New Upper and Lower bounds for Entanglement Testing

Aram W. Harrow, Anand Natarajan, Xiaodi Wu

MIT Center for Theoretical Physics
MSR Redmond, May, 2015

Entanglement Detection

Definition (Separable and Entangled States)

A bi-partitie state $\rho \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y})$ is separable if \exists dist. $\left\{p_{i}\right\}$,

$$
\rho=\sum p_{i} \sigma_{X}^{i} \otimes \sigma_{Y}^{i}, \text { s.t. } \sigma_{X}^{i} \in \mathrm{D}(\mathcal{X}), \sigma_{Y}^{i} \in \mathrm{D}(\mathcal{Y})
$$

Otherwise, ρ is entangled. Let Sep $\stackrel{\text { def }}{=}\{$ separable states $\}$.

Entanglement Detection

Definition (Separable and Entangled States)

A bi-partitie state $\rho \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y})$ is separable if \exists dist. $\left\{p_{i}\right\}$,

$$
\rho=\sum p_{i} \sigma_{X}^{i} \otimes \sigma_{Y}^{i}, \text { s.t. } \sigma_{X}^{i} \in \mathrm{D}(\mathcal{X}), \sigma_{Y}^{i} \in \mathrm{D}(\mathcal{Y})
$$

Otherwise, ρ is entangled. Let Sep $\stackrel{\text { def }}{=}\{$ separable states $\}$.

Definition (Entanglement Detection)

A KEY problem: given the description of $\rho \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y})$, decide
Either $\rho \in \operatorname{Sep}$, or ρ is far away from Sep.

Introduction

Alternative Formulation

Definition (Weak Membership)

WMem $(\epsilon,\|\cdot\|)$: for any $\rho \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y})$, decide either $\rho \in$ Sep or $\|\rho-\operatorname{Sep}\| \geq \epsilon$.

Via standard techniques in convex optimization, equivalent to
\qquad
From now on, we focus on $\operatorname{wopt}(M$,

Alternative Formulation

Definition (Weak Membership)

WMem $(\epsilon,\|\cdot\|)$: for any $\rho \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y})$, decide either $\rho \in$ Sep or $\|\rho-\operatorname{Sep}\| \geq \epsilon$.

Via standard techniques in convex optimization, equivalent to

Definition (Weak Optimization)

$\operatorname{WOpt}(M, \epsilon):$ for any $M \in \operatorname{Herm}(\mathcal{X} \otimes \mathcal{Y})$, estimate the value of

$$
\max _{\rho \in \operatorname{Sep}}\langle M, \rho\rangle,
$$

with additive error ϵ.
From now on, we focus on

Alternative Formulation

Definition (Weak Membership)

WMem $(\epsilon,\|\cdot\|)$: for any $\rho \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y})$, decide either $\rho \in$ Sep or $\|\rho-\operatorname{Sep}\| \geq \epsilon$.

Via standard techniques in convex optimization, equivalent to

Definition (Weak Optimization)

$\operatorname{WOpt}(M, \epsilon)$: for any $M \in \operatorname{Herm}(\mathcal{X} \otimes \mathcal{Y})$, estimate the value of

$$
\max _{\rho \in \operatorname{Sep}}\langle M, \rho\rangle,
$$

with additive error ϵ.
From now on, we focus on $\operatorname{WOpt}(M, \epsilon)$.

The Problem: alternative formulation

Recall that $h_{\text {Sep }(d)}(M)$ refers to

$$
\max \langle\mathbf{M}, \rho\rangle \text { s.t. } \rho \in \operatorname{Sep}(\mathcal{X} \otimes \mathcal{Y})
$$

For any $M \in \mathbb{C}^{d \times d}$, there exists $M^{\prime} \in \mathbb{C}^{2 d \times 2 d}$ s.t.

$$
h_{\text {ProdSym }(2 d)}\left(M^{\prime}\right)=\frac{1}{4} h_{\operatorname{Sep}(d)}(M)
$$

where $\operatorname{ProdSym}(d, k):=\operatorname{conv}\left\{(|\psi\rangle\langle\psi|)^{\otimes 2}:|\psi\rangle \in B\left(\mathbb{C}^{d}\right)\right\}$. [HM]
REDUCE our problem to the mathematically simpler
$h_{\text {ProdSym(}}$) .

The Problem: alternative formulation

Recall that $h_{\text {Sep }(d)}(M)$ refers to

$$
\max \langle\mathbf{M}, \rho\rangle \text { s.t. } \rho \in \operatorname{Sep}(\mathcal{X} \otimes \mathcal{Y})
$$

For any $M \in \mathbb{C}^{d \times d}$, there exists $M^{\prime} \in \mathbb{C}^{2 d \times 2 d}$ s.t.

$$
h_{\text {ProdSym }(2 d)}\left(M^{\prime}\right)=\frac{1}{4} h_{\operatorname{Sep}(d)}(M)
$$

where $\operatorname{ProdSym}(d, k):=\operatorname{conv}\left\{(|\psi\rangle\langle\psi|)^{\otimes 2}:|\psi\rangle \in B\left(\mathbb{C}^{d}\right)\right\}$. [HM]

REDUCE our problem to the mathematically simpler
$h_{\text {ProdSym (d) }}$.

Reduce $h_{\text {ProdSym(d) }}$ further

Let $|\psi\rangle=\sum_{i=1}^{d} a_{i}|i\rangle$ such that $\forall i, a_{i} \in \mathbb{C}$ and $\sum_{i}\left|a_{i}\right|^{2}=1$. It is easy to see that $h_{\text {ProdSym (d) }}$ is equivalent to

$$
\begin{array}{ll}
\max _{a \in \mathbb{C}^{d}} & \sum_{i_{1}, i_{2}, j_{1}, j_{2}} \\
M_{\left(i_{1}, i_{2}\right),\left(j_{1}, j_{2}\right)} a_{i_{1}}^{*} a_{i_{2}}^{*} a_{j_{1}} a_{j_{2}} \\
\text { subject to } & \|a\|^{2}=1 . \tag{1}
\end{array}
$$

Now reduce from \mathbb{C} to \mathbb{R} by observing:

- M is a Hermitian so the objective function is real
Decomposing the complex number into real and imaginary
parts.

Reduce $h_{\text {ProdSym(d) }}$ further

Let $|\psi\rangle=\sum_{i=1}^{d} a_{i}|i\rangle$ such that $\forall i, a_{i} \in \mathbb{C}$ and $\sum_{i}\left|a_{i}\right|^{2}=1$. It is easy to see that $h_{\text {ProdSym }(d)}$ is equivalent to

$$
\begin{array}{ll}
\max _{a \in \mathbb{C}^{d}} & \sum_{i_{1}, i_{2}, j_{1}, j_{2}} \\
\text { subject to } & \|a\|^{2}=1
\end{array}
$$

Now reduce from \mathbb{C} to \mathbb{R} by observing:

- M is a Hermitian so the objective function is real.
- Decomposing the complex number into real and imaginary parts.

$h_{\text {ProdSym(n) }}$ with real variables

By renaming, we arrive at the $h_{\text {ProdSym(n) }}$ with real variables:

$$
\begin{array}{ll}
\max _{x \in \mathbb{R}^{n}} & f_{0}(x)=\sum_{i_{1}, i_{2}, j_{1}, j_{2}} M_{\left(i_{1}, i_{2}\right),\left(j_{1}, j_{2}\right)} x_{i_{1}} x_{i_{2}} x_{j_{1}} x_{j_{2}} \\
\text { subject to } & f_{1}(x)=\|x\|^{2}-1=0 .
\end{array}
$$

REMARK: this is an instance of polynomial optimization problems with a homogenous degree 4 objective polynomial and a degree 2 constraint polynomial.

Connections

Quantum Information:

- Ground energy that is achieved by non-entangled states.
\square
Positivity test of quantum channels

Connections

Quantum Information:

- Ground energy that is achieved by non-entangled states.
- Mean-field approximation in statistical quantum mechanics.

Connections

Quantum Information:

- Ground energy that is achieved by non-entangled states.
- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.

Connections

Quantum Information:

- Ground energy that is achieved by non-entangled states.
- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- 17 more examples in quantum information in [HM10].

Quantum Complexity:

- Quantum Merlin-Arthur Game with Two-Provers (QMA(2))

Classical Comnlexity:
Unique Game Conjecture and Small-set Expansion.

Connections

Quantum Information:

- Ground energy that is achieved by non-entangled states.
- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- 17 more examples in quantum information in [HM10].

Quantum Complexity:

- Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:

Connections

Quantum Information:

- Ground energy that is achieved by non-entangled states.
- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- 17 more examples in quantum information in [HM10].

Quantum Complexity:

- Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:

- Unique Game Conjecture and Small-set Expansion. ($\ell_{2} \rightarrow \ell_{4}$ norm)

Early Attempts

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{y}}=\rho$? [PH]

Early Attempts

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T y}=\rho$? [PH]
- Reduction Criterions: $I_{\mathcal{X}} \otimes \rho_{Y} \geq \rho$? [HH]

Early Attempts

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T y}=\rho$? [PH]
- Reduction Criterions: $I_{\mathcal{X}} \otimes \rho_{Y} \geq \rho$? [HH]
-

Early Attempts

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T y}=\rho$? [PH]
- Reduction Criterions: $I_{\mathcal{X}} \otimes \rho_{Y} \geq \rho$? [HH]
-
- FAILURE: any such test has arbitrarily large error. [BS]

Early Attempts

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{y}}=\rho$? [PH]
- Reduction Criterions: $I_{\mathcal{X}} \otimes \rho_{Y} \geq \rho$? [HH]
-
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

- ρ is k-extendible if \exists symmetric $\sigma \in \mathrm{D}\left(\mathcal{X} \otimes \mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}\right)$, $\forall i, \rho=\sigma_{X Y_{i}}$.

Early Attempts

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{y}}=\rho$? [PH]
- Reduction Criterions: $I_{\mathcal{X}} \otimes \rho_{Y} \geq \rho$? [HH]
-
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

- ρ is k-extendible if \exists symmetric $\sigma \in \mathrm{D}\left(\mathcal{X} \otimes \mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}\right)$,
$\forall i, \rho=\sigma_{X Y_{i}}$.
- $\rho \in$ Sep if and only if ρ is k-extendible for any $k \geq 0$.

Early Attempts

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T \mathcal{Y}}=\rho$? [PH]
- Reduction Criterions: $I_{\mathcal{X}} \otimes \rho_{Y} \geq \rho$? [HH]
-
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

- ρ is k-extendible if \exists symmetric $\sigma \in \mathrm{D}\left(\mathcal{X} \otimes \mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}\right)$, $\forall i, \rho=\sigma_{X Y_{i}}$.
- $\rho \in$ Sep if and only if ρ is k-extendible for any $k \geq 0$.
- Semidefinite program (SDP): size exponential in k.

Hardness

Let $h_{\operatorname{Sep}(d)}(M)$ denote the value of

$$
\max \langle\mathbf{M}, \rho\rangle \text { s.t. } \rho \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y}) \text { is separable, }
$$ where d refers to the dimension of $\mathcal{X} \otimes \mathcal{Y}$.

Hardness

Let $h_{\operatorname{Sep}(d)}(M)$ denote the value of

$$
\max \langle\mathbf{M}, \rho\rangle \text { s.t. } \rho \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y}) \text { is separable, }
$$

where d refers to the dimension of $\mathcal{X} \otimes \mathcal{Y}$.

Hardness

- NP-hard to approximate $h_{\mathrm{Sep}(d)}(M)$ with additive error $\epsilon=1 / p o l y(d)$. [Gur03,loa07,Gha10], [deK08, LQNY09].

Hardness

Let $h_{\operatorname{Sep}(d)}(M)$ denote the value of

$$
\max \langle\mathbf{M}, \rho\rangle \text { s.t. } \rho \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y}) \text { is separable, }
$$

where d refers to the dimension of $\mathcal{X} \otimes \mathcal{Y}$.

Hardness

- NP-hard to approximate $h_{\mathrm{Sep}(d)}(M)$ with additive error $\epsilon=1 / p o l y(d)$. [Gur03,loa07,Gha10], [deK08, LQNY09].
- Assuming Exponential Time Hypothesis (ETH), for constant ϵ, approximate $h_{\operatorname{Sep}(d)}(M)$ needs $d^{\Omega(\log (d))}$ time. via the connection to $\mathrm{QMA}(2)$. $[\mathrm{HM}, \mathrm{AB}+]$

Upper bounds

When $\epsilon=1 / \operatorname{poly}(d)$

- DPS to $O(d / \sqrt{\epsilon})$ level: time $(d / \sqrt{\epsilon})^{O(d)} \rightarrow d^{O(d)}$. [NOP]

Upper bounds

When $\epsilon=1 / \operatorname{poly}(d)$

- DPS to $O(d / \sqrt{\epsilon})$ level: time $(d / \sqrt{\epsilon})^{O(d)} \rightarrow d^{O(d)}$. [NOP]
- Epsilon-net (brute-force): time $(1 / \epsilon)^{O(d)} \rightarrow d^{O(d)}$.

Upper bounds

When $\epsilon=1 /$ poly (d)

- DPS to $O(d / \sqrt{\epsilon})$ level: time $(d / \sqrt{\epsilon})^{O(d)} \rightarrow d^{O(d)}$. [NOP]
- Epsilon-net (brute-force): time $(1 / \epsilon)^{O(d)} \rightarrow d^{O(d)}$.

Upper bounds

When $\epsilon=1 / \operatorname{poly}(d)$

- DPS to $O(d / \sqrt{\epsilon})$ level: time $(d / \sqrt{\epsilon})^{O(d)} \rightarrow d^{O(d)}$. [NOP]
- Epsilon-net (brute-force): time $(1 / \epsilon)^{O(d)} \rightarrow d^{O(d)}$.

When $\epsilon=$ const

- DPS to $O\left(\log (d) / \epsilon^{2}\right)$ level for 1-LOCC M : time $d^{O\left(\log (d) / \epsilon^{2}\right)} \rightarrow d^{O(\log (d))}$. [BYC, BH]
Epsilon-net for 1-LOCC M or M with small $\|M\|_{F}$: time similar to above.

Upper bounds

When $\epsilon=1 / \operatorname{poly}(d)$

- DPS to $O(d / \sqrt{\epsilon})$ level: time $(d / \sqrt{\epsilon})^{O(d)} \rightarrow d^{O(d)}$. [NOP]
- Epsilon-net (brute-force): time $(1 / \epsilon)^{O(d)} \rightarrow d^{O(d)}$.

When $\epsilon=$ const

- DPS to $O\left(\log (d) / \epsilon^{2}\right)$ level for 1-LOCC M : time $d^{O\left(\log (d) / \epsilon^{2}\right)} \rightarrow d^{O(\log (d))}$. [BYC, BH]
- Epsilon-net for 1-LOCC M or M with small $\|M\|_{\text {F }}$: time similar to above. [SW, BH]

REMARK: all DPS results correspond to variants of quantum

Upper bounds

When $\epsilon=1 / \operatorname{poly}(d)$

- DPS to $O(d / \sqrt{\epsilon})$ level: time $(d / \sqrt{\epsilon})^{O(d)} \rightarrow d^{O(d)}$. [NOP]
- Epsilon-net (brute-force): time $(1 / \epsilon)^{O(d)} \rightarrow d^{O(d)}$.

When $\epsilon=$ const

- DPS to $O\left(\log (d) / \epsilon^{2}\right)$ level for 1-LOCC M : time $d^{O\left(\log (d) / \epsilon^{2}\right)} \rightarrow d^{O(\log (d))}$. [BYC, BH]
- Epsilon-net for 1-LOCC M or M with small $\|M\|_{F}$: time similar to above. [SW, BH]

REMARK: all DPS results correspond to variants of quantum

Upper bounds

When $\epsilon=1 / \operatorname{poly}(d)$

- DPS to $O(d / \sqrt{\epsilon})$ level: time $(d / \sqrt{\epsilon})^{O(d)} \rightarrow d^{O(d)}$. [NOP]
- Epsilon-net (brute-force): time $(1 / \epsilon)^{O(d)} \rightarrow d^{O(d)}$.

When $\epsilon=$ const

- DPS to $O\left(\log (d) / \epsilon^{2}\right)$ level for 1-LOCC M : time $d^{O\left(\log (d) / \epsilon^{2}\right)} \rightarrow d^{O(\log (d))}$. [BYC, BH]
- Epsilon-net for 1-LOCC M or M with small $\|M\|_{F}$: time similar to above. [SW, BH]

REMARK: all DPS results correspond to variants of quantum de Finetti theorem.

Landscape

Table: Known results about approximating $h_{\operatorname{Sep}(d)}$ to error ϵ

Error ϵ	Lower bounds	Upper b. (DPS)	Upper b. (ϵ-net)
$1 /$ poly (d)	NP-hard	$(d / \sqrt{\epsilon})^{O(d)}$	$(1 / \epsilon)^{O(d)}$
const	$d^{O(\operatorname{log(d))}}$	$d^{O\left(\log (d) / \epsilon^{2}\right)}$	similar to left
	$($ ETH $)$	$(1-$ LOCC $)$	$(1-$ LOCC $)$

Landscape

Table: Known results about approximating $h_{\operatorname{Sep}(d)}$ to error ϵ

Error ϵ	Lower bounds	Upper b. (DPS)	Upper b. (ϵ-net)
$1 /$ poly (d)	NP-hard	$(d / \sqrt{\epsilon})^{O(d)}$	$(1 / \epsilon)^{O(d)}$
const	$d^{O(\operatorname{log(d))}}$	$d^{O\left(\log (d) / \epsilon^{2}\right)}$	similar to left
	$($ ETH $)$	$(1-$ LOCC $)$	$(1-$ LOCC $)$

REMARK: previous results focus on the dependence on d, which is sufficient for their purpose. However, the dependence on ϵ could be bad.

Landscape

Table: Known results about approximating $h_{\operatorname{Sep}(d)}$ to error ϵ

Error ϵ	Lower bounds	Upper b. (DPS)	Upper b. (ϵ-net)
$1 /$ poly (d)	NP-hard	poly $(1 / \epsilon)$	poly $(1 / \epsilon)$
const	$d^{0(l o g(d))}$	$\exp (1 / \epsilon)$	similar to left
	$($ ETH $)$	$(1-$ LOCC $)$	$(1-$ LOCC $)$

REMARK: previous results focus on the dependence on d, which is sufficient for their purpose. However, the dependence on ϵ could be bad.

Landscape

Table: Known results about approximating $h_{\operatorname{Sep}(d)}$ to error ϵ

Error ϵ	Lower bounds	Upper b. (DPS)	Upper b. (ϵ-net)
$1 /$ poly (d)	NP-hard	poly $(1 / \epsilon)$	poly $(1 / \epsilon)$
const	$d^{0(l o g(d))}$	$\exp (1 / \epsilon)$	similar to left
	$($ ETH $)$	$(1-$ LOCC $)$	$(1-$ LOCC $)$

REMARK: previous results focus on the dependence on d, which is sufficient for their purpose. However, the dependence on ϵ could be bad. Is such dependence necessary?

Angle I: Error MATTERs!

Complexity could grow with $1 / \epsilon$

- Infinite translationally invariant Hamiltonian: the complexity grows rapidly with $1 / \epsilon$ even with fixed local dimension. [CPW]
Quantum Interactive Proof: the complexity jumps from PSPACE to EXP with smaller ϵ

Will approximating $h_{\operatorname{Sep}(d)}$ be such a case?

Angle I: Error MATTERs!

Complexity could grow with $1 / \epsilon$

- Infinite translationally invariant Hamiltonian: the complexity grows rapidly with $1 / \epsilon$ even with fixed local dimension. [CPW]
- Quantum Interactive Proof: the complexity jumps from PSPACE to EXP with smaller ϵ. [IKW]

Will approximating $h_{\operatorname{Sep}(d)}$ be such a case?
\square
REMARK: It is not clear how to improve the error dependence
for either DPS or epsilon-net approach

Angle I: Error MATTERs!

Complexity could grow with $1 / \epsilon$

- Infinite translationally invariant Hamiltonian: the complexity grows rapidly with $1 / \epsilon$ even with fixed local dimension. [CPW]
- Quantum Interactive Proof: the complexity jumps from PSPACE to EXP with smaller ϵ. [IKW]

Will approximating $h_{\mathrm{Sep}(d)}$ be such a case?
REMARK: It is not clear how to improve the error dependence
for either DPS or epsilon-net approach

Angle I: Error MATTERs!

Complexity could grow with $1 / \epsilon$

- Infinite translationally invariant Hamiltonian: the complexity grows rapidly with $1 / \epsilon$ even with fixed local dimension. [CPW]
- Quantum Interactive Proof: the complexity jumps from PSPACE to EXP with smaller ϵ. [IKW]

Will approximating $h_{\mathrm{Sep}(d)}$ be such a case?
REMARK: It is not clear how to improve the error dependence for either DPS or epsilon-net approach.

Angle I: Error MATTERs!

Complexity could grow with $1 / \epsilon$

- Infinite translationally invariant Hamiltonian: the complexity grows rapidly with $1 / \epsilon$ even with fixed local dimension. [CPW]
- Quantum Interactive Proof: the complexity jumps from PSPACE to EXP with smaller ϵ. [IKW]

Will approximating $h_{\mathrm{Sep}(d)}$ be such a case?
REMARK: It is not clear how to improve the error dependence for either DPS or epsilon-net approach.

- DPS hard due to tightness of de Finetti and k-extendibility.

Introduction

Main Result I:

Error dependence about $h_{\text {Sep }(d)}$

- NO error dependence except numerical errors.

For analytical purposes, there is no error at all. Numerically, the dependence is poly $\log (1 / \epsilon)$, exponential improvement from best known poly $(1 / \epsilon), \exp (1 / \epsilon)$.

Main Result I:

Error dependence about $h_{\text {Sep }(d)}$

- NO error dependence except numerical errors.
- For analytical purposes, there is no error at all. improvement from best known poly $(1 / \epsilon), \exp (1$ Moreover, the dependence on d'remains the same.

Main Result I:

Error dependence about $h_{\text {Sep(d) }}$

- NO error dependence except numerical errors.
- For analytical purposes, there is no error at all.
- Numerically, the dependence is polylog(1/ ϵ), exponential improvement from best known poly $(1 / \epsilon), \exp (1 / \epsilon)$.

Moreover, the dependence on d remains the same.

\square
There exist two algorithms that estimate $h_{\operatorname{Sep}(d)}(M)$ to error ϵ in time $\exp (\operatorname{poly}(d))$ poly $\log (1 / \epsilon)$. similar for the multi-partite case.

Main Result I:

Error dependence about $h_{\text {Sep(d) }}$

- NO error dependence except numerical errors.
- For analytical purposes, there is no error at all.
- Numerically, the dependence is polylog(1/ ϵ), exponential improvement from best known poly $(1 / \epsilon), \exp (1 / \epsilon)$.

Moreover, the dependence on d remains the same.

Main Result I:

Error dependence about $h_{\text {Sep(d) }}$

- NO error dependence except numerical errors.
- For analytical purposes, there is no error at all.
- Numerically, the dependence is polylog(1/ ϵ), exponential improvement from best known poly $(1 / \epsilon), \exp (1 / \epsilon)$.

Moreover, the dependence on d remains the same.

Theorem (Main I)

There exist two algorithms that estimate $h_{\operatorname{Sep}(d)}(M)$ to error ϵ in time $\exp ($ poly $(d))$ poly $\log (1 / \epsilon)$. similar for the multi-partite case.

DPS+ hierarchy

DPS+ hierarchy level k for $h_{\operatorname{Sep}(d)}(M)$

$$
\begin{array}{ll}
\max _{\rho} & \left\langle\rho_{X \mathcal{Y}_{1}}, M\right\rangle \\
\text { such that } & \rho \in \mathrm{D}\left(\mathcal{X} \otimes \mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}\right), \\
& \rho \text { is symmetric on } \mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}, \\
& \left\langle\rho, \Gamma_{i}\right\rangle=0, \forall i . \quad \text { KKT conditions }
\end{array}
$$

DPS+ hierarchy

DPS+ hierarchy level k for $h_{\operatorname{Sep}(d)}(M)$

$$
\begin{array}{cl}
\max _{\rho} & \left\langle\rho_{X \mathcal{Y}_{1}}, M\right\rangle \\
\text { such that } & \rho \in \mathrm{D}\left(\mathcal{X} \otimes \mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}\right), \\
& \rho \text { is symmetric on } \mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}, \\
& \left\langle\rho, \Gamma_{i}\right\rangle=0, \forall i . \quad \text { KKT conditions }
\end{array}
$$

Remarks

- The new hierarchy is exact when $k=\exp (\operatorname{poly}(d))$.

DPS+ hierarchy

DPS+ hierarchy level k for $h_{\operatorname{Sep}(d)}(M)$

$$
\max _{\rho}\left\langle\rho_{X y_{1}}, M\right\rangle
$$

such that $\quad \rho \in \mathrm{D}\left(\mathcal{X} \otimes \mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}\right)$,
ρ is symmetric on $\mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}$,
$\left\langle\rho, \Gamma_{i}\right\rangle=0, \forall i$. KKT conditions

Remarks

- The new hierarchy is exact when $k=\exp (\operatorname{poly}(d))$.
- KKT conditions Γ_{i} depend on M.

DPS+ hierarchy

DPS+ hierarchy level k for $h_{\operatorname{Sep}(d)}(M)$

$$
\max _{\rho}\left\langle\rho_{X \mathcal{Y}_{1}}, M\right\rangle
$$

such that $\quad \rho \in \mathrm{D}\left(\mathcal{X} \otimes \mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}\right)$,
ρ is symmetric on $\mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}$,
$\left\langle\rho, \Gamma_{i}\right\rangle=0, \forall i$. KKT conditions

Remarks

- The new hierarchy is exact when $k=\exp (\operatorname{poly}(d))$.
- KKT conditions Γ_{i} depend on M.
- KKT conditions are written without multipliers.

Introduction
Proof Technique
Conclusions

Motivations

Result II: Hardness w/o ASSUMPTIONs?

Will the hardness of $h_{\operatorname{Sep}(d)}$ for const ϵ hold w/o ETH?

Introduction
Proof Technique
Conclusions

Result II: Hardness w/o ASSUMPTIONs?

Will the hardness of $h_{\text {Sep }(d)}$ for const ϵ hold w/o ETH?

Theorem (Main II.1)

DPS hierarchies (or general Sum-of-Squares SDP) require $\Omega(\log (d))$ levels to solve $h_{\operatorname{Sep}(d)}$ with constant precision.

Result II: Hardness w/o ASSUMPTIONs?

Will the hardness of $h_{\text {Sep }(d)}$ for const ϵ hold w/o ETH?

Theorem (Main II.1)

DPS hierarchies (or general Sum-of-Squares SDP) require $\Omega(\log (d))$ levels to solve $h_{\operatorname{Sep}(d)}$ with constant precision.

Theorem (Main II.2)

Any SDP that estimate $h_{\text {Sep }(\alpha)}(M)$ with constant errors requires size $d^{\Omega(\log (d))}$.

Match $d^{\Omega(\log (d))}$ time bound when assuming ETH

Result II: Hardness w/o ASSUMPTIONs?

Will the hardness of $h_{\text {Sep }(d)}$ for const ϵ hold w/o ETH?

Theorem (Main II.1)

DPS hierarchies (or general Sum-of-Squares SDP) require $\Omega(\log (d))$ levels to solve $h_{\operatorname{Sep}(d)}$ with constant precision.

Theorem (Main II.2)

Any SDP that estimate $h_{\text {Sep }(\alpha)}(M)$ with constant errors requires size $d^{\Omega(\log (d))}$.

Remark: Match $d^{\Omega(\log (d))}$ time bound when assuming ETH.

Principle of Sum-of-Squares

One way to show that a polynomial $f(x)$ is nonnegative could be

$$
f(x)=\sum a_{i}(x)^{2} \geq 0
$$

Example

$$
\begin{aligned}
f(x) & =2 x^{2}-6 x+5 \\
& =\left(x^{2}-2 x+1\right)+\left(x^{2}-4 x+4\right) \\
& =(x-1)^{2}+(x-2)^{2} \geq 0
\end{aligned}
$$

Such a decomposition is called a sum of squares (SOS) certificate for the non-negativity of f. The min degree, $\operatorname{deg}_{\text {sos }}$.

Principle of SoS : constrained domain

Definition (Variety)

A set $V \subseteq \mathbb{C}^{n}$ is called an algebraic variety if
$V=\left\{x \in \mathbb{C}^{n}: g_{1}(x)=\cdots=g_{k}(x)=0\right\}$.

Non-negativity of $f(x)$ on V could be shown by

$$
f(x)=\sum a_{i}(x)^{2}+\sum b_{j}(x) g_{j}(x) \geq 0
$$

Question: whether all nonnegative polynomials on certain
variety have a SOS certificate? Hilbert 17th problem!

Principle of SoS : constrained domain

Definition (Variety)

A set $V \subseteq \mathbb{C}^{n}$ is called an algebraic variety if
$V=\left\{x \in \mathbb{C}^{n}: g_{1}(x)=\cdots=g_{k}(x)=0\right\}$.

Non-negativity of $f(x)$ on V could be shown by

$$
f(x)=\sum a_{i}(x)^{2}+\sum b_{j}(x) g_{j}(x) \geq 0
$$

Question: whether all nonnegative polynomials on certain variety have a SOS certificate?

Principle of SoS : constrained domain

Definition (Variety)

A set $V \subseteq \mathbb{C}^{n}$ is called an algebraic variety if
$V=\left\{x \in \mathbb{C}^{n}: g_{1}(x)=\cdots=g_{k}(x)=0\right\}$.
Non-negativity of $f(x)$ on V could be shown by

$$
f(x)=\sum a_{i}(x)^{2}+\sum b_{j}(x) g_{j}(x) \geq 0
$$

Question: whether all nonnegative polynomials on certain variety have a SOS certificate? Hilbert 17th problem!

SoS in Optimization

$$
\begin{array}{ll}
\max & f(x) \\
\text { subject to } & g_{i}(x)=0 \quad \forall i \tag{4}
\end{array}
$$

is equivalent to (justified by Positivstellensatz)
min
ν
such that $\nu-f(x)=\sigma(x)+\sum_{i} b_{i}(x) g_{i}(x)$,
where $\sigma(x)$ is SOS and $b_{i}(x)$ is any polynomial.

SoS relaxation: Lasserre/Parrilo Hierarchy

- If $\sigma(x), b_{i}(x)$ have any degrees (or $\operatorname{deg}_{\text {sos }}(v-f)$), then problem (5) is equivalent to problem (4).
By bounding the degrees, we get the Lasserre/Parrilo hierarchy.

SoS relaxation: Lasserre/Parrilo Hierarchy

- If $\sigma(x), b_{i}(x)$ have any degrees (or $\left.\operatorname{deg}_{\text {sos }}(v-f)\right)$, then problem (5) is equivalent to problem (4).
- By bounding the degrees, we get the Lasserre/Parrilo hierarchy.
where $\sigma(x)$ is SOS and $b_{i}(x)$ is any polynomial and $\operatorname{deg}(\sigma(x))$,

SoS relaxation: Lasserre/Parrilo Hierarchy

- If $\sigma(x), b_{i}(x)$ have any degrees (or $\operatorname{deg}_{\text {sos }}(v-f)$), then problem (5) is equivalent to problem (4).
- By bounding the degrees, we get the Lasserre/Parrilo hierarchy.

SoS relaxation: Lasserre/Parrilo Hierarchy

- If $\sigma(x), b_{i}(x)$ have any degrees (or $\operatorname{deg}_{\text {sos }}(v-f)$), then problem (5) is equivalent to problem (4).
- By bounding the degrees, we get the Lasserre/Parrilo hierarchy.
min ν

$$
\begin{equation*}
\text { such that } \quad \nu-f(x)=\sigma(x)+\sum_{i} b_{i}(x) g_{i}(x) \tag{6}
\end{equation*}
$$

where $\sigma(x)$ is SOS and $b_{i}(x)$ is any polynomial and $\operatorname{deg}(\sigma(x))$, $\operatorname{deg}\left(b_{i}(x) g_{i}(x)\right) \leq 2 D$.

Why it is a SDP?

Observation

- Any $p(x)$ (of degree $2 D$) $=m^{T} Q m$, where m is the vector of monomials of degree up to $2 D$ and Q is the coefficients.
- $p(x)$ is a SOS iff $Q \geq 0$.

Why it is a SDP?

Observation

- Any $p(x)$ (of degree $2 D)=m^{\top} Q m$, where m is the vector of monomials of degree up to $2 D$ and Q is the coefficients.
- $p(x)$ is a SOS iff $Q \geq 0$.

$$
\begin{array}{ll}
\min _{\nu, b_{i \alpha} \in \mathbb{R}} & \nu \\
\text { such that } & \nu A_{0}-F-\sum_{i \alpha} b_{i \alpha} G_{i \alpha} \geq 0 .
\end{array}
$$

Why it is a SDP?

Observation

- Any $p(x)$ (of degree $2 D$) $=m^{T} Q m$, where m is the vector of monomials of degree up to $2 D$ and Q is the coefficients.
- $p(x)$ is a SOS iff $Q \geq 0$.

$$
\begin{array}{ll}
\min _{\nu, b_{i \alpha} \in \mathbb{R}} & \nu \\
\text { such that } & \nu A_{0}-F-\sum_{i \alpha} b_{i \alpha} G_{i \alpha} \geq 0 .
\end{array}
$$

Complexity: poly (m) poly $\log (1 / \epsilon)$, where $m=\binom{n+D}{D}$.

Dual of the SDP: moment

Dual of the SOS cone

- Let $\Sigma_{d, 2 D}$ be the cone of all PSD matrices representing SOS polynomials with degree up to $2 D$.
- The dual cone $\sum_{d, 2 D}^{*}$ is moment $M_{D}(x) \geq 0$, where entry (α, β) of $M_{d}(x)$ is $\int x^{\alpha+\beta} \mu(d x),|\alpha|,|\beta| \leq d$.

Expectation on moment $M_{D}(x)$ gives rise to

pseudo-expectation.
Behave similar to expectation for low-degree polynomials

Dual of the SDP: moment

Dual of the SOS cone

- Let $\Sigma_{d, 2 D}$ be the cone of all PSD matrices representing SOS polynomials with degree up to $2 D$.
- The dual cone $\Sigma_{d, 2 D}^{*}$ is moment $M_{D}(x) \geq 0$, where entry (α, β) of $M_{d}(x)$ is $\int x^{\alpha+\beta} \mu(d x),|\alpha|,|\beta| \leq d$.

Pseudo-expectation

- Expectation on moment $M_{D}(x)$ gives rise to pseudo-expectation.
- Behave similar to expectation for low-degree polynomials.

Full Symmetry \Longrightarrow DPS

Example

Now each entry is labelled with $((i, j),(k, I))$ for degree 4 case, i.e., $M_{d}(x)=\rho \in \mathrm{D}\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right)$.

$$
\rho=\sum_{(i, j),(k, l)} x_{i} x_{j} x_{k} x_{l}|i\rangle|j\rangle\langle k|\langle I| .
$$

Note that entry $((i, j),(k, l))$ and $((i, l),(k, j))$ have the same value $x_{i} x_{j} x_{k} x_{l}$. This is PPT condition. Similar for DPS.

Full Symmetry \Longrightarrow DPS

Example

Now each entry is labelled with $((i, j),(k, I))$ for degree 4 case, i.e., $M_{d}(x)=\rho \in \mathrm{D}\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right)$.

$$
\rho=\sum_{(i, j),(k, l)} x_{i} x_{j} x_{k} x_{l}|i\rangle|j\rangle\langle k|\langle I| .
$$

Note that entry $((i, j),(k, I))$ and $((i, I),(k, j))$ have the same value $x_{i} x_{j} x_{k} x_{l}$. This is PPT condition. Similar for DPS.

Remark: more symmetry because in ProdSym. Flexible in choosing more or less symmetry.

Karush-Kuhn-Tucker Conditions

For any optimization problem

$$
\max f(x) \text { s.t. } g_{i}(x) \leq 0, h_{j}(x)=0, \forall i, j,
$$

if x^{*} is a local optimizer, then $\exists \mu_{i}, \lambda_{j}$,

$$
\begin{aligned}
\nabla f\left(x^{*}\right) & =\sum \mu_{i} \nabla g_{i}\left(x^{*}\right)+\sum \lambda_{j} \nabla h_{j}\left(x^{*}\right) \\
g_{i}\left(x^{*}\right) & \leq 0, h_{j}\left(x^{*}\right)=0 \\
\mu_{i} & \geq 0, \mu_{i} g_{i}\left(x^{*}\right)=0
\end{aligned}
$$

Remark: for convex optimization (our case), any global
optimizer satisfies KKT.

Karush-Kuhn-Tucker Conditions

For any optimization problem

$$
\max f(x) \text { s.t. } g_{i}(x) \leq 0, h_{j}(x)=0, \forall i, j,
$$

if x^{*} is a local optimizer, then $\exists \mu_{i}, \lambda_{j}$,

$$
\begin{aligned}
\nabla f\left(x^{*}\right) & =\sum \mu_{i} \nabla g_{i}\left(x^{*}\right)+\sum \lambda_{j} \nabla h_{j}\left(x^{*}\right) \\
g_{i}\left(x^{*}\right) & \leq 0, h_{j}\left(x^{*}\right)=0 \\
\mu_{i} & \geq 0, \mu_{i} g_{i}\left(x^{*}\right)=0
\end{aligned}
$$

Remark: for convex optimization (our case), any global optimizer satisfies KKT.

Our case

Recall our optimization problem is

$$
\max f_{0}(x) \text { s.t. } f_{1}(x)=0
$$

The KKT condition is $\nabla f_{0}(x)=\lambda \nabla f_{1}(x)$, which is equivalent to

$$
\operatorname{rank}\left(\begin{array}{cc}
\frac{\partial f_{0}(x)}{\partial x_{1}} & \frac{\partial f_{1}(x)}{\partial x_{1}} \\
\vdots & \vdots \\
\frac{\partial f_{0}(x)}{\partial x_{2 n}} & \frac{\partial f_{1}(x)}{\partial x_{2 n}}
\end{array}\right)<2
$$

Our case

Recall our optimization problem is

$$
\max f_{0}(x) \text { s.t. } f_{1}(x)=0
$$

The KKT condition is $\nabla f_{0}(x)=\lambda \nabla f_{1}(x)$, which is equivalent to

$$
\begin{gathered}
\operatorname{rank}\left(\begin{array}{cc}
\frac{\partial f_{0}(x)}{\partial x_{1}} & \frac{\partial f_{1}(x)}{\partial x_{1}} \\
\vdots & \vdots \\
\frac{\partial f_{0}(x)}{\partial x_{2 n}} & \frac{\partial f_{1}(x)}{\partial x_{2 n}}
\end{array}\right)<2 \\
g_{i j}(x)=\frac{\partial f_{0}(x)}{\partial x_{i}} \frac{\partial f_{1}(x)}{\partial x_{j}}-\frac{\partial f_{0}(x)}{\partial x_{j}} \frac{\partial f_{1}(x)}{\partial x_{i}}, \quad \forall i, j
\end{gathered}
$$

Optimization Problem with KKT constraints

$$
\begin{array}{ll}
\min & \nu \\
\text { such that } & \nu-f_{0}(x) \geq 0 \\
& f_{1}(x)=0 \\
\text { KKT } & g_{i j}(x)=0 \quad \forall 1 \leq i \neq j \leq 2 d
\end{array}
$$

- Apply the degree bound D, we get the SoS SDP hierarchy.

Optimization Problem with KKT constraints

min

$$
\nu
$$

such that

$$
\begin{aligned}
& \nu-f_{0}(x) \geq 0 \\
& f_{1}(x)=0
\end{aligned}
$$

KKT

$$
g_{i j}(x)=0 \quad \forall 1 \leq i \neq j \leq 2 d
$$

- Apply the degree bound D, we get the SoS SDP hierarchy.
- Will show finite convergence when $D=\exp (p o l y(d))$. Then $m=\binom{d+D}{D}=\exp ($ poly $(d))$. Thus the final time is $\exp ($ poly $(d))$ poly $\log (1 / \epsilon)$.

Proof Overview

- KKT conditions are necessary for critical points.

> KKT conditions imply finite convergence (tri-exponential or higher) for a generic optimization problem. [N, NR] Bring down the level for our problem to exponential.

Proof Overview

- KKT conditions are necessary for critical points.
- KKT conditions imply finite convergence (tri-exponential or higher) for a generic optimization problem. [N, NR]

Proof Overview

- KKT conditions are necessary for critical points.
- KKT conditions imply finite convergence (tri-exponential or higher) for a generic optimization problem. [N, NR]
- Bring down the level for our problem to exponential.

Proof Overview

- KKT conditions are necessary for critical points.
- KKT conditions imply finite convergence (tri-exponential or higher) for a generic optimization problem. [N, NR]
- Bring down the level for our problem to exponential.
- KKT shrinks the feasible set to isolated points. (Bézout and Bertini)
- Handle arbitrary inputs rather than generic ones.

Proof Overview

- KKT conditions are necessary for critical points.
- KKT conditions imply finite convergence (tri-exponential or higher) for a generic optimization problem. [N, NR]
- Bring down the level for our problem to exponential.
- KKT shrinks the feasible set to isolated points. (Bézout and Bertini)
- Exponential level suffices. (Grobner basis)
- Handle arbitrary inputs rather than generic ones.

Proof Overview

- KKT conditions are necessary for critical points.
- KKT conditions imply finite convergence (tri-exponential or higher) for a generic optimization problem. [N, NR]
- Bring down the level for our problem to exponential.
- KKT shrinks the feasible set to isolated points. (Bézout and Bertini)
- Exponential level suffices. (Grobner basis)
- Handle arbitrary inputs rather than generic ones.

Generic input M

Theorem (Zero-dimensional of generic I_{K})

For a generic $M,\left|V\left(I_{K}\right)\right|<\infty$ and I_{K} is zero-dimensional.

[^0]\square
Estimate $h_{\text {ProdSym }(n)}(M)$ for a generic M to error \in needs $\exp (\operatorname{Dolv}(n))$ bolv loa(1

Generic input M

Theorem (Zero-dimensional of generic I_{K})

For a generic $M,\left|V\left(I_{K}\right)\right|<\infty$ and I_{K} is zero-dimensional.

Theorem (Degree bound)

There exists $m=O(\exp (\operatorname{poly}(n)))$, s.t. for a generic $M, \epsilon>0$,

$$
v-f_{0}(x)+\epsilon=\sigma(x)+g(x)
$$

where $\sigma(x)$ is SoS and $\operatorname{deg}(\sigma(x)) \leq m, g(x) \in I_{K}^{m}$.
Corolary (SDP solution)
Estimate $h_{\operatorname{ProdSym}(n)}(M)$ for a generic M to error ϵ needs exp(poly(n))poly log(1

Generic input M

Theorem (Zero-dimensional of generic I_{K})

For a generic $M,\left|V\left(I_{K}\right)\right|<\infty$ and I_{K} is zero-dimensional.

Theorem (Degree bound)

There exists $m=O(\exp (\operatorname{poly}(n)))$, s.t. for a generic $M, \epsilon>0$,

$$
v-f_{0}(x)+\epsilon=\sigma(x)+g(x)
$$

where $\sigma(x)$ is SoS and $\operatorname{deg}(\sigma(x)) \leq m, g(x) \in I_{K}^{m}$.

Corollary (SDP solution)

Estimate $h_{\text {ProdSym }(n)}(M)$ for a generic M to error ϵ needs $\exp ($ poly $(n))$ poly $\log (1 / \epsilon)$.

Arbitrary input M

Observations

- Generic M is dense. The opt of SDP could be continuous.

Issue: SOS SDP might be infeasible up to degree m for arbitrary input M.

Arbitrary input M

Observations

- Generic M is dense. The opt of SDP could be continuous.
- Issue: SOS SDP might be infeasible up to degree m for arbitrary input M.

Arbitrary input M

Observations

- Generic M is dense. The opt of SDP could be continuous.
- Issue: SOS SDP might be infeasible up to degree m for arbitrary input M.

Arbitrary input M

Observations

- Generic M is dense. The opt of SDP could be continuous.
- Issue: SOS SDP might be infeasible up to degree m for arbitrary input M.

Solutions

- Switch to the dual SDP (moment): satisfies Slater's condition, i.e, strictly feasible.

Arbitrary input M

Observations

- Generic M is dense. The opt of SDP could be continuous.
- Issue: SOS SDP might be infeasible up to degree m for arbitrary input M.

Solutions

- Switch to the dual SDP (moment): satisfies Slater's condition, i.e, strictly feasible.
- For a generic M, by strong duality, $h_{\text {ProdSym }(n)}(M)=O P T_{\text {mom }}(M)$.

Arbitrary input M

Observations

- Generic M is dense. The opt of SDP could be continuous.
- Issue: SOS SDP might be infeasible up to degree m for arbitrary input M.

Solutions

- Switch to the dual SDP (moment): satisfies Slater's condition, i.e, strictly feasible.
- For a generic M, by strong duality, $h_{\text {ProdSym }(n)}(M)=O P T_{\text {mom }}(M)$.
- For any input M, use the continuity of the dual SDP then.

Introduction
Proof Technique
Conclusions

Result II: Hardness w/o ASSUMPTIONs!

Theorem (Main II.1)

DPS hierarchies (or general Sum-of-Squares SDP) require $\Omega(\log (d))$ levels to solve $h_{\operatorname{Sep}(d)}$ with constant precision.

Theorem (Main II.2)

Any SDP that estimate $h_{\text {Sep }(\alpha)}(M)$ with constant errors requires size $d^{\Omega(\log (d))}$.

Remark: Theorem II. $1 \Rightarrow$ Theorem II. 2 due to a recent result on psd rank (SDP) lower bound [LRS].

Proof Overview

- LB: instance w/ true value small, SoS (or SDP) value large. Start w/ such an instance: random 3XOR w/ true value $\sim 1 / 2+\epsilon$, SoS value $=1$ for large sos degree. Goal to embed such random $3 \times O R$ to an instance of $h_{\text {Sep (d) }}(M)$! How?

Proof Overview

- LB: instance w/ true value small, SoS (or SDP) value large.
- Start w/ such an instance: random 3XOR w/ true value $\sim 1 / 2+\epsilon$, SoS value $=1$ for large sos degree.
Goal to embed such random $3 \times O R$ to an instance of $h_{\text {Sep }(d)}(M)$! How?
Make use of a QMA(2) protocol (for 2-out-of-4 SAT) $[\mathrm{AB}+]$ to solve this 3XOR

Proof Overview

- LB: instance w/ true value small, SoS (or SDP) value large.
- Start w/ such an instance: random 3XOR w/ true value $\sim 1 / 2+\epsilon$, SoS value $=1$ for large sos degree.
- Goal to embed such random 3XOR to an instance of $h_{\text {Sep }(d)}(M)$! How?
to solve this $3 \times O R$.

Proof Overview

- LB: instance w/ true value small, SoS (or SDP) value large.
- Start w/ such an instance: random 3XOR w/ true value $\sim 1 / 2+\epsilon$, SoS value $=1$ for large sos degree.
- Goal to embed such random 3XOR to an instance of $h_{\text {Sep }(d)}(M)$! How?
- Make use of a QMA(2) protocol (for 2-out-of-4 SAT) [AB+] to solve this 3XOR.

Step 1: a random $3 X O R \Rightarrow$ a 2-out-of-4 SAT instance.

Proof Overview

- LB: instance w/ true value small, SoS (or SDP) value large.
- Start w/ such an instance: random 3XOR w/ true value $\sim 1 / 2+\epsilon$, SoS value $=1$ for large sos degree.
- Goal to embed such random 3XOR to an instance of $h_{\text {Sep }(d)}(M)$! How?
- Make use of a QMA(2) protocol (for 2-out-of-4 SAT) [AB+] to solve this $3 \times O R$.
- Step 1: a random 3XOR \Rightarrow a 2-out-of-4 SAT instance.

Proof Overview

- LB: instance w/ true value small, SoS (or SDP) value large.
- Start w/ such an instance: random 3XOR w/ true value $\sim 1 / 2+\epsilon$, SoS value $=1$ for large sos degree.
- Goal to embed such random 3XOR to an instance of $h_{\text {Sep }(d)}(M)$! How?
- Make use of a QMA(2) protocol (for 2-out-of-4 SAT) [AB+] to solve this $3 \times O R$.
- Step 1: a random 3XOR \Rightarrow a 2-out-of-4 SAT instance.
- Step 2: QMA(2) protocol as a reduction!

Proof Overview

- LB: instance w/ true value small, SoS (or SDP) value large.
- Start w/ such an instance: random 3XOR w/ true value $\sim 1 / 2+\epsilon$, SoS value $=1$ for large sos degree.
- Goal to embed such random 3XOR to an instance of $h_{\text {Sep }(d)}(M)$! How?
- Make use of a QMA(2) protocol (for 2-out-of-4 SAT) [AB+] to solve this 3XOR.
- Step 1: a random 3XOR \Rightarrow a 2-out-of-4 SAT instance.
- Step 2: QMA(2) protocol as a reduction!
- Step 2.1: Embed it further as an instance to $h_{\operatorname{Sep}(d)}(M)$. (Theorem II.1)

Proof Overview

- LB: instance w/ true value small, SoS (or SDP) value large.
- Start w/ such an instance: random 3XOR w/ true value $\sim 1 / 2+\epsilon$, SoS value $=1$ for large sos degree.
- Goal to embed such random 3XOR to an instance of $h_{\text {Sep }(d)}(M)$! How?
- Make use of a QMA(2) protocol (for 2-out-of-4 SAT) [AB+] to solve this $3 \times O R$.
- Step 1: a random 3XOR \Rightarrow a 2-out-of-4 SAT instance.
- Step 2: QMA(2) protocol as a reduction!
- Step 2.1: Embed it further as an instance to $h_{\operatorname{Sep}(d)}(M)$. (Theorem II.1)
- Step 2.2: Apply LRS to the resultant problem. Then reduce it to $h_{\text {Sep }(d)}(M)$. (Theorem II.2)

Step 1: 3XOR \Rightarrow 2-out-of-4 SAT

A random 3XOR on n vars with $O(n)$ clauses: sos-deg $\Omega(n)$, true value $\sim 1 / 2$, pseudo-expectation value 1 .

- A random 3XOR (each var appears in const clauses) has sos-deg $\Omega(n)$.
Replace each clause $x_{1} \oplus x_{2} \oplus x_{3}=z_{c}$ with 204 $\left(x_{1}, b, c, z\right)$ 2o4($\left.x_{2}, a, c, z\right), 204\left(x_{3}, a, b, z\right)$.
- Use 204 clauses to make all auxiliary z_{0} the same. Use expander graphs to force const appearances.

Step 1: 3XOR \Rightarrow 2-out-of-4 SAT

A random 3XOR on n vars with $O(n)$ clauses: sos-deg $\Omega(n)$, true value $\sim 1 / 2$, pseudo-expectation value 1 .

- A random 3XOR (each var appears in const clauses) has sos-deg $\Omega(n)$.
- Replace each clause $x_{1} \oplus x_{2} \oplus x_{3}=z_{c}$ with $2 \circ 4\left(x_{1}, b, c, z\right)$, 2o4($\left.x_{2}, a, c, z\right), 2 o 4\left(x_{3}, a, b, z\right)$.

Step 1: 3XOR \Rightarrow 2-out-of-4 SAT

A random 3XOR on n vars with $O(n)$ clauses: sos-deg $\Omega(n)$, true value $\sim 1 / 2$, pseudo-expectation value 1 .

- A random 3XOR (each var appears in const clauses) has sos-deg $\Omega(n)$.
- Replace each clause $x_{1} \oplus x_{2} \oplus x_{3}=z_{c}$ with $204\left(x_{1}, b, c, z\right)$, $2 o 4\left(x_{2}, a, c, z\right), 2 o 4\left(x_{3}, a, b, z\right)$.
- Use 204 clauses to make all auxiliary z_{c} the same. Use expander graphs to force const appearances.

Step 1: 3XOR \Rightarrow 2-out-of-4 SAT

A random 3XOR on n vars with $O(n)$ clauses: sos-deg $\Omega(n)$, true value $\sim 1 / 2$, pseudo-expectation value 1 .

- A random 3XOR (each var appears in const clauses) has sos-deg $\Omega(n)$.
- Replace each clause $x_{1} \oplus x_{2} \oplus x_{3}=z_{c}$ with $204\left(x_{1}, b, c, z\right)$, $2 o 4\left(x_{2}, a, c, z\right), 2 o 4\left(x_{3}, a, b, z\right)$.
- Use 204 clauses to make all auxiliary z_{c} the same. Use expander graphs to force const appearances.
- Extending the pseudo-expectation:
$\tilde{E}\left[y_{1}(x) y_{2}(x)\right]=\sum_{\alpha \in y_{1} y_{2}} \tilde{E}\left[x^{\alpha}\right]$.

Step 2: QMA(2) protocol as a reduction

A QMA(2) protocol solves this 2-out-of-4 SAT w/ completeness 1 , soundness $1 / 2$. [AB+]

- The acceptance probability of this QMA(2) protocol as the output function.

Step 2: QMA(2) protocol as a reduction

A QMA(2) protocol solves this 2-out-of-4 SAT w/ completeness 1 , soundness $1 / 2$. [$A B+$]

- The acceptance probability of this QMA(2) protocol as the output function.
- By soundness, the true value should be at most 1/2.

Step 2: QMA(2) protocol as a reduction

A QMA(2) protocol solves this 2-out-of-4 SAT w/ completeness 1 , soundness $1 / 2$. [AB+]

- The acceptance probability of this QMA(2) protocol as the output function.
- By soundness, the true value should be at most $1 / 2$.
- This QMA(2) protocol has three tests. One is testing whether any 204 clause is satisfied.
The other two have "low-degree" test-measures.
By natural extension of pseudo-expectation
pseudo-value 1

Step 2: QMA(2) protocol as a reduction

A QMA(2) protocol solves this 2-out-of-4 SAT w/ completeness 1 , soundness $1 / 2$. [$A B+$]

- The acceptance probability of this QMA(2) protocol as the output function.
- By soundness, the true value should be at most 1/2.
- This QMA(2) protocol has three tests. One is testing whether any 204 clause is satisfied.
- The other two have "low-degree" test-measures.

By natural extension of pseudo-expectation
pseudo-value 1
Caveat: the function domain is still on $\{0$.

Step 2: QMA(2) protocol as a reduction

A QMA(2) protocol solves this 2-out-of-4 SAT w/ completeness 1 , soundness $1 / 2$. [$A B+$]

- The acceptance probability of this QMA(2) protocol as the output function.
- By soundness, the true value should be at most 1/2.
- This QMA(2) protocol has three tests. One is testing whether any 204 clause is satisfied.
- The other two have "low-degree" test-measures.
- By natural extension of pseudo-expectation \Rightarrow pseudo-value 1.

Step 2: QMA(2) protocol as a reduction

A QMA(2) protocol solves this 2-out-of-4 SAT w/ completeness 1 , soundness $1 / 2$. [$A B+$]

- The acceptance probability of this QMA(2) protocol as the output function.
- By soundness, the true value should be at most 1/2.
- This QMA(2) protocol has three tests. One is testing whether any 204 clause is satisfied.
- The other two have "low-degree" test-measures.
- By natural extension of pseudo-expectation \Rightarrow pseudo-value 1.
- Caveat: the function domain is still on $\{0,1\}^{n}$.

Step 2: DPS and SDP lower bounds

DPS lower bound

- Embed this pseudo-distribution on $\{0,1\}^{n}$ to \mathbb{R}^{d}. $\left(d=n^{\sqrt{n} p o l y \log (n)}\right)$
- Thus $h_{\operatorname{Sep}(d)}(M)$ has sos degree $\Omega(\log (d))$.

Step 2: DPS and SDP lower bounds

DPS lower bound

- Embed this pseudo-distribution on $\{0,1\}^{n}$ to \mathbb{R}^{d}. $\left(d=n^{\sqrt{n} \text { polylog(n) }}\right)$
- Thus $h_{\operatorname{Sep}(d)}(M)$ has sos degree $\Omega(\log (d))$.

SDP lower bound

- Apply LRS to this function on $\{0,1\}^{n}$. Obtain SDP size lower bound $(d / \log \log (d))^{\Omega(\log (d))}$.
- By soundness, a general $h_{\operatorname{Sep}(d)}(M)$ can solve this problem, thus has the same lower bound.

Open Questions

DPS+

- Analyze the low levels of DPS+.
- Advantages of adding KKT conditions other than presented here.
- Extension to the non-commutative case?

SoS, SDP lower bound

- Any hope for a better bound?
- Extension to general algorithms?
- Any other applications to quantum information?

Question And Answer

Thank you!
 Q \& A

Proof of Theorem 1

$$
\text { Let } \mathcal{U}=\left\{f_{1}(x)=0\right\}, \mathcal{W}=\left\{\forall i, j, g_{i j}=0\right\} \text {. then } V\left(I_{K}\right) \subseteq \mathcal{U} \cap \mathcal{W} \text {. }
$$

It suffices to show \mathfrak{U} Construct $\mathcal{A}=\mathcal{X} \cap \mathcal{U}$ s.t
By Bézout's theorem, two varieties with dimension sum $\geq n$ must intersect. Thus
\qquad

Proof of Theorem 1

Let $\mathcal{U}=\left\{f_{1}(x)=0\right\}, \mathcal{W}=\left\{\forall i, j, g_{i j}=0\right\}$. then $V\left(I_{K}\right) \subseteq \mathcal{U} \cap \mathcal{W}$.
It suffices to show $|\mathcal{U} \cap \mathcal{W}|<\infty$. Construct $\mathcal{A}=\mathcal{X} \cap \mathcal{U}$ s.t.
$\mathcal{A} \cap \mathcal{W}=\emptyset$ and $\operatorname{dim}(\mathcal{X})=n-1$. Note $\mathcal{W} \cap \mathcal{A}=(\mathcal{W} \cap \mathcal{U}) \cap \mathcal{X}$.
By Bézout's theorem, two varieties with dimension sum $\geq n$
must intersect. Thus
$\operatorname{dim}(\mathcal{W} \cap \mathcal{U})+\operatorname{dim}(\mathcal{X})=\operatorname{dim}(\mathcal{W} \cap \mathcal{U})+n-1<n$.
This implies $\operatorname{dim}(W \cap \mathcal{U})=0$ and thus $\left|V\left(I_{K}\right)\right|$

Proof of Theorem 1

Let $\mathcal{U}=\left\{f_{1}(x)=0\right\}, \mathcal{W}=\left\{\forall i, j, g_{i j}=0\right\}$. then $V\left(I_{K}\right) \subseteq \mathcal{U} \cap \mathcal{W}$.
It suffices to show $|\mathcal{U} \cap \mathcal{W}|<\infty$. Construct $\mathcal{A}=\mathcal{X} \cap \mathcal{U}$ s.t.
$\mathcal{A} \cap \mathcal{W}=\emptyset$ and $\operatorname{dim}(\mathcal{X})=n-1$. Note $\mathcal{W} \cap \mathcal{A}=(\mathcal{W} \cap \mathcal{U}) \cap \mathcal{X}$.
By Bézout's theorem, two varieties with dimension sum $\geq n$ must intersect. Thus

$$
\operatorname{dim}(\mathcal{W} \cap \mathcal{U})+\operatorname{dim}(\mathcal{X})=\operatorname{dim}(\mathcal{W} \cap \mathcal{U})+n-1<n
$$

This implies $\operatorname{dim}(\mathcal{W} \cap \mathcal{U})=0$ and thus $\left|V\left(I_{K}\right)\right|<\infty$.

Proof of Theorem 1: construct \mathcal{X}

Let $\mathcal{X}=\left\{f_{0}(x)=\mu\right\}$ for generic $(\mu, M) . \operatorname{dim}(\mathcal{X})=n-1$. By Bertini's theorem, $\operatorname{dim}(\mathcal{A})=\operatorname{dim}(\mathcal{U} \cap \mathcal{X})=n-2$ \mathcal{W} by definition says $\operatorname{rank}\left(J_{\mathcal{A}}\right)=1$. Thus no intersection!

Proof of Theorem 1: construct \mathcal{X}

Let $\mathcal{X}=\left\{f_{0}(x)=\mu\right\}$ for generic $(\mu, M) . \operatorname{dim}(\mathcal{X})=n-1$.
By Bertini's theorem, $\operatorname{dim}(\mathcal{A})=\operatorname{dim}(\mathcal{U} \cap \mathcal{X})=n-2$.
The Jacobian matrix $J_{\mathcal{A}}=\left(\begin{array}{cc}\frac{\partial f_{0}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{1}} \\ \vdots & \vdots \\ \frac{\partial f_{0}}{\partial x_{n}} & \frac{\partial f_{1}}{\partial x_{n}}\end{array}\right)$ has rank $\left(J_{\mathcal{A}}\right)=2$.
\mathcal{W} by definition says $\operatorname{rank}\left(J_{\mathcal{A}}\right)=1$. Thus no intersection!
genericity; projective space; homogenization!

Proof of Theorem 1: construct \mathcal{X}

Let $\mathcal{X}=\left\{f_{0}(x)=\mu\right\}$ for generic $(\mu, M) . \operatorname{dim}(\mathcal{X})=n-1$.
By Bertini's theorem, $\operatorname{dim}(\mathcal{A})=\operatorname{dim}(\mathcal{U} \cap \mathcal{X})=n-2$.

$$
\text { The Jacobian matrix } J_{\mathcal{A}}=\left(\begin{array}{cc}
\frac{\partial f_{0}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{1}} \\
\vdots & \vdots \\
\frac{\partial f_{0}}{\partial x_{n}} & \frac{\partial f_{1}}{\partial x_{n}}
\end{array}\right) \text { has } \operatorname{rank}\left(J_{\mathcal{A}}\right)=2 \text {. }
$$

\mathcal{W} by definition says $\operatorname{rank}\left(J_{\mathcal{A}}\right)=1$. Thus no intersection!
genericity; projective space; homogenization!

Proof of Theorem 1: construct \mathcal{X}

Let $\mathcal{X}=\left\{f_{0}(x)=\mu\right\}$ for generic $(\mu, M) . \operatorname{dim}(\mathcal{X})=n-1$.
By Bertini's theorem, $\operatorname{dim}(\mathcal{A})=\operatorname{dim}(\mathcal{U} \cap \mathcal{X})=n-2$.
The Jacobian matrix $J_{\mathcal{A}}=\left(\begin{array}{cc}\frac{\partial f_{0}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{1}} \\ \vdots & \vdots \\ \frac{\partial f_{0}}{\partial x_{n}} & \frac{\partial f_{1}}{\partial x_{n}}\end{array}\right)$ has rank $\left(J_{\mathcal{A}}\right)=2$.
\mathcal{W} by definition says $\operatorname{rank}\left(J_{\mathcal{A}}\right)=1$. Thus no intersection!
Subtly: genericity; projective space; homogenization!

Proof of Theorem 2

Let $\left\{\gamma_{i}\right\}$ be a Grobner basis for I_{K}.

$$
\left|V\left(I_{K}\right)\right|<\infty \Longrightarrow \max \operatorname{deg}\left\{\gamma_{i}\right\} \leq D=\exp (\operatorname{poly}(n))
$$

Proof of Theorem 2

Let $\left\{\gamma_{i}\right\}$ be a Grobner basis for I_{K}.

$$
\left|V\left(I_{K}\right)\right|<\infty \Longrightarrow \max \operatorname{deg}\left\{\gamma_{i}\right\} \leq D=\exp (\operatorname{poly}(n))
$$

Now, want to bound $\operatorname{deg}(\sigma(x)), \operatorname{deg}(g(x))$ in

$$
v-f_{0}(x)=\sigma(x)+g(x) . \text { s.t. } \sigma(x) \text { SOS }, g(x) \in I_{K}^{m}
$$

Proof of Theorem 2

Let $\left\{\gamma_{i}\right\}$ be a Grobner basis for I_{K}.

$$
\left|V\left(I_{K}\right)\right|<\infty \Longrightarrow \max \operatorname{deg}\left\{\gamma_{i}\right\} \leq D=\exp (\operatorname{poly}(n))
$$

Now, want to bound $\operatorname{deg}(\sigma(x)), \operatorname{deg}(g(x))$ in

$$
v-f_{0}(x)=\sigma(x)+g(x) . \text { s.t. } \sigma(x) \text { SOS }, g(x) \in I_{K}^{m}
$$

Let $\sigma(x)=\sum s_{a}(x)^{2}$. By property of Grobner basis

$$
s_{a}(x)=g_{a}(x)+u_{a}(x), \text { s.t. } g_{a}(x) \in I_{K}, \operatorname{deg}\left(u_{a}(x)\right) \leq n D .
$$

Proof of Theorem 2

Let $\left\{\gamma_{i}\right\}$ be a Grobner basis for I_{K}.

$$
\left|V\left(I_{K}\right)\right|<\infty \Longrightarrow \max \operatorname{deg}\left\{\gamma_{i}\right\} \leq D=\exp (\operatorname{poly}(n))
$$

Now, want to bound $\operatorname{deg}(\sigma(x)), \operatorname{deg}(g(x))$ in

$$
v-f_{0}(x)=\sigma(x)+g(x) . \text { s.t. } \sigma(x) \text { SOS }, g(x) \in I_{K}^{m}
$$

Let $\sigma(x)=\sum s_{a}(x)^{2}$. By property of Grobner basis

$$
s_{a}(x)=g_{a}(x)+u_{a}(x), \text { s.t. } g_{a}(x) \in I_{K}, \operatorname{deg}\left(u_{a}(x)\right) \leq n D .
$$

Thus

$$
v-f_{0}(x)=\sigma^{\prime}(x)+g^{\prime}(x), \operatorname{deg}\left(\sigma^{\prime}(x)\right) \leq \exp (\operatorname{poly}(n)), g^{\prime} \in I_{K}
$$

Proof of Theorem 2: $g^{\prime} \in I_{K}^{m}$

All we need is to show $g^{\prime} \in I_{K}^{m}, m=\exp (\operatorname{poly}(n))$.

- $\operatorname{deg}\left(g^{\prime}(x)\right)=\operatorname{deg}\left(\sigma^{\prime}(x)\right)=m$.

Proof of Theorem 2: $g^{\prime} \in I_{K}^{m}$

All we need is to show $g^{\prime} \in I_{K}^{m}, m=\exp (\operatorname{poly}(n))$.

- $\operatorname{deg}\left(g^{\prime}(x)\right)=\operatorname{deg}\left(\sigma^{\prime}(x)\right)=m$.
- In Grobner basis, $g^{\prime}(x)=\sum t_{k} \gamma_{k}(x), \operatorname{deg}\left(t_{k} \gamma_{k}(x)\right) \leq m$.

Proof of Theorem 2: $g^{\prime} \in I_{K}^{m}$

All we need is to show $g^{\prime} \in I_{K}^{m}, m=\exp (\operatorname{poly}(n))$.

- $\operatorname{deg}\left(g^{\prime}(x)\right)=\operatorname{deg}\left(\sigma^{\prime}(x)\right)=m$.
- In Grobner basis, $g^{\prime}(x)=\sum t_{k} \gamma_{k}(x), \operatorname{deg}\left(t_{k} \gamma_{k}(x)\right) \leq m$.
- (Omitted) $\gamma_{k}(x)=\sum u_{i j}(x) g_{i j}(x), \operatorname{deg}\left(u_{i j}\right) \leq m$.

Proof of Theorem 2: $g^{\prime} \in I_{K}^{m}$

All we need is to show $g^{\prime} \in I_{K}^{m}, m=\exp (\operatorname{poly}(n))$.

- $\operatorname{deg}\left(g^{\prime}(x)\right)=\operatorname{deg}\left(\sigma^{\prime}(x)\right)=m$.
- In Grobner basis, $g^{\prime}(x)=\sum t_{k} \gamma_{k}(x), \operatorname{deg}\left(t_{k} \gamma_{k}(x)\right) \leq m$.
- (Omitted) $\gamma_{k}(x)=\sum u_{i j}(x) g_{i j}(x), \operatorname{deg}\left(u_{i j}\right) \leq m$.

Proof of Theorem 2: $g^{\prime} \in I_{K}^{m}$

All we need is to show $g^{\prime} \in I_{K}^{m}, m=\exp (\operatorname{poly}(n))$.

- $\operatorname{deg}\left(g^{\prime}(x)\right)=\operatorname{deg}\left(\sigma^{\prime}(x)\right)=m$.
- In Grobner basis, $g^{\prime}(x)=\sum t_{k} \gamma_{k}(x), \operatorname{deg}\left(t_{k} \gamma_{k}(x)\right) \leq m$.
- (Omitted) $\gamma_{k}(x)=\sum u_{i j}(x) g_{i j}(x), \operatorname{deg}\left(u_{i j}\right) \leq m$.

Thus, $g^{\prime}(x)=\sum t_{k} u_{i j} g_{i j}(x), \operatorname{deg}\left(t_{k} u_{i j}\right) \leq m, \Longrightarrow g^{\prime}(x) \in I_{K}^{m}$.

$$
\begin{aligned}
I_{K}^{m}= & \left\{v(x) f_{1}(x)+\sum h_{i j}(x) g_{i j}(x): \operatorname{deg}\left(v(x) f_{1}(x)\right) \leq m,\right. \\
& \left.\forall i, j, \operatorname{deg}\left(h_{i j} g_{i j}\right) \leq m\right\}
\end{aligned}
$$

[^0]: where $\sigma(x)$ is SoS and $\operatorname{deg}(\sigma(x))$

