: Apply LRS to the resultant problem. Then reduce it to h_{Sep(d)}(M). (Theorem II.2)

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Proof Overview

- LB: instance w/ true value small, SoS (or SDP) value large.
- Start w/ such an instance: random 3XOR w/ true value ~ 1/2 + ε, SoS value= 1 for large sos degree.
- Goal to embed such random 3XOR to an instance of h_{Sep(d)}(M)! How?
- Make use of a QMA(2) protocol (for 2-out-of-4 SAT) [AB+] to solve this 3XOR.
- Step 1: a random 3XOR \Rightarrow a 2-out-of-4 SAT instance.
- Step 2: QMA(2) protocol as a reduction!
 - Step 2.1: Embed it further as an instance to h_{Sep(d)}(M). (Theorem II.1)
 - Step 2.2: Apply LRS to the resultant problem. Then reduce it to h_{Sep(d)}(M). (Theorem II.2)

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Step 1: 3XOR \Rightarrow 2-out-of-4 SAT

A random 3XOR on *n* vars with O(n) clauses: sos-deg $\Omega(n)$, true value $\sim 1/2$, pseudo-expectation value 1.

- A random 3XOR (each var appears in const clauses) has sos-deg Ω(n).
- Replace each clause $x_1 \oplus x_2 \oplus x_3 = z_c$ with $2o4(x_1, b, c, z)$, $2o4(x_2, a, c, z)$, $2o4(x_3, a, b, z)$.
- Use 2*o*4 clauses to make all auxiliary z_c the same. Use expander graphs to force const appearances.
- Extending the pseudo-expectation: $\tilde{E}[y_1(x)y_2(x)] = \sum_{\alpha \in y_1y_2} \tilde{E}[x^{\alpha}].$

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Step 1: 3XOR \Rightarrow 2-out-of-4 SAT

A random 3XOR on *n* vars with O(n) clauses: sos-deg $\Omega(n)$, true value $\sim 1/2$, pseudo-expectation value 1.

- A random 3XOR (each var appears in const clauses) has sos-deg Ω(n).
- Replace each clause $x_1 \oplus x_2 \oplus x_3 = z_c$ with $2o4(x_1, b, c, z)$, $2o4(x_2, a, c, z)$, $2o4(x_3, a, b, z)$.
- Use 2*o*4 clauses to make all auxiliary *z_c* the same. Use expander graphs to force const appearances.
- Extending the pseudo-expectation: $\tilde{E}[y_1(x)y_2(x)] = \sum_{\alpha \in y_1y_2} \tilde{E}[x^{\alpha}].$

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Step 1: 3XOR \Rightarrow 2-out-of-4 SAT

A random 3XOR on *n* vars with O(n) clauses: sos-deg $\Omega(n)$, true value $\sim 1/2$, pseudo-expectation value 1.

- A random 3XOR (each var appears in const clauses) has sos-deg Ω(n).
- Replace each clause $x_1 \oplus x_2 \oplus x_3 = z_c$ with $2o4(x_1, b, c, z)$, $2o4(x_2, a, c, z)$, $2o4(x_3, a, b, z)$.
- Use 2*o*4 clauses to make all auxiliary *z_c* the same. Use expander graphs to force const appearances.
- Extending the pseudo-expectation: $\tilde{E}[y_1(x)y_2(x)] = \sum_{\alpha \in y_1y_2} \tilde{E}[x^{\alpha}].$

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Step 1: 3XOR \Rightarrow 2-out-of-4 SAT

A random 3XOR on *n* vars with O(n) clauses: sos-deg $\Omega(n)$, true value $\sim 1/2$, pseudo-expectation value 1.

- A random 3XOR (each var appears in const clauses) has sos-deg Ω(n).
- Replace each clause $x_1 \oplus x_2 \oplus x_3 = z_c$ with $2o4(x_1, b, c, z)$, $2o4(x_2, a, c, z)$, $2o4(x_3, a, b, z)$.
- Use 2*o*4 clauses to make all auxiliary *z_c* the same. Use expander graphs to force const appearances.
- Extending the pseudo-expectation: $\tilde{E}[y_1(x)y_2(x)] = \sum_{\alpha \in y_1y_2} \tilde{E}[x^{\alpha}].$

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Step 2: QMA(2) protocol as a reduction

A QMA(2) protocol solves this 2-out-of-4 SAT w/ completeness 1, soundness 1/2. [AB+]

- The acceptance probability of this QMA(2) protocol as the output function.
- By soundness, the true value should be at most 1/2.
- This QMA(2) protocol has three tests. One is testing whether any 2*o*4 clause is satisfied.
- The other two have "low-degree" test-measures.
- By natural extension of pseudo-expectation ⇒ pseudo-value 1.
- Caveat: the function domain is still on {0, 1}ⁿ.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Step 2: QMA(2) protocol as a reduction

A QMA(2) protocol solves this 2-out-of-4 SAT w/ completeness 1, soundness 1/2. [AB+]

- The acceptance probability of this QMA(2) protocol as the output function.
- By soundness, the true value should be at most 1/2.
- This QMA(2) protocol has three tests. One is testing whether any 2*o*4 clause is satisfied.
- The other two have "low-degree" test-measures.
- By natural extension of pseudo-expectation ⇒ pseudo-value 1.
- Caveat: the function domain is still on {0,1}ⁿ.

(日) (四) (三) (三)
Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Step 2: QMA(2) protocol as a reduction

A QMA(2) protocol solves this 2-out-of-4 SAT w/ completeness 1, soundness 1/2. [AB+]

- The acceptance probability of this QMA(2) protocol as the output function.
- By soundness, the true value should be at most 1/2.
- This QMA(2) protocol has three tests. One is testing whether any 2*o*4 clause is satisfied.
- The other two have "low-degree" test-measures.
- By natural extension of pseudo-expectation ⇒ pseudo-value 1.
- Caveat: the function domain is still on {0,1}ⁿ.

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Step 2: QMA(2) protocol as a reduction

A QMA(2) protocol solves this 2-out-of-4 SAT w/ completeness 1, soundness 1/2. [AB+]

- The acceptance probability of this QMA(2) protocol as the output function.
- By soundness, the true value should be at most 1/2.
- This QMA(2) protocol has three tests. One is testing whether any 2*o*4 clause is satisfied.
- The other two have "low-degree" test-measures.
- By natural extension of pseudo-expectation ⇒ pseudo-value 1.
- Caveat: the function domain is still on {0, 1}ⁿ.

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Step 2: QMA(2) protocol as a reduction

A QMA(2) protocol solves this 2-out-of-4 SAT w/ completeness 1, soundness 1/2. [AB+]

- The acceptance probability of this QMA(2) protocol as the output function.
- By soundness, the true value should be at most 1/2.
- This QMA(2) protocol has three tests. One is testing whether any 2*o*4 clause is satisfied.
- The other two have "low-degree" test-measures.
- By natural extension of pseudo-expectation ⇒ pseudo-value 1.
- Caveat: the function domain is still on {0, 1}ⁿ.

A D N A D N A D N A D

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Step 2: QMA(2) protocol as a reduction

A QMA(2) protocol solves this 2-out-of-4 SAT w/ completeness 1, soundness 1/2. [AB+]

- The acceptance probability of this QMA(2) protocol as the output function.
- By soundness, the true value should be at most 1/2.
- This QMA(2) protocol has three tests. One is testing whether any 2*o*4 clause is satisfied.
- The other two have "low-degree" test-measures.
- By natural extension of pseudo-expectation ⇒ pseudo-value 1.
- Caveat: the function domain is still on $\{0, 1\}^n$.

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Step 2: DPS and SDP lower bounds

DPS lower bound

- Embed this pseudo-distribution on $\{0, 1\}^n$ to \mathbb{R}^d . $(d = n^{\sqrt{n} \text{polylog}(n)})$
- Thus h_{Sep(d)}(M) has sos degree Ω(log(d)).

SDP lower bound

- Apply LRS to this function on {0,1}ⁿ. Obtain SDP size lower bound (d/loglog(d))^{Ω(log(d))}.
- By soundness, a general h_{Sep(d)}(M) can solve this problem, thus has the same lower bound.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Sum-of-Squares Relaxation Finite Convergence at Exponential Level SoS, SDP Lower Bounds

Step 2: DPS and SDP lower bounds

DPS lower bound

- Embed this pseudo-distribution on $\{0, 1\}^n$ to \mathbb{R}^d . $(d = n^{\sqrt{n} \text{polylog}(n)})$
- Thus h_{Sep(d)}(M) has sos degree Ω(log(d)).

SDP lower bound

- Apply LRS to this function on {0,1}ⁿ. Obtain SDP size lower bound (d/loglog(d))^{Ω(log(d))}.
- By soundness, a general h_{Sep(d)}(M) can solve this problem, thus has the same lower bound.

・ロ・ ・ 四・ ・ 回・ ・ 回・

Open Questions

Open Questions

DPS+

- Analyze the low levels of DPS+.
- Advantages of adding KKT conditions other than presented here.
- Extension to the non-commutative case?

SoS, SDP lower bound

- Any hope for a better bound?
- Extension to general algorithms?
- Any other applications to quantum information?

Open Questions

Question And Answer

Thank you! Q & A

A. Harrow, A. Natarajan, and X. Wu New Upper and Lower bounds for Entanglement Testing

Open Questions

Proof of Theorem 1

Let $\mathcal{U} = \{f_1(x) = 0\}, \mathcal{W} = \{\forall i, j, g_{ij} = 0\}$. then $V(I_{\mathcal{K}}) \subseteq \mathcal{U} \cap \mathcal{W}$.

It suffices to show $|\mathcal{U} \cap \mathcal{W}| < \infty$. Construct $\mathcal{A} = \mathcal{X} \cap \mathcal{U}$ s.t.

 $\mathcal{A} \cap \mathcal{W} = \emptyset$ and dim $(\mathcal{X}) = n - 1$. Note $\mathcal{W} \cap \mathcal{A} = (\mathcal{W} \cap \mathcal{U}) \cap \mathcal{X}$.

By Bézout's theorem, two varieties with dimension sum $\geq n$ must intersect. Thus

 $\dim(\mathcal{W} \cap \mathcal{U}) + \dim(\mathcal{X}) = \dim(\mathcal{W} \cap \mathcal{U}) + n - 1 < n.$

This implies dim $(\mathcal{W} \cap \mathcal{U}) = 0$ and thus $|V(I_{\mathcal{K}})| < \infty$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Open Questions

Proof of Theorem 1

Let $\mathcal{U} = \{f_1(x) = 0\}, \mathcal{W} = \{\forall i, j, g_{ij} = 0\}$. then $V(I_{\mathcal{K}}) \subseteq \mathcal{U} \cap \mathcal{W}$.

It suffices to show $|\mathcal{U} \cap \mathcal{W}| < \infty$. Construct $\mathcal{A} = \mathcal{X} \cap \mathcal{U}$ s.t.

 $\mathcal{A} \cap \mathcal{W} = \emptyset$ and dim $(\mathcal{X}) = n - 1$. Note $\mathcal{W} \cap \mathcal{A} = (\mathcal{W} \cap \mathcal{U}) \cap \mathcal{X}$.

By Bézout's theorem, two varieties with dimension sum $\geq n$ must intersect. Thus

 $\dim(\mathcal{W} \cap \mathcal{U}) + \dim(\mathcal{X}) = \dim(\mathcal{W} \cap \mathcal{U}) + n - 1 < n.$

This implies dim $(\mathcal{W} \cap \mathcal{U}) = 0$ and thus $|V(I_{\mathcal{K}})| < \infty$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Open Questions

Proof of Theorem 1

Let $\mathcal{U} = \{f_1(x) = 0\}, \mathcal{W} = \{\forall i, j, g_{ij} = 0\}$. then $V(I_{\mathcal{K}}) \subseteq \mathcal{U} \cap \mathcal{W}$.

It suffices to show $|\mathcal{U} \cap \mathcal{W}| < \infty$. Construct $\mathcal{A} = \mathcal{X} \cap \mathcal{U}$ s.t.

 $\mathcal{A} \cap \mathcal{W} = \emptyset$ and dim $(\mathcal{X}) = n - 1$. Note $\mathcal{W} \cap \mathcal{A} = (\mathcal{W} \cap \mathcal{U}) \cap \mathcal{X}$.

By Bézout's theorem, two varieties with dimension sum $\geq n$ must intersect. Thus

 $\dim(\mathcal{W} \cap \mathcal{U}) + \dim(\mathcal{X}) = \dim(\mathcal{W} \cap \mathcal{U}) + n - 1 < n.$

This implies dim $(\mathcal{W} \cap \mathcal{U}) = 0$ and thus $|V(I_{\mathcal{K}})| < \infty$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Open Questions

Proof of Theorem 1: construct X

Let $\mathcal{X} = \{f_0(x) = \mu\}$ for generic (μ, M) . dim $(\mathcal{X}) = n - 1$.

By Bertini's theorem, $\dim(\mathcal{A}) = \dim(\mathcal{U} \cap \mathcal{X}) = n - 2$.

The Jacobian matrix
$$J_{\mathcal{A}} = \begin{pmatrix} \frac{\partial f_0}{\partial x_1} & \frac{\partial f_1}{\partial x_1} \\ \vdots & \vdots \\ \frac{\partial f_0}{\partial x_n} & \frac{\partial f_1}{\partial x_n} \end{pmatrix}$$
 has rank $(J_{\mathcal{A}}) = 2$.

 \mathcal{W} by definition says rank $(J_{\mathcal{A}}) = 1$. Thus no intersection!

Subtly: genericity; projective space; homogenization!

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Open Questions

Proof of Theorem 1: construct X

Let $\mathcal{X} = \{f_0(x) = \mu\}$ for generic (μ, M) . dim $(\mathcal{X}) = n - 1$.

By Bertini's theorem, $dim(\mathcal{A}) = dim(\mathcal{U} \cap \mathcal{X}) = n - 2$.

The Jacobian matrix
$$J_{\mathcal{A}} = \begin{pmatrix} \frac{\partial f_0}{\partial x_1} & \frac{\partial f_1}{\partial x_1} \\ \vdots & \vdots \\ \frac{\partial f_0}{\partial x_n} & \frac{\partial f_1}{\partial x_n} \end{pmatrix}$$
 has rank $(J_{\mathcal{A}}) = 2$.

 \mathcal{W} by definition says rank $(J_{\mathcal{A}}) = 1$. Thus no intersection!

Subtly: genericity; projective space; homogenization!

・ロ・ ・ 四・ ・ 回・ ・ 回・

Open Questions

Proof of Theorem 1: construct X

Let $\mathcal{X} = \{f_0(x) = \mu\}$ for generic (μ, M) . dim $(\mathcal{X}) = n - 1$.

By Bertini's theorem, $dim(\mathcal{A}) = dim(\mathcal{U} \cap \mathcal{X}) = n - 2$.

The Jacobian matrix
$$J_{\mathcal{A}} = \begin{pmatrix} \frac{\partial f_0}{\partial x_1} & \frac{\partial f_1}{\partial x_1} \\ \vdots & \vdots \\ \frac{\partial f_0}{\partial x_n} & \frac{\partial f_1}{\partial x_n} \end{pmatrix}$$
 has rank $(J_{\mathcal{A}}) = 2$.

 \mathcal{W} by definition says rank $(J_{\mathcal{A}}) = 1$. Thus no intersection!

Subtly: genericity; projective space; homogenization!

= nar

Open Questions

Proof of Theorem 1: construct X

Let $\mathcal{X} = \{f_0(x) = \mu\}$ for generic (μ, M) . dim $(\mathcal{X}) = n - 1$.

By Bertini's theorem, $dim(\mathcal{A}) = dim(\mathcal{U} \cap \mathcal{X}) = n - 2$.

The Jacobian matrix
$$J_{\mathcal{A}} = \begin{pmatrix} \frac{\partial f_0}{\partial x_1} & \frac{\partial f_1}{\partial x_1} \\ \vdots & \vdots \\ \frac{\partial f_0}{\partial x_n} & \frac{\partial f_1}{\partial x_n} \end{pmatrix}$$
 has rank $(J_{\mathcal{A}}) = 2$.

 \mathcal{W} by definition says rank $(J_{\mathcal{A}}) = 1$. Thus no intersection!

Subtly: genericity; projective space; homogenization!

<ロ> <同> <同> < 同> < 同> < 同> < □> <

Open Questions

Proof of Theorem 2

Let $\{\gamma_i\}$ be a Grobner basis for I_K .

 $|V(I_{\mathcal{K}})| < \infty \implies \max \deg\{\gamma_i\} \le D = \exp(\operatorname{poly}(n)).$

Now, want to bound $deg(\sigma(x)), deg(g(x))$ in

 $v - f_0(x) = \sigma(x) + g(x)$. s.t. $\sigma(x)$ SOS $, g(x) \in I_K^m$.

Let $\sigma(x) = \sum s_a(x)^2$. By property of Grobner basis

 $s_a(x) = g_a(x) + u_a(x)$, s.t. $g_a(x) \in I_K$, $\deg(u_a(x)) \le nD$.

Thus

 $v - f_0(x) = \sigma'(x) + g'(x), \deg(\sigma'(x)) \le \exp(\operatorname{poly}(n)), g' \in I_K.$

A. Harrow, A. Natarajan, and X. Wu New Upper and Lower bounds for Entanglement Testing

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Open Questions

Proof of Theorem 2

Let $\{\gamma_i\}$ be a Grobner basis for I_K .

 $|V(I_{\mathcal{K}})| < \infty \implies \max \deg\{\gamma_i\} \le D = \exp(\operatorname{poly}(n)).$

Now, want to bound $deg(\sigma(x)), deg(g(x))$ in

 $v - f_0(x) = \sigma(x) + g(x)$. s.t. $\sigma(x)$ SOS , $g(x) \in I_K^m$.

Let $\sigma(x) = \sum s_a(x)^2$. By property of Grobner basis

 $s_a(x) = g_a(x) + u_a(x)$, s.t. $g_a(x) \in I_K$, $\deg(u_a(x)) \le nD$.

Thus

 $v - f_0(x) = \sigma'(x) + g'(x), \deg(\sigma'(x)) \le \exp(\operatorname{poly}(n)), g' \in I_K.$

< 同 > < 三 > < 三 >

Open Questions

Proof of Theorem 2

Let $\{\gamma_i\}$ be a Grobner basis for I_K .

 $|V(I_{\mathcal{K}})| < \infty \implies \max \deg\{\gamma_i\} \le D = \exp(\operatorname{poly}(n)).$

Now, want to bound $deg(\sigma(x)), deg(g(x))$ in

$$v - f_0(x) = \sigma(x) + g(x)$$
. s.t. $\sigma(x)$ SOS $, g(x) \in I_K^m$.

Let $\sigma(x) = \sum s_a(x)^2$. By property of Grobner basis

 $s_a(x) = g_a(x) + u_a(x), \text{ s.t. } g_a(x) \in I_K, \deg(u_a(x)) \leq nD.$

Thus

 $v - f_0(x) = \sigma'(x) + g'(x), \deg(\sigma'(x)) \le \exp(\operatorname{poly}(n)), g' \in I_K.$

◆母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ① ● ○ ● ●

Open Questions

Proof of Theorem 2

Let $\{\gamma_i\}$ be a Grobner basis for I_K .

 $|V(I_{\mathcal{K}})| < \infty \implies \max \deg\{\gamma_i\} \le D = \exp(\operatorname{poly}(n)).$

Now, want to bound $deg(\sigma(x)), deg(g(x))$ in

$$v - f_0(x) = \sigma(x) + g(x)$$
. s.t. $\sigma(x)$ SOS $, g(x) \in I_K^m$

Let $\sigma(x) = \sum s_a(x)^2$. By property of Grobner basis

 $s_a(x) = g_a(x) + u_a(x), ext{ s.t. } g_a(x) \in I_{\mathcal{K}}, ext{deg}(u_a(x)) \leq n D.$

Thus

$$\mathbf{v} - \mathbf{f}_0(\mathbf{x}) = \sigma'(\mathbf{x}) + \mathbf{g}'(\mathbf{x}), \deg(\sigma'(\mathbf{x})) \leq \exp(\operatorname{poly}(\mathbf{n})), \mathbf{g}' \in \mathbf{I}_K.$$

・ロン ・回 と ・ ヨ と ・

= nar

Open Questions

Proof of Theorem 2: $g' \in I_K^m$

All we need is to show $g' \in I_K^m$, $m = \exp(\operatorname{poly}(n))$.

- $\deg(g'(x)) = \deg(\sigma'(x)) = m$.
- In Grobner basis, $g'(x) = \sum t_k \gamma_k(x)$, $\deg(t_k \gamma_k(x)) \le m$. • (Omitted) $x_k(x) = \sum u_k(x) g_k(x)$, $\deg(u_k) \le m$.

• (Omitted) $\gamma_k(x) = \sum u_{ij}(x)g_{ij}(x), \deg(u_{ij}) \leq m.$

Thus, $g'(x) = \sum t_k u_{ij} g_{ij}(x)$, $\deg(t_k u_{ij}) \le m$, $\implies g'(x) \in I_K^m$.

 $\begin{array}{ll} f_{K}^{m} &=& \{v(x)f_{1}(x) + \sum h_{ij}(x)g_{ij}(x): \deg(v(x)f_{1}(x)) \leq m, \\ &\forall \, i,j, \deg(h_{ij}g_{ij}) \leq m\}. \end{array}$

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Open Questions

Proof of Theorem 2: $g' \in I_K^m$

All we need is to show $g' \in I_{\mathcal{K}}^m, m = \exp(\operatorname{poly}(n))$.

- $\deg(g'(x)) = \deg(\sigma'(x)) = m$.
- In Grobner basis, $g'(x) = \sum t_k \gamma_k(x)$, $\deg(t_k \gamma_k(x)) \le m$.

• (Omitted) $\gamma_k(x) = \sum u_{ij}(x)g_{ij}(x), \deg(u_{ij}) \leq m.$

Thus, $g'(x) = \sum t_k u_{ij} g_{ij}(x), \deg(t_k u_{ij}) \le m, \implies g'(x) \in I_K^m$.

 $\begin{array}{ll} f_{K}^{m} &= \{v(x)f_{1}(x) + \sum h_{ij}(x)g_{ij}(x) : \deg(v(x)f_{1}(x)) \leq m, \\ &\forall i,j, \deg(h_{ij}g_{ij}) \leq m\}. \end{array}$

Open Questions

Proof of Theorem 2: $g' \in I_K^m$

All we need is to show $g' \in I_K^m$, $m = \exp(\operatorname{poly}(n))$.

- $\deg(g'(x)) = \deg(\sigma'(x)) = m$.
- In Grobner basis, $g'(x) = \sum t_k \gamma_k(x)$, $\deg(t_k \gamma_k(x)) \le m$.
- (Omitted) $\gamma_k(x) = \sum u_{ij}(x)g_{ij}(x), \deg(u_{ij}) \leq m.$

Thus, $g'(x) = \sum t_k u_{ij} g_{ij}(x)$, $\deg(t_k u_{ij}) \le m$, $\Longrightarrow g'(x) \in I_K^m$.

$$egin{array}{rcl} & H_K^m & = & \{v(x)f_1(x) + \sum_{ij} h_{ij}(x)g_{ij}(x): \deg(v(x)f_1(x)) \leq m, \ & orall \, i,j, \deg(h_{ij}g_{ij}) \leq m\}. \end{array}$$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Open Questions

Proof of Theorem 2: $g' \in I_K^m$

All we need is to show $g' \in I_K^m$, $m = \exp(\operatorname{poly}(n))$.

- $\deg(g'(x)) = \deg(\sigma'(x)) = m$.
- In Grobner basis, $g'(x) = \sum t_k \gamma_k(x)$, $\deg(t_k \gamma_k(x)) \le m$.
- (Omitted) $\gamma_k(x) = \sum u_{ij}(x)g_{ij}(x), \deg(u_{ij}) \leq m.$

Thus, $g'(x) = \sum t_k u_{ij} g_{ij}(x)$, $\deg(t_k u_{ij}) \le m$, $\Longrightarrow g'(x) \in I_K^m$.

 $\begin{array}{rcl} I_{K}^{m} & = & \{v(x)f_{1}(x) + \sum h_{ij}(x)g_{ij}(x): \deg(v(x)f_{1}(x)) \leq m, \\ & \forall \, i,j, \deg(h_{ij}g_{ij}) \leq m\}. \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Open Questions

Proof of Theorem 2: $g' \in I_K^m$

All we need is to show $g' \in I_K^m$, $m = \exp(\operatorname{poly}(n))$.

- $\deg(g'(x)) = \deg(\sigma'(x)) = m$.
- In Grobner basis, $g'(x) = \sum t_k \gamma_k(x)$, $\deg(t_k \gamma_k(x)) \le m$.
- (Omitted) $\gamma_k(x) = \sum u_{ij}(x)g_{ij}(x), \deg(u_{ij}) \leq m.$

Thus, $g'(x) = \sum t_k u_{ij} g_{ij}(x)$, $\deg(t_k u_{ij}) \le m$, $\implies g'(x) \in I_K^m$.

$$egin{array}{rcl} & J^m_{\mathcal{K}} & = & \{ v(x) f_1(x) + \sum h_{ij}(x) g_{ij}(x) : \deg(v(x) f_1(x)) \leq m, \ & orall \, i, j, \deg(h_{ij} g_{ij}) \leq m \}. \end{array}$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● ○ ○ ○