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Features of NISQ Application Design
NISQ machines: very restricted hardware resources, where precisely controllable qubits  
are expensive, error-prone, and scarce. 

NISQ application design: investigate the best balance of trade-offs among a large 
number of (potentially heterogeneous) factors specific to the targeted application and 
quantum hardware.  
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3.5 Overview of the Proposed Framework
Our evaluation framework is shown in Figure 6. It accepts two
workloads W1 and W2 (equivalent to two independent jobs) and
the most recent calibration data. Depending upon the number of
qubits required for each workload, the partitioning algorithm de-
cides if they can both be executed reliably on the given quantum
computer. If there exists two regions where W1 and W2 can be
mapped and executed reliably, they are compiled together using
the qubit allocations received from the partitioning algorithm and
executed. The PST of each individual workload is calculated. The
impact on reliability of each program is computed by comparing
with the PST obtained by individually executing the same program
using the best qubit allocation (baseline).
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Figure 6: Overview of the proposed multi-programming
framework. The partitioning algorithm locates two reliable
regions on theNISQ computer, with X and Y qubits each. If it
can �nd two such regions, both workloads execute together.
If it is unable to locate the requested regions, it defaults to
the baseline and each benchmark is run individually

4 FAIR AND RELIABLE PARTITIONING
We advocate multi-programming NISQ computers to improve the
throughput by executing multiple programs concurrently. Since
the reliability of a NISQ application depends on the physical qubits
allocated to the program, it is important to ensure fairness while
allocating qubits to multiple programs in a shared environment.

4.1 Challenges in Fair Resource Allocation
The challenges in fair resource allocation arises from the uniqueness
of each physical qubit that is exhibited in the non-uniformity in
coherence times, gate and measurement error rates. Furthermore,
these error rates vary in time. Thus, the physical qubits allocated
to a program directly impacts its reliability [25, 40]. Compilers
account for this variation to perform qubit allocation and select
qubit movement paths to enable SWAP operations.

4.1.1 Restrictions on �bit Allocation: Multi-programming con-
strains the compiler to use a restricted set of physical qubits, limiting
its capability to optimize for greater reliability. In order to under-
stand the restrictions imposed on qubit allocation, we look at the
allocations of a 4-qubit program P1 and a 5-qubit program P2 on
a hypothetical NISQ architecture. As shown in Figure 7(a), when
mapped independently, P1 is allocated physical qubits A, B, I, and J
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Figure 7: (a) Qubit allocation of a 4-qubit program P1 and a
5-qubit program P2. (b) Qubit allocations of P1 and P2 on a
multi-programmed NISQ computer. Each node represents a
qubit and label on each edge represents the link error rate.

whereas, P2 is allocated physical qubits A, B, C, I, and J. Figure 7(b)
shows a qubit allocation for both programs together. The average
link error rate of the regions allocated to P2 for independent exe-
cution and in the shared environment are 2.2 and 2.6 respectively.
The allocation in the shared environment is 18% weaker.
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1.  cnot    q0,  q4
2.  cnot    q1,  q4
3.  cnot    q2,  q4 
4.  cnot    q3,  q4
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Figure 8: (a) An example NISQ program (b) this topology re-
quires 1 SWAP to perform Instruction 4 (c) this topology does
not require any extra SWAP to execute the program

4.1.2 Restrictions on �bit Movement: Application reliability not
only depends on qubit allocation, but also depends on program
characteristics and network topology of the allocated region. A
well-connected region can minimize the total cost of SWAPs in-
serted to bring two non-adjacent qubits physically next to each
other so that a CNOT gate can be executed. For instance, Figure 8
shows a program that executes 4 CNOT instructions and two possi-
ble network topologies. In the partition shown in Figure 8(b), the
compiler needs to insert a SWAP operation in order to perform the
4th CNOT instruction. However, a better connected region as shown
in Figure 8(c) requires lesser number of SWAPs (in this case 0). When
a quantum computer is partitioned for multi-programming, applica-
tion reliability can vary based upon the number of SWAPs inserted.
This depends on the network topology of the assigned partition.

4.2 Qubit Allocation for Multi-programs
We study the average 2-qubit gate error rate on each physical link
and measurement error rates for each qubit of IBM Q16 as shown
in Figure 9.2 We make two key observations:
• Not all good links are spatially co-located. A region with good
links has weak links as well. For example, qubits Q2 and Q12 have
two links each with error rates of 4%, but the link that connects
them physically has an error rate of 17%.

2Error rates in this Figure are based on calibration data collected on 03.14.2018
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• Qubits with good connectivity and reliable links can still su�er
from high measurement error rates (for example: Q3, Q11).

• Qubits connected to link(s) with low gate error rate(s) do not
necessarily have a large degree of freedom (number of links) and
may also su�er from high measurement errors (for example: Q7 ).

We observe similar trends on IBMQ20 based on previously reported
numbers [40] since recent data is unavailable.
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Figure 9: Error rates on IBM Q16 architecture. A node rep-
resents a qubit and the label on each edge represents the
2-qubit gate error rate for that link. Links marked in bold
have above mean 2-qubit gate error rate whereas qubits cir-
cled bold have greater than mean measurement error rate

Reliable qubits are thus usually distributed across the entire
architecture, rather than being situated next to each other. Current
noise aware compilers try to �nd a sweet spot by locating reliable
qubits as well as allocating program qubits to physically close and
well-connected qubits. The latter policy is crucial to minimize the
total number of SWAPs inserted. Thus, the compiler is compelled to
use some of the qubits and links that may not have the lowest error
rates. As a result, some of the reliable links and qubits with lower
measurement error rates may remain unused. Therefore, we draw
a key insight that as long as there exists more than one reasonably
good cluster of qubits on a quantum substrate with similar error
rates, it may be possible to run two independent programs on each
cluster without signi�cantly a�ecting their reliability. Using this
insight we design a qubit allocation algorithm that partitions the
quantum computer for enabling multi-programming.

4.2.1 Fairness in�bit Allocation: The qubit allocation algorithm
described in Algorithm 1 analyzes the underlying architecture and
ranks links and qubits depending upon their utility, and classi�es
the physical qubits into 3 groups of high, medium and low utility.
Utility of a physical qubit is de�ned as the ratio of the number
of links (degree of freedom) to the sum of link error rates. The
algorithm chooses a high utility qubit with good neighboring qubits
as the root and grows a graph by adding nodes along the boundary.
Compiler parameters � and � assists in choosing a high quality
root node as described in the Algorithm 1.

Accounting for CNOT error rates: The algorithm locates qubit
clusters such that most of the bad links are avoided by the programs
together. For example, Figure 10 represents two potential partitions
while allocating qubits for two programs with 4 and 5 qubits each.
The partition in Figure 10(b) is considered better than Figure 10(a)
since it avoids 75% of the weak links. The algorithm achieves this
by choosing a di�erent starting rank for generating sub graphs and
observing the total number of weak links in both regions.

Accounting formeasurement errors: The qubit allocation in Al-
gorithm 1 minimizes the use of qubits with high measurement error
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Figure 10: Two possible partitions (a) and (b) for a 4-qubit
program and a 5-qubit program that are scheduled to be run
concurrently on the NISQ machine. Partition (b) is more re-
liable compared to partition (a).

rates using the parameter � while allocating qubits. We observe
that there is an inherent trade-o� involved between gate error rates
and measurement error rates in certain regions on the architecture.
The algorithm optimizes for gate error rates over measurement
errors if a program has large number of 2-qubit gate operations
using the compute to measurement ratio (CMR).

Accounting for program characteristics: Each quantum pro-
gram has its own characteristics and uses individual program qubits
di�erently. Our proposed partitioning algorithm accounts for these
characteristics while allocating qubits by pro�ling the usage and
interaction graph of each program qubit. Usage of a program qubit
is de�ned as the number of operations performed on it and its in-
teraction graph is the set of other program qubits it interacts with.
Few quantum algorithms use ancilla qubits in the program that are
not measured (for example, the target qubit in Bernstein-Vazirani
algorithm). These ancilla qubits are mapped to physical qubits with
higher measurement error rates. Program qubits with high usage
are mapped to physical qubits with higher utility followed by map-
ping its neighbors to program qubits from its interaction graph.
The process is repeated until all program qubits are allocated.

The qubit allocation obtained from Algorithm 1 is used as the ini-
tial mapping by SABRE [19]. SABRE is a recently proposed compiler
that maps program qubits to physical qubits and o�ers low time
complexity. We enhance SABRE (called Variation Aware SABRE) to
use error data instead of Djikstra’s distance that is used in SABRE
originally to perform qubit movement operations. We also use the
reverse circuit of the program to aid mapping ancillae qubits on
qubits with high measurement errors. It also assists in scheduling
two or more programs under the delayed instruction scheduling
described later in Section 5.

4.2.2 To partition or not to partition? Post qubit selection, the com-
piler analyzes the reliability of each partition and �ags a warning if
at least one of the programs is allocated qubits with lower reliability
as compared to its qubit allocation in an isolated environment. The
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• Qubits connected to link(s) with low gate error rate(s) do not
necessarily have a large degree of freedom (number of links) and
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We observe similar trends on IBMQ20 based on previously reported
numbers [40] since recent data is unavailable.

8 16 4 3 6 4

4 5

21

12 5 9 4 15

5 4 4 4 4 11

3
34

5
5

9
3

4
44

1721

Q0 Q1 Q2 Q3 Q4 Q5 Q6

Q7Q8Q9Q10Q11Q12Q13

Figure 9: Error rates on IBM Q16 architecture. A node rep-
resents a qubit and the label on each edge represents the
2-qubit gate error rate for that link. Links marked in bold
have above mean 2-qubit gate error rate whereas qubits cir-
cled bold have greater than mean measurement error rate

Reliable qubits are thus usually distributed across the entire
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noise aware compilers try to �nd a sweet spot by locating reliable
qubits as well as allocating program qubits to physically close and
well-connected qubits. The latter policy is crucial to minimize the
total number of SWAPs inserted. Thus, the compiler is compelled to
use some of the qubits and links that may not have the lowest error
rates. As a result, some of the reliable links and qubits with lower
measurement error rates may remain unused. Therefore, we draw
a key insight that as long as there exists more than one reasonably
good cluster of qubits on a quantum substrate with similar error
rates, it may be possible to run two independent programs on each
cluster without signi�cantly a�ecting their reliability. Using this
insight we design a qubit allocation algorithm that partitions the
quantum computer for enabling multi-programming.

4.2.1 Fairness in�bit Allocation: The qubit allocation algorithm
described in Algorithm 1 analyzes the underlying architecture and
ranks links and qubits depending upon their utility, and classi�es
the physical qubits into 3 groups of high, medium and low utility.
Utility of a physical qubit is de�ned as the ratio of the number
of links (degree of freedom) to the sum of link error rates. The
algorithm chooses a high utility qubit with good neighboring qubits
as the root and grows a graph by adding nodes along the boundary.
Compiler parameters � and � assists in choosing a high quality
root node as described in the Algorithm 1.

Accounting for CNOT error rates: The algorithm locates qubit
clusters such that most of the bad links are avoided by the programs
together. For example, Figure 10 represents two potential partitions
while allocating qubits for two programs with 4 and 5 qubits each.
The partition in Figure 10(b) is considered better than Figure 10(a)
since it avoids 75% of the weak links. The algorithm achieves this
by choosing a di�erent starting rank for generating sub graphs and
observing the total number of weak links in both regions.

Accounting formeasurement errors: The qubit allocation in Al-
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program and a 5-qubit program that are scheduled to be run
concurrently on the NISQ machine. Partition (b) is more re-
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rates using the parameter � while allocating qubits. We observe
that there is an inherent trade-o� involved between gate error rates
and measurement error rates in certain regions on the architecture.
The algorithm optimizes for gate error rates over measurement
errors if a program has large number of 2-qubit gate operations
using the compute to measurement ratio (CMR).

Accounting for program characteristics: Each quantum pro-
gram has its own characteristics and uses individual program qubits
di�erently. Our proposed partitioning algorithm accounts for these
characteristics while allocating qubits by pro�ling the usage and
interaction graph of each program qubit. Usage of a program qubit
is de�ned as the number of operations performed on it and its in-
teraction graph is the set of other program qubits it interacts with.
Few quantum algorithms use ancilla qubits in the program that are
not measured (for example, the target qubit in Bernstein-Vazirani
algorithm). These ancilla qubits are mapped to physical qubits with
higher measurement error rates. Program qubits with high usage
are mapped to physical qubits with higher utility followed by map-
ping its neighbors to program qubits from its interaction graph.
The process is repeated until all program qubits are allocated.

The qubit allocation obtained from Algorithm 1 is used as the ini-
tial mapping by SABRE [19]. SABRE is a recently proposed compiler
that maps program qubits to physical qubits and o�ers low time
complexity. We enhance SABRE (called Variation Aware SABRE) to
use error data instead of Djikstra’s distance that is used in SABRE
originally to perform qubit movement operations. We also use the
reverse circuit of the program to aid mapping ancillae qubits on
qubits with high measurement errors. It also assists in scheduling
two or more programs under the delayed instruction scheduling
described later in Section 5.

4.2.2 To partition or not to partition? Post qubit selection, the com-
piler analyzes the reliability of each partition and �ags a warning if
at least one of the programs is allocated qubits with lower reliability
as compared to its qubit allocation in an isolated environment. The



Features of NISQ Application Design

For a particular map, map.keys returns the key set of the map
and map.values return the value set of the map. map[key]

refers to the corresponding value of key if key2map.keys,
otherwise it returns a default value. In Depth example, the
default value of dep is 0.

• For an empty program, Depth starts with an empty map.
• The depth of a program is the maximum depth of all

registers in the program. So the value method returns
the maximum value of dep.

• When appending a new operation to the program, the op

method first calculates the registers set that both used
in the program and the new operation and assigns it to
share. The maximum depth of registers in share is the
layer that all these shared registers become free. So the
new operation can put on the next layer next. Then op

method updates the depth of register used by the new
operation with next.

• For case statement, since we do not know which branch
will be chosen in run-time, we just merge the dep list of
all branches. The depth of each register is its maximum
depth in all branches.

V. CASE STUDIES

We evaluate applications of MQCC through four case stud-
ies. In the first three cases, we use MQCC to implement ideas
from previous NISQ designs and show comparable or better
results. In the last case, we show MQCC’s ability to combine
these optimization goals.

A. Multi-Program Quantum Computers
We described this problem and MQCC’s solution in Sec-

tion III-B. The definitions of its relevant attributes Depth and
Noise are given in Section IV-E. We discuss MQCC’s potential
advantages and our evaluation in this section.

1) Advantages of MQCC: The framework provided by
Poulami et al. [8] schedules exactly two applications. MQCC,
as a meta-language framework, can readily accept more; we
demonstrate several three-application examples.

2) Evaluation: We use the same applications (Table I) and
follow the same evaluation methodology as Poulami et al. We
package multiple applications as a group and generate several
groups. Applications in each group are then executed in two
ways: (1) isolated (single-programmed) as the baseline; and
(2) multi-programmed by MQCC.

For each group, we run 8192 trials on IBMQ Rochester. A
trial in which all applications in the group give the correct
result is regarded as successful. The rate of success - the

Application Description Qubits # of
gates

# of
CNOTs

bv3 Bernstein-Vazirani [3] 3 8 2
bv4 Bernstein-Vazirani [3] 4 11 3

Toff3 Toffoli gate 3 15 6
Fred3 Fredkin gate 3 17 8
Pere3 Peres gate 3 16 7

TABLE I: Applications used by Poulami et al. [8].
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Fig. 6: PST under isolated or multi-programmed execution for
each group. Group name A-B means the group contains two
applications A and B. Similarly for the name A-B-C.
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Fig. 7: Layout of IBMQ Boeblingen. Red dashed edges
indicate high crosstalk gate pairs (e.g., the pair of CNOT 0 1

and CNOT 6 7), where the error caused by their simultaneous
execution is much higher than their independent gate error.

Probability of a Successful Trial (PST) - is used to evaluate
the reliability. As Figure 6 demonstrates, solutions based on
MQCC successfully maintain the reliability of all groups
compared to running applications sequentially even when there
are more than two applications in one group.

B. Circuit Reschedule for Crosstalk Mitigation

Crosstalk arises when a certain collection of gates are
executed in parallel. It is a major source of noise in NISQ
systems, leading to corrupted quantum states and incorrect
results. Crosstalk is hardware-specific. For example, Figure 7
shows the layout of quantum chip IBMQ Boelingen with high
crosstalk gate pairs.

The high crosstalk arises if a pair of gates is scheduled
simultaneously, and can be reduced if they are scheduled
serially instead. But serialization increases circuit depth, which
increases the chance of decoherence errors. Murali et al. [21]
propose a software-based method to balance this tradeoff.
It employs an SMT-based scheduler that judiciously decides
whether gates should be executed in parallel or serially. The
schedule of each gate is encoded by two variables—the gate’s
start time and its duration—and these in turn are included in

Cross-talk: 
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cause much larger 
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Competing Goals:  
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Figure 1. (a) An example 6-qubit system. Nodes are physical qubits, and edges are possible CNOT gates. When a CNOT is
executed on qubits (0, 1) and another CNOT is executed simultaneously on qubits (2, 3), the error rate of both CNOTs increases
because of crosstalk. Qubit 2 has low coherence, which means that long computation on that qubit (including any idle time after
the �rst operation) is highly error prone. (b) An example program IR with parallelized operations. Dangling XOR operations
are CNOTs and R is for readout. Time goes left to right. (c) Default schedule for this program on IBM hardware — the schedule
maximizes instruction parallelism, but the hardware is restricted to perform all readouts at the same time, so by default, all
gates are right-aligned by the hardware scheduler. This schedule su�ers from high crosstalk errors. (d) A schedule where the
high crosstalk operations are naively serialized, leading to high decoherence error on qubit 2. (e) The desired schedule which
avoids high crosstalk and high decoherence errors.
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Figure 2. Our crosstalk mitigation approach. We develop
two building blocks necessary for software mitigation of
crosstalk. The �rst module performs fast and accurate charac-
terization of the crosstalk noise present in the hardware. The
second module performs instruction scheduling using the
characterization data. Our scheduler serializes high crosstalk
instructions but also balances the need to avoid exponential
decoherence errors from serialization.

Our contributions include the following. First, it is known
that device characteristics a�ect compilation quality and
program reliability[43]. However, measuring all device char-
acteristics (akin to measuring the full process map) is an
intractable problem due to exponential scaling. Therefore,
the performance of such devices is typically judged based
on a few metrics, such as the gate error rates and the qubit
lifetimes, which are collected daily for current QC systems.

This paper quanti�es the degree to which crosstalk has an
important e�ect on program reliability.
Second, since measuring crosstalk noise on every pair

of simultaneous operations is computationally expensive,
(requiring more than 8 hours of machine compute time even
for a 20-qubit device), we develop approaches to reduce this
overhead. We implement our methods in IBM Qiskit Ignis
[24], an open source toolbox for device characterization.
On three 20-qubit IBM devices, our optimizations reduce
characterization time to under 15 minutes.

Third, our evaluation o�ers insights about crosstalk noise:
crosstalk can degrade the error rate of a two-qubit operation
up to 11x. The degradation is not static; the e�ect of crosstalk
on a particular gate varies up to 3x over many days. On all the
three devices in our study, crosstalk noise primarily a�ects
only nearest-neighbor gates.
Fourth, we develop an instruction scheduler that miti-

gates the application impact of crosstalk. We model the
gate scheduling problem as a Satis�ability Modulo Theory
(SMT) optimization and �nd optimal schedules. We imple-
ment our scheduler in IBM Qiskit Terra [21], an open-source
QC compiler. Using real-system runs on three IBMQ sys-
tems, we show that crosstalk mitigation improves the error
rate of SWAP circuits by up to 5.6x, geomean 2x over the
parallel instruction scheduler previously used by default in
IBM systems. Since SWAP operations are the fundamental
method of communication in these systems, this large im-
provement impacts all programs that rely on communication
[27, 43, 44, 55, 56, 58–60], especially as systems scale up. Our
scheduler also improves the loss in cross entropy for QAOA
circuits by up to 3.6x compared to the IBM scheduler. In
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maximizes instruction parallelism, but the hardware is restricted to perform all readouts at the same time, so by default, all
gates are right-aligned by the hardware scheduler. This schedule su�ers from high crosstalk errors. (d) A schedule where the
high crosstalk operations are naively serialized, leading to high decoherence error on qubit 2. (e) The desired schedule which
avoids high crosstalk and high decoherence errors.
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Figure 2. Our crosstalk mitigation approach. We develop
two building blocks necessary for software mitigation of
crosstalk. The �rst module performs fast and accurate charac-
terization of the crosstalk noise present in the hardware. The
second module performs instruction scheduling using the
characterization data. Our scheduler serializes high crosstalk
instructions but also balances the need to avoid exponential
decoherence errors from serialization.

Our contributions include the following. First, it is known
that device characteristics a�ect compilation quality and
program reliability[43]. However, measuring all device char-
acteristics (akin to measuring the full process map) is an
intractable problem due to exponential scaling. Therefore,
the performance of such devices is typically judged based
on a few metrics, such as the gate error rates and the qubit
lifetimes, which are collected daily for current QC systems.

This paper quanti�es the degree to which crosstalk has an
important e�ect on program reliability.
Second, since measuring crosstalk noise on every pair

of simultaneous operations is computationally expensive,
(requiring more than 8 hours of machine compute time even
for a 20-qubit device), we develop approaches to reduce this
overhead. We implement our methods in IBM Qiskit Ignis
[24], an open source toolbox for device characterization.
On three 20-qubit IBM devices, our optimizations reduce
characterization time to under 15 minutes.

Third, our evaluation o�ers insights about crosstalk noise:
crosstalk can degrade the error rate of a two-qubit operation
up to 11x. The degradation is not static; the e�ect of crosstalk
on a particular gate varies up to 3x over many days. On all the
three devices in our study, crosstalk noise primarily a�ects
only nearest-neighbor gates.
Fourth, we develop an instruction scheduler that miti-

gates the application impact of crosstalk. We model the
gate scheduling problem as a Satis�ability Modulo Theory
(SMT) optimization and �nd optimal schedules. We imple-
ment our scheduler in IBM Qiskit Terra [21], an open-source
QC compiler. Using real-system runs on three IBMQ sys-
tems, we show that crosstalk mitigation improves the error
rate of SWAP circuits by up to 5.6x, geomean 2x over the
parallel instruction scheduler previously used by default in
IBM systems. Since SWAP operations are the fundamental
method of communication in these systems, this large im-
provement impacts all programs that rely on communication
[27, 43, 44, 55, 56, 58–60], especially as systems scale up. Our
scheduler also improves the loss in cross entropy for QAOA
circuits by up to 3.6x compared to the IBM scheduler. In
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Meta Quantum Circuits with Constraints (MQCC)
1 \\Register and variable declarations

2 qreg q[10];

3 creg r[1];

4 fcho c1 = {0, 1};
5 fcho c2 = [0, 1];

6 \\lcho c = 1 - c1 * c2;

7

8 \\Module define

9 module Bell1(q1,q2){

10 h(q1);

11 cnot(q1, q2);

12 }

13

14 module Bell2(q1, q2){

15 case (r[0]){

16 1: x(q1);

17 0: pass

18 };

19 h(q1);

20 cnot(q1,q2);

21 }

22

23 \\Main part of the program

24 choice (c1){

25 0: Bell1(q[1], q[2]);

26 1: Bell1(q[7], q[8]);

27 };

28

29 h(q[0]);

30 measure(q[0],r[0]);

31 choice (c2){

32 0: Bell2(q[1], q[2]);

33 default: Bell2(q[7], q[8]);

34 };

Listing 1: A Simple MQCC Code for Multi Programming

et al. [8] as a way to improve the utilization of quantum
computers. Since quantum resources are scarce, their idea
is to run multiple applications (multi-program) at once on a
single quantum computer, rather than run them one at a time
(single-program). The problem is that multi-programming a
NISQ computer can have an adverse impact on the reliability
of individual applications. This is because physical qubits in
an NISQ computer exhibit variance in error rates and single-
program compilers tend to allocate qubits with high reliability
to applications. Therefore, a multi-program scheme on NISQ
computers may allocate weaker qubits to an application and
bring degradation in reliability. Poulami et al. [8] solve this
problem by monitoring the reliability at runtime. Their frame-
work reverts to running applications sequentially if the noise
of multi-programming is larger than a predefined threshold.

We can use MQCC to implement their approach. Listing 1
shows the complete code in MQCC for multi-programming
two quantum applications, Bell1 and Bell2. Bell1 prepares
the Bell state 1p

2
(|00i+ |11i). Bell2 prepares 1p

2
(|00i+ |11i)

or 1p
2
(|00i � |11i) based on the value of a classical register

r[0]. Both applications need two qubits. Suppose a NISQ com-
puter provides two areas for the applications, i.e. {q[1],q[2]}
area and {q[7],q[8]} area, and {q[1],q[2]} area has a lower
error rate than {q[7],q[8]}. Our MQCC program consists of
three parts: registers and variables declaration (Line 1-6),

module definition (Line 8-21) and main part of the program
(Line 23-34).

Lines 1-2 define quantum and classical registers used in the
program as usual, using the qreg and creg syntax.

Lines 3-6 declare the program’s MQCC choice variables.
We use keyword fcho to define two free choice variables c1, c2
that choose value in {0,1}. A choice variable’s value can be
an integer in a given range, which can be expressed either
as an enumeration {a1, a2, ..., an} or as an interval [a1, a2]
with a1 < a2. In this program, these two choice variables are
used to decide where to run the two applications Bell1 and
Bell2. Apart from free choice variables, sometimes we need
to define a choice variable whose value depends on the value
of other choice variables. We call this variable limited choice
variable, and it can be defined by keyword lcho. The comment
in Line 5 shows an example. The value of a limited variable
c depends on the expression 1 � c1 ⇤ c2. When we just say
“choice variable” we mean free choice variable; we will say
“limited” explicitly.

In Line 8-21, after the definition for required registers and
variables, we define the two circuit components Bell1 and
Bell2 as modules. A module in MQCC represents a subroutine
and can be instantiated within larger modules or in the main
program. These modules can be viewed as macros. Module
Bell1 prepares the Bell state through a simple Bell circuit.
Module Bell2 first flips qubit q1 based on the value of the
classical register r[0] with a case statement. The behavior
of the case statement is similar to the statement in classical
language: choose a branch based on the value of a classical
register. (In OpenQASM, this sort of thing is implemented
with if.) Then Bell2 applies the same Bell state-preparing
circuit as Bell1.

Line 23-34 is the main part of the program. Two choice
statements decide where to run Bell1 and Bell2 based on the
value of choice variables c1, c2 2 {0, 1}. The choice statement
on lines 23-27 says that Bell1 should run on {q[1],q[2]} if
c1 = 0 or on {q[7],q[8]} if c1 = 1. The choice statement
on lines 31-34 does similarly for Bell2. The default branch
in line 33 refers to the values which are in the range of the
choice variable but do not appear in the previous branches of
the choice statement. It is easy to see that when c1 = c2, Bell1
and Bell2 are executed in serial since they are instantiated to
the same area. Otherwise they are instantiated on distinct areas
and execute in parallel.

C. Use MQCC to Solve Problems

The MQCC program is just one part of the framework; the
other part is the definition of object attributes as the basis for
an optimization goal whose solution determines the values of
choice variables. Figure 1 illustrates the general process of
using MQCC.

1) Problem Mapper: For each problem, we first divide it
into three parts: the corresponding MQCC program of the
problem; the object attributes of the problem; the optimization
goal. The first part is an MQCC program that describes the

A Sample Code of MQCC which shares many features with OpenQASM



Meta Quantum Circuits with Constraints (MQCC)
1 \\Register and variable declarations

2 qreg q[10];

3 creg r[1];

4 fcho c1 = {0, 1};
5 fcho c2 = [0, 1];

6 \\lcho c = 1 - c1 * c2;

7

8 \\Module define

9 module Bell1(q1,q2){

10 h(q1);

11 cnot(q1, q2);

12 }

13

14 module Bell2(q1, q2){

15 case (r[0]){

16 1: x(q1);

17 0: pass

18 };

19 h(q1);

20 cnot(q1,q2);

21 }

22

23 \\Main part of the program

24 choice (c1){

25 0: Bell1(q[1], q[2]);

26 1: Bell1(q[7], q[8]);

27 };

28

29 h(q[0]);

30 measure(q[0],r[0]);

31 choice (c2){

32 0: Bell2(q[1], q[2]);

33 default: Bell2(q[7], q[8]);

34 };

Listing 1: A Simple MQCC Code for Multi Programming

et al. [8] as a way to improve the utilization of quantum
computers. Since quantum resources are scarce, their idea
is to run multiple applications (multi-program) at once on a
single quantum computer, rather than run them one at a time
(single-program). The problem is that multi-programming a
NISQ computer can have an adverse impact on the reliability
of individual applications. This is because physical qubits in
an NISQ computer exhibit variance in error rates and single-
program compilers tend to allocate qubits with high reliability
to applications. Therefore, a multi-program scheme on NISQ
computers may allocate weaker qubits to an application and
bring degradation in reliability. Poulami et al. [8] solve this
problem by monitoring the reliability at runtime. Their frame-
work reverts to running applications sequentially if the noise
of multi-programming is larger than a predefined threshold.

We can use MQCC to implement their approach. Listing 1
shows the complete code in MQCC for multi-programming
two quantum applications, Bell1 and Bell2. Bell1 prepares
the Bell state 1p

2
(|00i+ |11i). Bell2 prepares 1p

2
(|00i+ |11i)

or 1p
2
(|00i � |11i) based on the value of a classical register

r[0]. Both applications need two qubits. Suppose a NISQ com-
puter provides two areas for the applications, i.e. {q[1],q[2]}
area and {q[7],q[8]} area, and {q[1],q[2]} area has a lower
error rate than {q[7],q[8]}. Our MQCC program consists of
three parts: registers and variables declaration (Line 1-6),

module definition (Line 8-21) and main part of the program
(Line 23-34).

Lines 1-2 define quantum and classical registers used in the
program as usual, using the qreg and creg syntax.

Lines 3-6 declare the program’s MQCC choice variables.
We use keyword fcho to define two free choice variables c1, c2
that choose value in {0,1}. A choice variable’s value can be
an integer in a given range, which can be expressed either
as an enumeration {a1, a2, ..., an} or as an interval [a1, a2]
with a1 < a2. In this program, these two choice variables are
used to decide where to run the two applications Bell1 and
Bell2. Apart from free choice variables, sometimes we need
to define a choice variable whose value depends on the value
of other choice variables. We call this variable limited choice
variable, and it can be defined by keyword lcho. The comment
in Line 5 shows an example. The value of a limited variable
c depends on the expression 1 � c1 ⇤ c2. When we just say
“choice variable” we mean free choice variable; we will say
“limited” explicitly.

In Line 8-21, after the definition for required registers and
variables, we define the two circuit components Bell1 and
Bell2 as modules. A module in MQCC represents a subroutine
and can be instantiated within larger modules or in the main
program. These modules can be viewed as macros. Module
Bell1 prepares the Bell state through a simple Bell circuit.
Module Bell2 first flips qubit q1 based on the value of the
classical register r[0] with a case statement. The behavior
of the case statement is similar to the statement in classical
language: choose a branch based on the value of a classical
register. (In OpenQASM, this sort of thing is implemented
with if.) Then Bell2 applies the same Bell state-preparing
circuit as Bell1.

Line 23-34 is the main part of the program. Two choice
statements decide where to run Bell1 and Bell2 based on the
value of choice variables c1, c2 2 {0, 1}. The choice statement
on lines 23-27 says that Bell1 should run on {q[1],q[2]} if
c1 = 0 or on {q[7],q[8]} if c1 = 1. The choice statement
on lines 31-34 does similarly for Bell2. The default branch
in line 33 refers to the values which are in the range of the
choice variable but do not appear in the previous branches of
the choice statement. It is easy to see that when c1 = c2, Bell1
and Bell2 are executed in serial since they are instantiated to
the same area. Otherwise they are instantiated on distinct areas
and execute in parallel.

C. Use MQCC to Solve Problems

The MQCC program is just one part of the framework; the
other part is the definition of object attributes as the basis for
an optimization goal whose solution determines the values of
choice variables. Figure 1 illustrates the general process of
using MQCC.

1) Problem Mapper: For each problem, we first divide it
into three parts: the corresponding MQCC program of the
problem; the object attributes of the problem; the optimization
goal. The first part is an MQCC program that describes the

A Sample Code of MQCC which shares many features with OpenQASM

Define CHOICE variables 

Free Choice  (fcho)  c1, c2 , in certain ranges∈ ℤ

Limited Choice  (lcho)  c=1-c1*c2 ∈ ℤ

Stitch Many Programs w/ choice variables

choice (c.v) {i : Pi}

n 2 N i 2 Z r 2 R var 2 V ars
qreg 2 Quantum reg. creg 2 Classical reg.

reg ::= qreg | creg
P 2 Program ::=

�!
D S

D 2 Declaration ::= RegDecl | V arDecl

RegDecl ::= qreg qreg; | creg creg;

V arDecl ::= Free | Limit

Free ::= fcho var = {�!i }; | fcho var = [i1, i2];

Limit ::= lcho var = E;

E 2 V arExp ::= i | var | E + E | E � E

| E ⇤ E | E/E | (E)

S 2 Stmt ::= ✏ | O | case | choice | S;S
O 2 Operation ::= x(�!r ,�!reg)

case ::= case(creg){i : Si}
choice ::= choice(var){i : Si}

Fig. 2: Formal language syntax of MQCC.

• Operations O are primitive operations over a list of
registers �!reg, according to a list of (optional) parameters
�!r . An operation could be a quantum gate, in which case
x is the name of the gate and �!reg identifies input/output
quantum registers, e.g., cnot(q1,q2). An operation could
also be a measurement, e.g., measure(q1,c1), which
measures q1’s contents and stores the result in c1. Oper-
ations could also be purely classical, e.g., add(c1,c2) to
add c1 to c2 and store the result back in c1.

• A case statement is a classical conditional. It chooses
a branch based on the value of the classical register
creg. Similar to OpenQASM, this classical register is
interpreted as an integer, using the bit at index zero as
the low order bit.

• A choice statement chooses a candidate statement based
on the valuation of choice variable var; a value i denotes
statement Si.

B. Quantum Semantics

MQCC is a meta-language, in the sense that its semantics
is determined by the quantum program that remains once its
choice variables are decided. Let � be a map from choice
variables var to their values i. Then r(S,�) is the reduced
program statement under that map, defined in Figure 3

The reduced program P =
�!
D S is simply the RegDecls

in
�!
D paired with r(S,�). This reduced program is trivially

compiled to an equivalent OpenQASM program.

C. Attribute Semantics

Users can bind attributes to an MQCC program to calculate
its various costs C = {Ci, i = 1, 2, ..., n}. Each cost is

r(O,�) = O

r(S1;S2,�) = r(S1,�); r(S2,�)

r(case(creg){i : Si},�) = case(creg){i : r(Si,�)}
r(choice(var){i : Si},�) = r(S�[var],�)

Fig. 3: MQCC’s quantum semantics via a reduced program
statememt.

S = opID(exps, regs)
[[S]] (�, s) = op(s, opID, exps, regs)

[[S1;S2]] (�, s) = [[S2]] (�, [[S1]] (�, s))

S = case(creg){i : Si}
[[S]] (�, s) = case(s, [[[Si]] (�, s)]i)

S = choice(var){i : Si} k = �[var]
[[S]] (�, s) = [[Sk]] (�, s)

Fig. 4: The semantics of MQCC program as an attribute-
transformer over the program’s statement S. �[var] finds the
value of var in the choice variables’ state �.

associated with an attribute A. Users can specify an attribute
A by a tuple (T,empty,op,case,value):

• T is a data type of the states. A state of type T consists
of information needed in the computation of the cost.

• empty : T is the initial state at the beginning of the
program.

• op : T ⇥ string ⇥
�!R ⇥ �!reg ! T receives a state, an

operation’s name and its arguments, and generates a new
state that merges the old state and the information of the
operation.

• case : T ⇥�!
T ! T receives an old state, a list of states

corresponding to each case branch which has merged
the corresponding sub-programs’ information on the old
state, and generates a new state merging the old state and
the sub-programs’ states.

• value : T ! R computes the cost of this attribute from
the information stored in a state.

The attribute semantics [[S]] is given in Figure 4. It is a state
transformer (Vars ! Z)⇥T ! T where Vars are the choice
variables. It takes a valuation of choice variables � and a state
s of type T , and produces a new state s0.

To generate an expression of the cost, we simply enumerate
all the possibilities of the choice variables’ values. Let ⌃ ⇢
(Vars ! Z) be the variables’ possible valuations, then the
cost expression of attribute A is defined as:

costA(S) =
X

�2⌃

�Vars,� · value([[S]] (�,empty)).



Meta Quantum Circuits with Constraints (MQCC)
1 \\Register and variable declarations

2 qreg q[10];

3 creg r[1];

4 fcho c1 = {0, 1};
5 fcho c2 = [0, 1];

6 \\lcho c = 1 - c1 * c2;

7

8 \\Module define

9 module Bell1(q1,q2){

10 h(q1);

11 cnot(q1, q2);

12 }

13

14 module Bell2(q1, q2){

15 case (r[0]){

16 1: x(q1);

17 0: pass

18 };

19 h(q1);

20 cnot(q1,q2);

21 }

22

23 \\Main part of the program

24 choice (c1){

25 0: Bell1(q[1], q[2]);

26 1: Bell1(q[7], q[8]);

27 };

28

29 h(q[0]);

30 measure(q[0],r[0]);

31 choice (c2){

32 0: Bell2(q[1], q[2]);

33 default: Bell2(q[7], q[8]);

34 };

Listing 1: A Simple MQCC Code for Multi Programming

et al. [8] as a way to improve the utilization of quantum
computers. Since quantum resources are scarce, their idea
is to run multiple applications (multi-program) at once on a
single quantum computer, rather than run them one at a time
(single-program). The problem is that multi-programming a
NISQ computer can have an adverse impact on the reliability
of individual applications. This is because physical qubits in
an NISQ computer exhibit variance in error rates and single-
program compilers tend to allocate qubits with high reliability
to applications. Therefore, a multi-program scheme on NISQ
computers may allocate weaker qubits to an application and
bring degradation in reliability. Poulami et al. [8] solve this
problem by monitoring the reliability at runtime. Their frame-
work reverts to running applications sequentially if the noise
of multi-programming is larger than a predefined threshold.

We can use MQCC to implement their approach. Listing 1
shows the complete code in MQCC for multi-programming
two quantum applications, Bell1 and Bell2. Bell1 prepares
the Bell state 1p

2
(|00i+ |11i). Bell2 prepares 1p

2
(|00i+ |11i)

or 1p
2
(|00i � |11i) based on the value of a classical register

r[0]. Both applications need two qubits. Suppose a NISQ com-
puter provides two areas for the applications, i.e. {q[1],q[2]}
area and {q[7],q[8]} area, and {q[1],q[2]} area has a lower
error rate than {q[7],q[8]}. Our MQCC program consists of
three parts: registers and variables declaration (Line 1-6),

module definition (Line 8-21) and main part of the program
(Line 23-34).

Lines 1-2 define quantum and classical registers used in the
program as usual, using the qreg and creg syntax.

Lines 3-6 declare the program’s MQCC choice variables.
We use keyword fcho to define two free choice variables c1, c2
that choose value in {0,1}. A choice variable’s value can be
an integer in a given range, which can be expressed either
as an enumeration {a1, a2, ..., an} or as an interval [a1, a2]
with a1 < a2. In this program, these two choice variables are
used to decide where to run the two applications Bell1 and
Bell2. Apart from free choice variables, sometimes we need
to define a choice variable whose value depends on the value
of other choice variables. We call this variable limited choice
variable, and it can be defined by keyword lcho. The comment
in Line 5 shows an example. The value of a limited variable
c depends on the expression 1 � c1 ⇤ c2. When we just say
“choice variable” we mean free choice variable; we will say
“limited” explicitly.

In Line 8-21, after the definition for required registers and
variables, we define the two circuit components Bell1 and
Bell2 as modules. A module in MQCC represents a subroutine
and can be instantiated within larger modules or in the main
program. These modules can be viewed as macros. Module
Bell1 prepares the Bell state through a simple Bell circuit.
Module Bell2 first flips qubit q1 based on the value of the
classical register r[0] with a case statement. The behavior
of the case statement is similar to the statement in classical
language: choose a branch based on the value of a classical
register. (In OpenQASM, this sort of thing is implemented
with if.) Then Bell2 applies the same Bell state-preparing
circuit as Bell1.

Line 23-34 is the main part of the program. Two choice
statements decide where to run Bell1 and Bell2 based on the
value of choice variables c1, c2 2 {0, 1}. The choice statement
on lines 23-27 says that Bell1 should run on {q[1],q[2]} if
c1 = 0 or on {q[7],q[8]} if c1 = 1. The choice statement
on lines 31-34 does similarly for Bell2. The default branch
in line 33 refers to the values which are in the range of the
choice variable but do not appear in the previous branches of
the choice statement. It is easy to see that when c1 = c2, Bell1
and Bell2 are executed in serial since they are instantiated to
the same area. Otherwise they are instantiated on distinct areas
and execute in parallel.

C. Use MQCC to Solve Problems

The MQCC program is just one part of the framework; the
other part is the definition of object attributes as the basis for
an optimization goal whose solution determines the values of
choice variables. Figure 1 illustrates the general process of
using MQCC.

1) Problem Mapper: For each problem, we first divide it
into three parts: the corresponding MQCC program of the
problem; the object attributes of the problem; the optimization
goal. The first part is an MQCC program that describes the

A Sample Code of MQCC which shares many features with OpenQASM

Fig. 1: Overview of MQCC

problem; this is the program in Listing 1 for the multi-
programming case. The second part consists of the object
attributes, which are essentially numerical functions over a cir-
cuit program. In the multi-programming case, these attributes
are Depth and Noise; the former computes the maximal length
of any sequence of a program’s gates over the same qubit,
while the latter estimates the noise introduced by a program’s
gates. Attributes can be defined by the programmer; some
examples (including depth and noise) are given in Section IV.
The last part of a problem is the optimization goal. For the
multi-programming case, this goal is to reduce the execution
time by minimizing Depth (enabling parallel execution), while
also keeping the Noise below a certain threshold ✓.

2) Cost Expression Generator: The Cost Expression Gen-
erator produces a cost expression for all attributes in terms
of the choice variables in the program. If an attribute’s value
for a statement linearly depends on the previous statements,
we say this attribute is additive. One additive attribute is the
total number of operations in the program. Noise error can
be also regarded as additive since the noise propagated of
two operations can estimated as the sum of their individual
noise [17]. By default, MQCC treats a given object as not
additive unless the user specifies otherwise. When considering
an additive attribute, MQCC will generate its cost expression
in a more optimized manner. The detail of this optimization
is discussed in Section IV-D.

For the example in Listing 1, the cost expressions generated
by MQCC for circuit depth and noise are as follows.

Depth : 7�0c1�
0
c2 + 5�0c1�

1
c2 + 5�1c1�

0
c2 + 7�1c1�

1
c2

Noise : 0.045�0c1 + 0.066�1c1 + 0.027�0c2 + 0.043�1c2

where the term �ic is a unit expression of a variable c and a

constant i such that it evaluates to 1 if the value of c equals to i,
and evaluates to 0 otherwise. Suppose we set choice variables’
values (c1 = 0, c2 = 1). Looking at the program in Listing 1,
we can see that Bell1 and Bell2 would run in parallel on
different quantum registers. And indeed, we see that Depth is
minimized at 5 while Noise = 0.088. Setting (c1 = 0, c2 = 0)
would prompt the two subprograms to run in sequence, on the
same quantum registers. The Depth attribute is higher (7) but
the Noise is lower (0.072). The result is intuitive: compared
to running two applications sequentially on the low error rate
area {q[1],q[2]}, running them in parallel yields a higher error
rate but a faster execution time.

3) Solution by SMT Encoding: With the cost expressions
generated for each object, MQCC encodes them as SMT
instances based on the user’s goal and constraints. Then
MQCC uses an SMT solver (Z3 [9]) to figure out the value
of each choice variables in the program making the value of
these object expressions satisfy the user’s goal and constraints.
In multi-programming case, if the noise threshold ✓ = 0.090,
MQCC will choose (c1 = 0, c2 = 1) and run the modules
in parallel. If the user requires a higher fidelity and gives
the lower noise threshold ✓ = 0.080, MQCC will choose
(c1 = 0, c2 = 1) and run them in sequence.

With the result from the SMT solver, MQCC generates
the reduced program statement of MQCC where all choice
statement are chosen based on the result value of the choice
variables. This program can be used as a solution to the
problem and run on a quantum computer.

D. Implementation of MQCC
We implement MQCC in Python based on PLY [2], which

provides lex and yacc parsing tools. PLY is implemented
entirely in Python and based on LR-parsing. We choose Python
for its popularity, accessibility, and flexibility. In particular,
it allows the developers to easily define various attributes
with Python classes. The current implementation of MQCC
contains about 2000 lines of codes, including front ends for
the applications in Section V. Our source code is available to
the public at https://github.com/sqrta/MQCC.

IV. FORMAL DEVELOPMENT

This section presents MQCC formally, including its meta-
language, attribute definitions, and symbolic cost expressions.

A. Language Syntax
The formal language syntax of MQCC is shown in Figure 2.

A MQCC program P consists of a sequence of declarations
D and a statement S. There are two kinds of declarations:1

• RegDecl declares classical and quantum registers in the
style of OpenQASM.

• V arDecl declares MQCC choice variables, described
informally in Section III-B.

A statement S can be empty, an operation O, a case, a choice,
or a sequence of semicolon-separated statements.

1We omit module definitions and register arrays (e.g., qreg q1[10]) from
the formal definition, which can be easily encoded.where   iff ; otherwise 0δi

c = 1 c = i
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Express desired goals as objects called Attributes. Thus, any MQCC program is a transformer on attributes.  

Precisely, any attribute A is defined by a tuple (T, empty, op, case, value) s.t.:

n 2 N i 2 Z r 2 R var 2 V ars
qreg 2 Quantum reg. creg 2 Classical reg.

reg ::= qreg | creg
P 2 Program ::=

�!
D S

D 2 Declaration ::= RegDecl | V arDecl

RegDecl ::= qreg qreg; | creg creg;

V arDecl ::= Free | Limit

Free ::= fcho var = {�!i }; | fcho var = [i1, i2];

Limit ::= lcho var = E;

E 2 V arExp ::= i | var | E + E | E � E

| E ⇤ E | E/E | (E)

S 2 Stmt ::= ✏ | O | case | choice | S;S
O 2 Operation ::= x(�!r ,�!reg)

case ::= case(creg){i : Si}
choice ::= choice(var){i : Si}

Fig. 2: Formal language syntax of MQCC.

• Operations O are primitive operations over a list of
registers �!reg, according to a list of (optional) parameters
�!r . An operation could be a quantum gate, in which case
x is the name of the gate and �!reg identifies input/output
quantum registers, e.g., cnot(q1,q2). An operation could
also be a measurement, e.g., measure(q1,c1), which
measures q1’s contents and stores the result in c1. Oper-
ations could also be purely classical, e.g., add(c1,c2) to
add c1 to c2 and store the result back in c1.

• A case statement is a classical conditional. It chooses
a branch based on the value of the classical register
creg. Similar to OpenQASM, this classical register is
interpreted as an integer, using the bit at index zero as
the low order bit.

• A choice statement chooses a candidate statement based
on the valuation of choice variable var; a value i denotes
statement Si.

B. Quantum Semantics

MQCC is a meta-language, in the sense that its semantics
is determined by the quantum program that remains once its
choice variables are decided. Let � be a map from choice
variables var to their values i. Then r(S,�) is the reduced
program statement under that map, defined in Figure 3

The reduced program P =
�!
D S is simply the RegDecls

in
�!
D paired with r(S,�). This reduced program is trivially

compiled to an equivalent OpenQASM program.

C. Attribute Semantics

Users can bind attributes to an MQCC program to calculate
its various costs C = {Ci, i = 1, 2, ..., n}. Each cost is

r(O,�) = O

r(S1;S2,�) = r(S1,�); r(S2,�)

r(case(creg){i : Si},�) = case(creg){i : r(Si,�)}
r(choice(var){i : Si},�) = r(S�[var],�)

Fig. 3: MQCC’s quantum semantics via a reduced program
statememt.

S = opID(exps, regs)
[[S]] (�, s) = op(s, opID, exps, regs)

[[S1;S2]] (�, s) = [[S2]] (�, [[S1]] (�, s))

S = case(creg){i : Si}
[[S]] (�, s) = case(s, [[[Si]] (�, s)]i)

S = choice(var){i : Si} k = �[var]
[[S]] (�, s) = [[Sk]] (�, s)

Fig. 4: The semantics of MQCC program as an attribute-
transformer over the program’s statement S. �[var] finds the
value of var in the choice variables’ state �.

associated with an attribute A. Users can specify an attribute
A by a tuple (T,empty,op,case,value):

• T is a data type of the states. A state of type T consists
of information needed in the computation of the cost.

• empty : T is the initial state at the beginning of the
program.

• op : T ⇥ string ⇥
�!R ⇥ �!reg ! T receives a state, an

operation’s name and its arguments, and generates a new
state that merges the old state and the information of the
operation.

• case : T ⇥�!
T ! T receives an old state, a list of states

corresponding to each case branch which has merged
the corresponding sub-programs’ information on the old
state, and generates a new state merging the old state and
the sub-programs’ states.

• value : T ! R computes the cost of this attribute from
the information stored in a state.

The attribute semantics [[S]] is given in Figure 4. It is a state
transformer (Vars ! Z)⇥T ! T where Vars are the choice
variables. It takes a valuation of choice variables � and a state
s of type T , and produces a new state s0.

To generate an expression of the cost, we simply enumerate
all the possibilities of the choice variables’ values. Let ⌃ ⇢
(Vars ! Z) be the variables’ possible valuations, then the
cost expression of attribute A is defined as:

costA(S) =
X

�2⌃

�Vars,� · value([[S]] (�,empty)).
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also be a measurement, e.g., measure(q1,c1), which
measures q1’s contents and stores the result in c1. Oper-
ations could also be purely classical, e.g., add(c1,c2) to
add c1 to c2 and store the result back in c1.

• A case statement is a classical conditional. It chooses
a branch based on the value of the classical register
creg. Similar to OpenQASM, this classical register is
interpreted as an integer, using the bit at index zero as
the low order bit.

• A choice statement chooses a candidate statement based
on the valuation of choice variable var; a value i denotes
statement Si.

B. Quantum Semantics

MQCC is a meta-language, in the sense that its semantics
is determined by the quantum program that remains once its
choice variables are decided. Let � be a map from choice
variables var to their values i. Then r(S,�) is the reduced
program statement under that map, defined in Figure 3

The reduced program P =
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C. Attribute Semantics

Users can bind attributes to an MQCC program to calculate
its various costs C = {Ci, i = 1, 2, ..., n}. Each cost is
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Fig. 4: The semantics of MQCC program as an attribute-
transformer over the program’s statement S. �[var] finds the
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associated with an attribute A. Users can specify an attribute
A by a tuple (T,empty,op,case,value):

• T is a data type of the states. A state of type T consists
of information needed in the computation of the cost.

• empty : T is the initial state at the beginning of the
program.

• op : T ⇥ string ⇥
�!R ⇥ �!reg ! T receives a state, an

operation’s name and its arguments, and generates a new
state that merges the old state and the information of the
operation.

• case : T ⇥�!
T ! T receives an old state, a list of states

corresponding to each case branch which has merged
the corresponding sub-programs’ information on the old
state, and generates a new state merging the old state and
the sub-programs’ states.

• value : T ! R computes the cost of this attribute from
the information stored in a state.

The attribute semantics [[S]] is given in Figure 4. It is a state
transformer (Vars ! Z)⇥T ! T where Vars are the choice
variables. It takes a valuation of choice variables � and a state
s of type T , and produces a new state s0.

To generate an expression of the cost, we simply enumerate
all the possibilities of the choice variables’ values. Let ⌃ ⇢
(Vars ! Z) be the variables’ possible valuations, then the
cost expression of attribute A is defined as:

costA(S) =
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�!r . An operation could be a quantum gate, in which case
x is the name of the gate and �!reg identifies input/output
quantum registers, e.g., cnot(q1,q2). An operation could
also be a measurement, e.g., measure(q1,c1), which
measures q1’s contents and stores the result in c1. Oper-
ations could also be purely classical, e.g., add(c1,c2) to
add c1 to c2 and store the result back in c1.

• A case statement is a classical conditional. It chooses
a branch based on the value of the classical register
creg. Similar to OpenQASM, this classical register is
interpreted as an integer, using the bit at index zero as
the low order bit.

• A choice statement chooses a candidate statement based
on the valuation of choice variable var; a value i denotes
statement Si.

B. Quantum Semantics

MQCC is a meta-language, in the sense that its semantics
is determined by the quantum program that remains once its
choice variables are decided. Let � be a map from choice
variables var to their values i. Then r(S,�) is the reduced
program statement under that map, defined in Figure 3
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in
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[[S]] (�, s) = [[Sk]] (�, s)

Fig. 4: The semantics of MQCC program as an attribute-
transformer over the program’s statement S. �[var] finds the
value of var in the choice variables’ state �.

associated with an attribute A. Users can specify an attribute
A by a tuple (T,empty,op,case,value):

• T is a data type of the states. A state of type T consists
of information needed in the computation of the cost.

• empty : T is the initial state at the beginning of the
program.

• op : T ⇥ string ⇥
�!R ⇥ �!reg ! T receives a state, an

operation’s name and its arguments, and generates a new
state that merges the old state and the information of the
operation.

• case : T ⇥�!
T ! T receives an old state, a list of states

corresponding to each case branch which has merged
the corresponding sub-programs’ information on the old
state, and generates a new state merging the old state and
the sub-programs’ states.

• value : T ! R computes the cost of this attribute from
the information stored in a state.

The attribute semantics [[S]] is given in Figure 4. It is a state
transformer (Vars ! Z)⇥T ! T where Vars are the choice
variables. It takes a valuation of choice variables � and a state
s of type T , and produces a new state s0.

To generate an expression of the cost, we simply enumerate
all the possibilities of the choice variables’ values. Let ⌃ ⇢
(Vars ! Z) be the variables’ possible valuations, then the
cost expression of attribute A is defined as:

costA(S) =
X

�2⌃

�Vars,� · value([[S]] (�,empty)).
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S = opID(exps, regs)
cost+A(S) = value(op(empty, opID, exps, regs)

cost+A(S1;S2) = cost+A(S1) + cost+A(S2)

S = case(creg){i : Si} Si is choice-free
cost+A(S) = value(case(empty, [[[Si]] (empty)]i))

S = choice(var){i : Si}
cost+A(S) =

P
i2i �

i
varcost

+
A(Sk)

Fig. 5: The cost expression of choice-in-case-free S for
additive attributes. Here i is the set of enumerated values that
variable var can take.

Here � is a variant of the Kronecker delta function: �Vars,� =Q
var2Vars �

�[var]
var , and �ivar is a unit expression that contains

variable var, which equals to 1 if var’s value is i, and
0 otherwise. One can evaluate a cost expression given the
values of variables. For multiple attributes, users can define
a weighted sum over costA as the final cost.

D. Additive Attributes

In general, the generated cost expression has a size ex-
ponential in the number of choice variables. We can use
additive attributes to reduce this size, and optimize SMT
solving performance. We limit the syntax that is available
for the additive attributes, by restricting the presence of
choice inside branches of case. Then an attribute A =
(T,empty,op,case,value) is additive if it satisfies the
following two conditions:

1) for any s : T , opID and valid exps and regs, we have

value(op(s, opID, exps, regs))
= value(s) + value(op(empty, opID, exps, regs));

2) for any s : T and choice-free statements Si, we have

value(case(s, [[[Si]] (s)]i)

= value(s) + value(case(empty, [[[Si]] (empty)]i).

We can directly derive the cost expression of an additive
attribute A from the rules in Figure 5. Let V be the maximal
number of possibilities of a variables’ values. Notice that
costA(S) has O(V d) terms where d is the number of choice
variables, and cost+A(S) has at most O(|S| · V ) terms where
|S| is the number of constructs of S. The cost+A(S) greatly
reduces the number of terms of cost expressions, potentially
shrinking the scale of the SMT instance.

The following theorem shows the correctness of cost+A. Its
proof is based on induction on S and provided in Appendix A.

Theorem IV.1. For a statement S such that there is no choice
nested in case, we have cost+A(S) = costA(S).

E. Examples of Attributes

In Section III we define two attributes, Noise and Depth, to
solve the multi-programming problem. We show how to define
these two attributes as examples. Each attribute is defined as
a class containing a data structure T and the four methods.

1) Noise Attribute: The definition is:

Attribute Noise:

T: noise : R
empty():= init s : T, s.noise = 0

return s

value(s : T):= return s.noise

op (s : T, OpID : str, exps :
�!R, regs :

��!
Reg):=

s.noise += calNoise(OpId, exps, regs)

return s

case (s : T, group : Vector of T):=

s.noise = max {n.noise| n 2group}
return s

The data structure used in Noise is a variable noise of type
R. It refers to the noise of the program to which the attribute
bound.

• For an empty program, its noise error should be 0. So
the empty method assign noise with 0.

• The value method trivially return the value of noise as
the cost of the program.

• In the op method, when appending a new operation to the
program, the program’s total noise should be increased
by that operation’s noise. The appending operation’s
noise is calculated by the function calNoise and added
to the variable noise. The function calNoise can be
implemented variously based on the target machine.

• In the case method, the parameter group refers to the list
of attribute instance of each case branching sub-program.
Since we do not know which branch will be chosen in
run-time, we conservatively use the maximum noise in
all branches as a case statement’s noise. In the definition
of Noise and other attributes in the following part of the
paper, max function returns 0 when the input set is empty.

Noise is an additive object so MQCC can generate an opti-
mized cost expression for it.

2) Depth Attribute: The definition is shown below.

Attribute Depth:

T: dep : Map of Reg ! N
empty():= init s : T, s.dep = ;

return s

value(s : T):= return (max s.dep.values)

op (s : T, OpID : str, exps :
�!R, regs :

��!
Reg):=

share = s.dep.keys \ regs

next = max {s.dep[i]| i 2share} + 1

for i 2regs: s.dep.update(i, next)

return s

case (s : T, group : Vector of T):=

all =

S
n2group n.dep.keys

s.dep = {(k, max {n.dep[k] | n2group}) | k2all}
return s

We suppose the program is executed in maximum parallel.
The data structure used in Depth is a map dep from a
register to its depth in the program. The Map structure is
represented as a set {(Key, V alue)} in the following paper.

S = opID(exps, regs)
cost+A(S) = value(op(empty, opID, exps, regs)

cost+A(S1;S2) = cost+A(S1) + cost+A(S2)
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values of variables. For multiple attributes, users can define
a weighted sum over costA as the final cost.
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In general, the generated cost expression has a size ex-
ponential in the number of choice variables. We can use
additive attributes to reduce this size, and optimize SMT
solving performance. We limit the syntax that is available
for the additive attributes, by restricting the presence of
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(T,empty,op,case,value) is additive if it satisfies the
following two conditions:

1) for any s : T , opID and valid exps and regs, we have

value(op(s, opID, exps, regs))
= value(s) + value(op(empty, opID, exps, regs));

2) for any s : T and choice-free statements Si, we have

value(case(s, [[[Si]] (s)]i)

= value(s) + value(case(empty, [[[Si]] (empty)]i).

We can directly derive the cost expression of an additive
attribute A from the rules in Figure 5. Let V be the maximal
number of possibilities of a variables’ values. Notice that
costA(S) has O(V d) terms where d is the number of choice
variables, and cost+A(S) has at most O(|S| · V ) terms where
|S| is the number of constructs of S. The cost+A(S) greatly
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proof is based on induction on S and provided in Appendix A.
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In Section III we define two attributes, Noise and Depth, to
solve the multi-programming problem. We show how to define
these two attributes as examples. Each attribute is defined as
a class containing a data structure T and the four methods.

1) Noise Attribute: The definition is:

Attribute Noise:
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empty():= init s : T, s.noise = 0

return s

value(s : T):= return s.noise
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��!
Reg):=
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case (s : T, group : Vector of T):=
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The data structure used in Noise is a variable noise of type
R. It refers to the noise of the program to which the attribute
bound.

• For an empty program, its noise error should be 0. So
the empty method assign noise with 0.

• The value method trivially return the value of noise as
the cost of the program.

• In the op method, when appending a new operation to the
program, the program’s total noise should be increased
by that operation’s noise. The appending operation’s
noise is calculated by the function calNoise and added
to the variable noise. The function calNoise can be
implemented variously based on the target machine.

• In the case method, the parameter group refers to the list
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Since we do not know which branch will be chosen in
run-time, we conservatively use the maximum noise in
all branches as a case statement’s noise. In the definition
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paper, max function returns 0 when the input set is empty.

Noise is an additive object so MQCC can generate an opti-
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2) Depth Attribute: The definition is shown below.

Attribute Depth:
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return s
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��!
Reg):=
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case (s : T, group : Vector of T):=
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We suppose the program is executed in maximum parallel.
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represented as a set {(Key, V alue)} in the following paper.
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3.5 Overview of the Proposed Framework
Our evaluation framework is shown in Figure 6. It accepts two
workloads W1 and W2 (equivalent to two independent jobs) and
the most recent calibration data. Depending upon the number of
qubits required for each workload, the partitioning algorithm de-
cides if they can both be executed reliably on the given quantum
computer. If there exists two regions where W1 and W2 can be
mapped and executed reliably, they are compiled together using
the qubit allocations received from the partitioning algorithm and
executed. The PST of each individual workload is calculated. The
impact on reliability of each program is computed by comparing
with the PST obtained by individually executing the same program
using the best qubit allocation (baseline).

Part i t ion ing A lgor i thm: 
Locate two reliable partitions 
with X and Y qubits each

Calibration DataW1 W2

Partitions 
exist?

Yes Compile 
W1, W2 
together

Compile 
W1, W2 
separate

No

IBM Q16
Melbourne

Perform N trials

Compute 
PST

Two partitions

W1: Workload #1
X qubits

W2: Workload #2
Y qubits

W1 PST

W2 PST

Figure 6: Overview of the proposed multi-programming
framework. The partitioning algorithm locates two reliable
regions on theNISQ computer, with X and Y qubits each. If it
can �nd two such regions, both workloads execute together.
If it is unable to locate the requested regions, it defaults to
the baseline and each benchmark is run individually

4 FAIR AND RELIABLE PARTITIONING
We advocate multi-programming NISQ computers to improve the
throughput by executing multiple programs concurrently. Since
the reliability of a NISQ application depends on the physical qubits
allocated to the program, it is important to ensure fairness while
allocating qubits to multiple programs in a shared environment.

4.1 Challenges in Fair Resource Allocation
The challenges in fair resource allocation arises from the uniqueness
of each physical qubit that is exhibited in the non-uniformity in
coherence times, gate and measurement error rates. Furthermore,
these error rates vary in time. Thus, the physical qubits allocated
to a program directly impacts its reliability [25, 40]. Compilers
account for this variation to perform qubit allocation and select
qubit movement paths to enable SWAP operations.

4.1.1 Restrictions on �bit Allocation: Multi-programming con-
strains the compiler to use a restricted set of physical qubits, limiting
its capability to optimize for greater reliability. In order to under-
stand the restrictions imposed on qubit allocation, we look at the
allocations of a 4-qubit program P1 and a 5-qubit program P2 on
a hypothetical NISQ architecture. As shown in Figure 7(a), when
mapped independently, P1 is allocated physical qubits A, B, I, and J

A B C D E

J I H G F

2

2

2

2 2 2

24

322

43

A B C D E

J I H G F

2

2

2

2 2 2

24

322

43

4 qubit program 
allocation

5 qubit program 
allocation

5 qubit program 
allocation

4 qubit program 
allocation

(a) (b)

Figure 7: (a) Qubit allocation of a 4-qubit program P1 and a
5-qubit program P2. (b) Qubit allocations of P1 and P2 on a
multi-programmed NISQ computer. Each node represents a
qubit and label on each edge represents the link error rate.

whereas, P2 is allocated physical qubits A, B, C, I, and J. Figure 7(b)
shows a qubit allocation for both programs together. The average
link error rate of the regions allocated to P2 for independent exe-
cution and in the shared environment are 2.2 and 2.6 respectively.
The allocation in the shared environment is 18% weaker.
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4.  cnot    q3,  q4

q0 q4 q1

q2 q3

q0 q1

q2 q3

q4

Number of SWAPs : 1 Number of SWAPs : 0
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Figure 8: (a) An example NISQ program (b) this topology re-
quires 1 SWAP to perform Instruction 4 (c) this topology does
not require any extra SWAP to execute the program

4.1.2 Restrictions on �bit Movement: Application reliability not
only depends on qubit allocation, but also depends on program
characteristics and network topology of the allocated region. A
well-connected region can minimize the total cost of SWAPs in-
serted to bring two non-adjacent qubits physically next to each
other so that a CNOT gate can be executed. For instance, Figure 8
shows a program that executes 4 CNOT instructions and two possi-
ble network topologies. In the partition shown in Figure 8(b), the
compiler needs to insert a SWAP operation in order to perform the
4th CNOT instruction. However, a better connected region as shown
in Figure 8(c) requires lesser number of SWAPs (in this case 0). When
a quantum computer is partitioned for multi-programming, applica-
tion reliability can vary based upon the number of SWAPs inserted.
This depends on the network topology of the assigned partition.

4.2 Qubit Allocation for Multi-programs
We study the average 2-qubit gate error rate on each physical link
and measurement error rates for each qubit of IBM Q16 as shown
in Figure 9.2 We make two key observations:
• Not all good links are spatially co-located. A region with good
links has weak links as well. For example, qubits Q2 and Q12 have
two links each with error rates of 4%, but the link that connects
them physically has an error rate of 17%.

2Error rates in this Figure are based on calibration data collected on 03.14.2018
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For a particular map, map.keys returns the key set of the map
and map.values return the value set of the map. map[key]

refers to the corresponding value of key if key2map.keys,
otherwise it returns a default value. In Depth example, the
default value of dep is 0.

• For an empty program, Depth starts with an empty map.
• The depth of a program is the maximum depth of all

registers in the program. So the value method returns
the maximum value of dep.

• When appending a new operation to the program, the op

method first calculates the registers set that both used
in the program and the new operation and assigns it to
share. The maximum depth of registers in share is the
layer that all these shared registers become free. So the
new operation can put on the next layer next. Then op

method updates the depth of register used by the new
operation with next.

• For case statement, since we do not know which branch
will be chosen in run-time, we just merge the dep list of
all branches. The depth of each register is its maximum
depth in all branches.

V. CASE STUDIES

We evaluate applications of MQCC through four case stud-
ies. In the first three cases, we use MQCC to implement ideas
from previous NISQ designs and show comparable or better
results. In the last case, we show MQCC’s ability to combine
these optimization goals.

A. Multi-Program Quantum Computers
We described this problem and MQCC’s solution in Sec-

tion III-B. The definitions of its relevant attributes Depth and
Noise are given in Section IV-E. We discuss MQCC’s potential
advantages and our evaluation in this section.

1) Advantages of MQCC: The framework provided by
Poulami et al. [8] schedules exactly two applications. MQCC,
as a meta-language framework, can readily accept more; we
demonstrate several three-application examples.

2) Evaluation: We use the same applications (Table I) and
follow the same evaluation methodology as Poulami et al. We
package multiple applications as a group and generate several
groups. Applications in each group are then executed in two
ways: (1) isolated (single-programmed) as the baseline; and
(2) multi-programmed by MQCC.

For each group, we run 8192 trials on IBMQ Rochester. A
trial in which all applications in the group give the correct
result is regarded as successful. The rate of success - the

Application Description Qubits # of
gates

# of
CNOTs

bv3 Bernstein-Vazirani [3] 3 8 2
bv4 Bernstein-Vazirani [3] 4 11 3

Toff3 Toffoli gate 3 15 6
Fred3 Fredkin gate 3 17 8
Pere3 Peres gate 3 16 7

TABLE I: Applications used by Poulami et al. [8].
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Fig. 6: PST under isolated or multi-programmed execution for
each group. Group name A-B means the group contains two
applications A and B. Similarly for the name A-B-C.
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Fig. 7: Layout of IBMQ Boeblingen. Red dashed edges
indicate high crosstalk gate pairs (e.g., the pair of CNOT 0 1

and CNOT 6 7), where the error caused by their simultaneous
execution is much higher than their independent gate error.

Probability of a Successful Trial (PST) - is used to evaluate
the reliability. As Figure 6 demonstrates, solutions based on
MQCC successfully maintain the reliability of all groups
compared to running applications sequentially even when there
are more than two applications in one group.

B. Circuit Reschedule for Crosstalk Mitigation

Crosstalk arises when a certain collection of gates are
executed in parallel. It is a major source of noise in NISQ
systems, leading to corrupted quantum states and incorrect
results. Crosstalk is hardware-specific. For example, Figure 7
shows the layout of quantum chip IBMQ Boelingen with high
crosstalk gate pairs.

The high crosstalk arises if a pair of gates is scheduled
simultaneously, and can be reduced if they are scheduled
serially instead. But serialization increases circuit depth, which
increases the chance of decoherence errors. Murali et al. [21]
propose a software-based method to balance this tradeoff.
It employs an SMT-based scheduler that judiciously decides
whether gates should be executed in parallel or serially. The
schedule of each gate is encoded by two variables—the gate’s
start time and its duration—and these in turn are included in

For a particular map, map.keys returns the key set of the map
and map.values return the value set of the map. map[key]

refers to the corresponding value of key if key2map.keys,
otherwise it returns a default value. In Depth example, the
default value of dep is 0.

• For an empty program, Depth starts with an empty map.
• The depth of a program is the maximum depth of all

registers in the program. So the value method returns
the maximum value of dep.

• When appending a new operation to the program, the op

method first calculates the registers set that both used
in the program and the new operation and assigns it to
share. The maximum depth of registers in share is the
layer that all these shared registers become free. So the
new operation can put on the next layer next. Then op

method updates the depth of register used by the new
operation with next.

• For case statement, since we do not know which branch
will be chosen in run-time, we just merge the dep list of
all branches. The depth of each register is its maximum
depth in all branches.

V. CASE STUDIES

We evaluate applications of MQCC through four case stud-
ies. In the first three cases, we use MQCC to implement ideas
from previous NISQ designs and show comparable or better
results. In the last case, we show MQCC’s ability to combine
these optimization goals.

A. Multi-Program Quantum Computers
We described this problem and MQCC’s solution in Sec-

tion III-B. The definitions of its relevant attributes Depth and
Noise are given in Section IV-E. We discuss MQCC’s potential
advantages and our evaluation in this section.

1) Advantages of MQCC: The framework provided by
Poulami et al. [8] schedules exactly two applications. MQCC,
as a meta-language framework, can readily accept more; we
demonstrate several three-application examples.

2) Evaluation: We use the same applications (Table I) and
follow the same evaluation methodology as Poulami et al. We
package multiple applications as a group and generate several
groups. Applications in each group are then executed in two
ways: (1) isolated (single-programmed) as the baseline; and
(2) multi-programmed by MQCC.

For each group, we run 8192 trials on IBMQ Rochester. A
trial in which all applications in the group give the correct
result is regarded as successful. The rate of success - the

Application Description Qubits # of
gates

# of
CNOTs

bv3 Bernstein-Vazirani [3] 3 8 2
bv4 Bernstein-Vazirani [3] 4 11 3

Toff3 Toffoli gate 3 15 6
Fred3 Fredkin gate 3 17 8
Pere3 Peres gate 3 16 7

TABLE I: Applications used by Poulami et al. [8].
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Fig. 6: PST under isolated or multi-programmed execution for
each group. Group name A-B means the group contains two
applications A and B. Similarly for the name A-B-C.
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Fig. 7: Layout of IBMQ Boeblingen. Red dashed edges
indicate high crosstalk gate pairs (e.g., the pair of CNOT 0 1

and CNOT 6 7), where the error caused by their simultaneous
execution is much higher than their independent gate error.

Probability of a Successful Trial (PST) - is used to evaluate
the reliability. As Figure 6 demonstrates, solutions based on
MQCC successfully maintain the reliability of all groups
compared to running applications sequentially even when there
are more than two applications in one group.

B. Circuit Reschedule for Crosstalk Mitigation

Crosstalk arises when a certain collection of gates are
executed in parallel. It is a major source of noise in NISQ
systems, leading to corrupted quantum states and incorrect
results. Crosstalk is hardware-specific. For example, Figure 7
shows the layout of quantum chip IBMQ Boelingen with high
crosstalk gate pairs.

The high crosstalk arises if a pair of gates is scheduled
simultaneously, and can be reduced if they are scheduled
serially instead. But serialization increases circuit depth, which
increases the chance of decoherence errors. Murali et al. [21]
propose a software-based method to balance this tradeoff.
It employs an SMT-based scheduler that judiciously decides
whether gates should be executed in parallel or serially. The
schedule of each gate is encoded by two variables—the gate’s
start time and its duration—and these in turn are included in

 Sequential: always high-quality qubits
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For a particular map, map.keys returns the key set of the map
and map.values return the value set of the map. map[key]

refers to the corresponding value of key if key2map.keys,
otherwise it returns a default value. In Depth example, the
default value of dep is 0.

• For an empty program, Depth starts with an empty map.
• The depth of a program is the maximum depth of all

registers in the program. So the value method returns
the maximum value of dep.

• When appending a new operation to the program, the op

method first calculates the registers set that both used
in the program and the new operation and assigns it to
share. The maximum depth of registers in share is the
layer that all these shared registers become free. So the
new operation can put on the next layer next. Then op

method updates the depth of register used by the new
operation with next.

• For case statement, since we do not know which branch
will be chosen in run-time, we just merge the dep list of
all branches. The depth of each register is its maximum
depth in all branches.

V. CASE STUDIES

We evaluate applications of MQCC through four case stud-
ies. In the first three cases, we use MQCC to implement ideas
from previous NISQ designs and show comparable or better
results. In the last case, we show MQCC’s ability to combine
these optimization goals.

A. Multi-Program Quantum Computers
We described this problem and MQCC’s solution in Sec-

tion III-B. The definitions of its relevant attributes Depth and
Noise are given in Section IV-E. We discuss MQCC’s potential
advantages and our evaluation in this section.

1) Advantages of MQCC: The framework provided by
Poulami et al. [8] schedules exactly two applications. MQCC,
as a meta-language framework, can readily accept more; we
demonstrate several three-application examples.

2) Evaluation: We use the same applications (Table I) and
follow the same evaluation methodology as Poulami et al. We
package multiple applications as a group and generate several
groups. Applications in each group are then executed in two
ways: (1) isolated (single-programmed) as the baseline; and
(2) multi-programmed by MQCC.

For each group, we run 8192 trials on IBMQ Rochester. A
trial in which all applications in the group give the correct
result is regarded as successful. The rate of success - the

Application Description Qubits # of
gates

# of
CNOTs

bv3 Bernstein-Vazirani [3] 3 8 2
bv4 Bernstein-Vazirani [3] 4 11 3

Toff3 Toffoli gate 3 15 6
Fred3 Fredkin gate 3 17 8
Pere3 Peres gate 3 16 7

TABLE I: Applications used by Poulami et al. [8].
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Fig. 6: PST under isolated or multi-programmed execution for
each group. Group name A-B means the group contains two
applications A and B. Similarly for the name A-B-C.
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Fig. 7: Layout of IBMQ Boeblingen. Red dashed edges
indicate high crosstalk gate pairs (e.g., the pair of CNOT 0 1

and CNOT 6 7), where the error caused by their simultaneous
execution is much higher than their independent gate error.

Probability of a Successful Trial (PST) - is used to evaluate
the reliability. As Figure 6 demonstrates, solutions based on
MQCC successfully maintain the reliability of all groups
compared to running applications sequentially even when there
are more than two applications in one group.

B. Circuit Reschedule for Crosstalk Mitigation

Crosstalk arises when a certain collection of gates are
executed in parallel. It is a major source of noise in NISQ
systems, leading to corrupted quantum states and incorrect
results. Crosstalk is hardware-specific. For example, Figure 7
shows the layout of quantum chip IBMQ Boelingen with high
crosstalk gate pairs.

The high crosstalk arises if a pair of gates is scheduled
simultaneously, and can be reduced if they are scheduled
serially instead. But serialization increases circuit depth, which
increases the chance of decoherence errors. Murali et al. [21]
propose a software-based method to balance this tradeoff.
It employs an SMT-based scheduler that judiciously decides
whether gates should be executed in parallel or serially. The
schedule of each gate is encoded by two variables—the gate’s
start time and its duration—and these in turn are included in
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For a particular map, map.keys returns the key set of the map
and map.values return the value set of the map. map[key]

refers to the corresponding value of key if key2map.keys,
otherwise it returns a default value. In Depth example, the
default value of dep is 0.

• For an empty program, Depth starts with an empty map.
• The depth of a program is the maximum depth of all

registers in the program. So the value method returns
the maximum value of dep.

• When appending a new operation to the program, the op

method first calculates the registers set that both used
in the program and the new operation and assigns it to
share. The maximum depth of registers in share is the
layer that all these shared registers become free. So the
new operation can put on the next layer next. Then op

method updates the depth of register used by the new
operation with next.

• For case statement, since we do not know which branch
will be chosen in run-time, we just merge the dep list of
all branches. The depth of each register is its maximum
depth in all branches.

V. CASE STUDIES

We evaluate applications of MQCC through four case stud-
ies. In the first three cases, we use MQCC to implement ideas
from previous NISQ designs and show comparable or better
results. In the last case, we show MQCC’s ability to combine
these optimization goals.

A. Multi-Program Quantum Computers
We described this problem and MQCC’s solution in Sec-

tion III-B. The definitions of its relevant attributes Depth and
Noise are given in Section IV-E. We discuss MQCC’s potential
advantages and our evaluation in this section.

1) Advantages of MQCC: The framework provided by
Poulami et al. [8] schedules exactly two applications. MQCC,
as a meta-language framework, can readily accept more; we
demonstrate several three-application examples.

2) Evaluation: We use the same applications (Table I) and
follow the same evaluation methodology as Poulami et al. We
package multiple applications as a group and generate several
groups. Applications in each group are then executed in two
ways: (1) isolated (single-programmed) as the baseline; and
(2) multi-programmed by MQCC.

For each group, we run 8192 trials on IBMQ Rochester. A
trial in which all applications in the group give the correct
result is regarded as successful. The rate of success - the

Application Description Qubits # of
gates

# of
CNOTs

bv3 Bernstein-Vazirani [3] 3 8 2
bv4 Bernstein-Vazirani [3] 4 11 3

Toff3 Toffoli gate 3 15 6
Fred3 Fredkin gate 3 17 8
Pere3 Peres gate 3 16 7

TABLE I: Applications used by Poulami et al. [8].

bv
3-p

ere
3

bv
3-t

off
3

bv
3-f

red
3

bv
4-b

v3

bv
4-t

off
3

bv
4-b

v3
-to

ff3

bv
3-b

v3
-bv

4

bv
3-b

v3
-fr

ed
3

0

0.2

0.4

0.6

0.8

Pr
ob

ab
ili

ty
of

Su
cc

es
sf

ul
Tr

ia
l

isolated
MQCC

Fig. 6: PST under isolated or multi-programmed execution for
each group. Group name A-B means the group contains two
applications A and B. Similarly for the name A-B-C.
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Fig. 7: Layout of IBMQ Boeblingen. Red dashed edges
indicate high crosstalk gate pairs (e.g., the pair of CNOT 0 1

and CNOT 6 7), where the error caused by their simultaneous
execution is much higher than their independent gate error.

Probability of a Successful Trial (PST) - is used to evaluate
the reliability. As Figure 6 demonstrates, solutions based on
MQCC successfully maintain the reliability of all groups
compared to running applications sequentially even when there
are more than two applications in one group.

B. Circuit Reschedule for Crosstalk Mitigation

Crosstalk arises when a certain collection of gates are
executed in parallel. It is a major source of noise in NISQ
systems, leading to corrupted quantum states and incorrect
results. Crosstalk is hardware-specific. For example, Figure 7
shows the layout of quantum chip IBMQ Boelingen with high
crosstalk gate pairs.

The high crosstalk arises if a pair of gates is scheduled
simultaneously, and can be reduced if they are scheduled
serially instead. But serialization increases circuit depth, which
increases the chance of decoherence errors. Murali et al. [21]
propose a software-based method to balance this tradeoff.
It employs an SMT-based scheduler that judiciously decides
whether gates should be executed in parallel or serially. The
schedule of each gate is encoded by two variables—the gate’s
start time and its duration—and these in turn are included in

Group A-B contains two applications A and B.  Similarly A-B-C. 
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For a particular map, map.keys returns the key set of the map
and map.values return the value set of the map. map[key]

refers to the corresponding value of key if key2map.keys,
otherwise it returns a default value. In Depth example, the
default value of dep is 0.

• For an empty program, Depth starts with an empty map.
• The depth of a program is the maximum depth of all

registers in the program. So the value method returns
the maximum value of dep.

• When appending a new operation to the program, the op

method first calculates the registers set that both used
in the program and the new operation and assigns it to
share. The maximum depth of registers in share is the
layer that all these shared registers become free. So the
new operation can put on the next layer next. Then op

method updates the depth of register used by the new
operation with next.

• For case statement, since we do not know which branch
will be chosen in run-time, we just merge the dep list of
all branches. The depth of each register is its maximum
depth in all branches.

V. CASE STUDIES

We evaluate applications of MQCC through four case stud-
ies. In the first three cases, we use MQCC to implement ideas
from previous NISQ designs and show comparable or better
results. In the last case, we show MQCC’s ability to combine
these optimization goals.

A. Multi-Program Quantum Computers
We described this problem and MQCC’s solution in Sec-

tion III-B. The definitions of its relevant attributes Depth and
Noise are given in Section IV-E. We discuss MQCC’s potential
advantages and our evaluation in this section.

1) Advantages of MQCC: The framework provided by
Poulami et al. [8] schedules exactly two applications. MQCC,
as a meta-language framework, can readily accept more; we
demonstrate several three-application examples.

2) Evaluation: We use the same applications (Table I) and
follow the same evaluation methodology as Poulami et al. We
package multiple applications as a group and generate several
groups. Applications in each group are then executed in two
ways: (1) isolated (single-programmed) as the baseline; and
(2) multi-programmed by MQCC.

For each group, we run 8192 trials on IBMQ Rochester. A
trial in which all applications in the group give the correct
result is regarded as successful. The rate of success - the

Application Description Qubits # of
gates

# of
CNOTs

bv3 Bernstein-Vazirani [3] 3 8 2
bv4 Bernstein-Vazirani [3] 4 11 3

Toff3 Toffoli gate 3 15 6
Fred3 Fredkin gate 3 17 8
Pere3 Peres gate 3 16 7

TABLE I: Applications used by Poulami et al. [8].
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Fig. 6: PST under isolated or multi-programmed execution for
each group. Group name A-B means the group contains two
applications A and B. Similarly for the name A-B-C.
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Fig. 7: Layout of IBMQ Boeblingen. Red dashed edges
indicate high crosstalk gate pairs (e.g., the pair of CNOT 0 1

and CNOT 6 7), where the error caused by their simultaneous
execution is much higher than their independent gate error.

Probability of a Successful Trial (PST) - is used to evaluate
the reliability. As Figure 6 demonstrates, solutions based on
MQCC successfully maintain the reliability of all groups
compared to running applications sequentially even when there
are more than two applications in one group.

B. Circuit Reschedule for Crosstalk Mitigation

Crosstalk arises when a certain collection of gates are
executed in parallel. It is a major source of noise in NISQ
systems, leading to corrupted quantum states and incorrect
results. Crosstalk is hardware-specific. For example, Figure 7
shows the layout of quantum chip IBMQ Boelingen with high
crosstalk gate pairs.

The high crosstalk arises if a pair of gates is scheduled
simultaneously, and can be reduced if they are scheduled
serially instead. But serialization increases circuit depth, which
increases the chance of decoherence errors. Murali et al. [21]
propose a software-based method to balance this tradeoff.
It employs an SMT-based scheduler that judiciously decides
whether gates should be executed in parallel or serially. The
schedule of each gate is encoded by two variables—the gate’s
start time and its duration—and these in turn are included in
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an SMT instance that encodes the crosstalk along with other
constraints based on features of each gate.

1) Solution of MQCC: We encode possible gate schedules
via choice variables in a MQCC meta-program. We make
use of the OpenQASM barrier operation described in
Section II-B, which is also used in Murali et al. [21]. For
example, consider the following module for each CNOT gate:

1 module cnotb(c,q1,q2){

2 choice (c){

3 0: cnot(q1,q2);

4 1: barrier(q1,q2);

5 cnot(q1,q2);

6 } }

When c = 0, it is applied normally (maximum parallel);
otherwise, it is executed sequentially only after previous gates
on q1,q2 are finished (i.e., barrier(q1,q2)).

Our goal is to minimize both decoherence error and
crosstalk. We define attributes Crosstalk and Decoherence
which take into account the expected appearance of the
barrier operations in the meta-program. The definition of the
Crosstalk attribute is the following.

Attribute Crosstalk

T: dep : Map of Reg ! N
rep : Map of N ! Set of (str ⇥ ��!

Reg)
empty ():= init s:T, s.dep = ;, s.rep = ;

return s

value (s : T):= return calCross(rep)

op (s : T, opID : str, exps :
�!R, regs :

��!
Reg):=

if opId == "barrier" :

cur = max s.dep.values

for i2regs: s.dep.update(i, cur)

else:

share = s.dep.keys \ regs

next = max {s.dep[i] | i 2 share} + 1

s.rep[next].insert( (OpID, regs) )

for i2regs: s.dep.update(i, next)

return s

case (s : T, group : Vector of T):=

all =

S
n.dep.keys, n2group

s.dep = {(k, max {n.dep[k]|n2group})| k2all}
s.rep = {(k,

S
n2group n.rep[k]) |9u 2 group, k2 u}

return s

With rep, we know which gates are executed simultaneously
(in the same layer) and use function calCross to calculate the
program’s crosstalk according to the hardware information.
The op method, when meeting a barrier operation, updates
the depth of registers specified by barrier in dep to the
current depth of the program. Thus, future operations applied
on these registers will run in layers following the barrier

statement. For other operations, op updates dep in the same
way as in Depth and inserts this operation into rep.

The probability of decoherence error can be calculated as
1� e�↵d where ↵ is some constant and d is the circuit depth.
So the design of Decoherence is almost the same as Crosstalk
except that Decoherence returns 1� e�↵d where d=dep.keys
in the value method.

2) Evaluation: We follows Murali et al.’s evaluation
methodology [21]. In particular, we use the same meet-in-the-
middle SWAP sequences as benchmarks. In superconducting
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Fig. 8: The measured PST for SWAP circuits on IBMQ
Boeblingen using the four schedulers. Higher PST is better.
a-b refers a SWAP circuit connecting qubit a and b.

QC systems, CNOTs are permitted only between adjacent
qubits. To apply a CNOT between two far-away qubits,
compilers usually insert a sequence of SWAP operations that
move two qubits into adjacent locations through exchanges.
For example, in IBMQ Boeblingen, CNOT 15 8 can be im-
plemented as SWAP 15 16; SWAP 16 11; SWAP 8 7; SWAP 7

12; CNOT 11 12 where the two qubits meet in the middle as
in Figure 7.

The machine IBMQ Poughkeepsie and IBMQ Johannesburg
used in the evaluation by Murali et al. [21] are currently un-
available so we use similar SWAP sequences based on IBMQ
Boeblingen. We run 8192 trials for each SWAP sequence
and consider those with desired outputs to be successful. We
compare the PST of four scheduling strategies: running all
instructions serially (Seq); running all instructions maximally
in parallel (Par) which is the default strategy used by Qiskit;
the strategy produced by Murali et al. (Xtalk); and the
strategy produced by MQCC. Figure 8 shows the result.
Circuits generated by MQCC always have higher PST than
Seq and Par. They have performance similar to Xtalk.

3) Advantage of MQCC: MQCC is flexible enough to
encode Murali et al.’s crosstalk mitigation strategy, and that
flexibility extends to incorporating other methods for crosstalk
mitigation as well: e.g., transforming circuits into cross-talk
resistant forms. We demonstrate this in Figure 9.

Figure 9(a) shows two equivalent circuits. In the presence
of another CNOT gate, as shown in Figure 9(b), the first
structure may introduce much higher crosstalk than the second
one since the crosstalk between two CNOT gates is much
greater than the crosstalk between a CNOT and a single qubit
gate. One can encode choices between these equivalent forms
by MQCC choice variables, which will then automatically
determine which one to use toward meeting its goal. We will
explain the details of this idea and evaluate it in Section V-D.

C. Cost-Effective Circuit Uncomputation

When compiling large hierarchy quantum programs into
low-level circuits, compilers need to deal with the target

Benchmark over  SWAP circuits connecting a-b on IBM Boeblingen

Competing Goals:  
 Circuit Depth 

(decoherence) vs 
Cross-Talk 

Benchmark Test:   


CNOT 15 8 =  SWAP 15 16; SWAP 16 11; SWAP 8 7l SWAP 7 12; CNOT 11 12


Execute 8192 trials on IBMQ Boeblingen for SWAP circuits connecting a-b 

an SMT instance that encodes the crosstalk along with other
constraints based on features of each gate.

1) Solution of MQCC: We encode possible gate schedules
via choice variables in a MQCC meta-program. We make
use of the OpenQASM barrier operation described in
Section II-B, which is also used in Murali et al. [21]. For
example, consider the following module for each CNOT gate:

1 module cnotb(c,q1,q2){

2 choice (c){

3 0: cnot(q1,q2);

4 1: barrier(q1,q2);

5 cnot(q1,q2);

6 } }

When c = 0, it is applied normally (maximum parallel);
otherwise, it is executed sequentially only after previous gates
on q1,q2 are finished (i.e., barrier(q1,q2)).

Our goal is to minimize both decoherence error and
crosstalk. We define attributes Crosstalk and Decoherence
which take into account the expected appearance of the
barrier operations in the meta-program. The definition of the
Crosstalk attribute is the following.

Attribute Crosstalk

T: dep : Map of Reg ! N
rep : Map of N ! Set of (str ⇥ ��!

Reg)
empty ():= init s:T, s.dep = ;, s.rep = ;

return s

value (s : T):= return calCross(rep)

op (s : T, opID : str, exps :
�!R, regs :

��!
Reg):=

if opId == "barrier" :

cur = max s.dep.values

for i2regs: s.dep.update(i, cur)

else:

share = s.dep.keys \ regs

next = max {s.dep[i] | i 2 share} + 1

s.rep[next].insert( (OpID, regs) )

for i2regs: s.dep.update(i, next)

return s

case (s : T, group : Vector of T):=

all =

S
n.dep.keys, n2group

s.dep = {(k, max {n.dep[k]|n2group})| k2all}
s.rep = {(k,

S
n2group n.rep[k]) |9u 2 group, k2 u}

return s

With rep, we know which gates are executed simultaneously
(in the same layer) and use function calCross to calculate the
program’s crosstalk according to the hardware information.
The op method, when meeting a barrier operation, updates
the depth of registers specified by barrier in dep to the
current depth of the program. Thus, future operations applied
on these registers will run in layers following the barrier

statement. For other operations, op updates dep in the same
way as in Depth and inserts this operation into rep.

The probability of decoherence error can be calculated as
1� e�↵d where ↵ is some constant and d is the circuit depth.
So the design of Decoherence is almost the same as Crosstalk
except that Decoherence returns 1� e�↵d where d=dep.keys
in the value method.

2) Evaluation: We follows Murali et al.’s evaluation
methodology [21]. In particular, we use the same meet-in-the-
middle SWAP sequences as benchmarks. In superconducting
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Fig. 8: The measured PST for SWAP circuits on IBMQ
Boeblingen using the four schedulers. Higher PST is better.
a-b refers a SWAP circuit connecting qubit a and b.

QC systems, CNOTs are permitted only between adjacent
qubits. To apply a CNOT between two far-away qubits,
compilers usually insert a sequence of SWAP operations that
move two qubits into adjacent locations through exchanges.
For example, in IBMQ Boeblingen, CNOT 15 8 can be im-
plemented as SWAP 15 16; SWAP 16 11; SWAP 8 7; SWAP 7

12; CNOT 11 12 where the two qubits meet in the middle as
in Figure 7.

The machine IBMQ Poughkeepsie and IBMQ Johannesburg
used in the evaluation by Murali et al. [21] are currently un-
available so we use similar SWAP sequences based on IBMQ
Boeblingen. We run 8192 trials for each SWAP sequence
and consider those with desired outputs to be successful. We
compare the PST of four scheduling strategies: running all
instructions serially (Seq); running all instructions maximally
in parallel (Par) which is the default strategy used by Qiskit;
the strategy produced by Murali et al. (Xtalk); and the
strategy produced by MQCC. Figure 8 shows the result.
Circuits generated by MQCC always have higher PST than
Seq and Par. They have performance similar to Xtalk.

3) Advantage of MQCC: MQCC is flexible enough to
encode Murali et al.’s crosstalk mitigation strategy, and that
flexibility extends to incorporating other methods for crosstalk
mitigation as well: e.g., transforming circuits into cross-talk
resistant forms. We demonstrate this in Figure 9.

Figure 9(a) shows two equivalent circuits. In the presence
of another CNOT gate, as shown in Figure 9(b), the first
structure may introduce much higher crosstalk than the second
one since the crosstalk between two CNOT gates is much
greater than the crosstalk between a CNOT and a single qubit
gate. One can encode choices between these equivalent forms
by MQCC choice variables, which will then automatically
determine which one to use toward meeting its goal. We will
explain the details of this idea and evaluate it in Section V-D.

C. Cost-Effective Circuit Uncomputation

When compiling large hierarchy quantum programs into
low-level circuits, compilers need to deal with the target

use “barrier” to control the order of the gates

an SMT instance that encodes the crosstalk along with other
constraints based on features of each gate.

1) Solution of MQCC: We encode possible gate schedules
via choice variables in a MQCC meta-program. We make
use of the OpenQASM barrier operation described in
Section II-B, which is also used in Murali et al. [21]. For
example, consider the following module for each CNOT gate:

1 module cnotb(c,q1,q2){

2 choice (c){

3 0: cnot(q1,q2);

4 1: barrier(q1,q2);

5 cnot(q1,q2);

6 } }

When c = 0, it is applied normally (maximum parallel);
otherwise, it is executed sequentially only after previous gates
on q1,q2 are finished (i.e., barrier(q1,q2)).

Our goal is to minimize both decoherence error and
crosstalk. We define attributes Crosstalk and Decoherence
which take into account the expected appearance of the
barrier operations in the meta-program. The definition of the
Crosstalk attribute is the following.

Attribute Crosstalk

T: dep : Map of Reg ! N
rep : Map of N ! Set of (str ⇥ ��!

Reg)
empty ():= init s:T, s.dep = ;, s.rep = ;

return s

value (s : T):= return calCross(rep)

op (s : T, opID : str, exps :
�!R, regs :

��!
Reg):=

if opId == "barrier" :

cur = max s.dep.values

for i2regs: s.dep.update(i, cur)

else:

share = s.dep.keys \ regs

next = max {s.dep[i] | i 2 share} + 1

s.rep[next].insert( (OpID, regs) )

for i2regs: s.dep.update(i, next)

return s

case (s : T, group : Vector of T):=

all =

S
n.dep.keys, n2group

s.dep = {(k, max {n.dep[k]|n2group})| k2all}
s.rep = {(k,

S
n2group n.rep[k]) |9u 2 group, k2 u}

return s

With rep, we know which gates are executed simultaneously
(in the same layer) and use function calCross to calculate the
program’s crosstalk according to the hardware information.
The op method, when meeting a barrier operation, updates
the depth of registers specified by barrier in dep to the
current depth of the program. Thus, future operations applied
on these registers will run in layers following the barrier

statement. For other operations, op updates dep in the same
way as in Depth and inserts this operation into rep.

The probability of decoherence error can be calculated as
1� e�↵d where ↵ is some constant and d is the circuit depth.
So the design of Decoherence is almost the same as Crosstalk
except that Decoherence returns 1� e�↵d where d=dep.keys
in the value method.

2) Evaluation: We follows Murali et al.’s evaluation
methodology [21]. In particular, we use the same meet-in-the-
middle SWAP sequences as benchmarks. In superconducting
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Fig. 8: The measured PST for SWAP circuits on IBMQ
Boeblingen using the four schedulers. Higher PST is better.
a-b refers a SWAP circuit connecting qubit a and b.

QC systems, CNOTs are permitted only between adjacent
qubits. To apply a CNOT between two far-away qubits,
compilers usually insert a sequence of SWAP operations that
move two qubits into adjacent locations through exchanges.
For example, in IBMQ Boeblingen, CNOT 15 8 can be im-
plemented as SWAP 15 16; SWAP 16 11; SWAP 8 7; SWAP 7

12; CNOT 11 12 where the two qubits meet in the middle as
in Figure 7.

The machine IBMQ Poughkeepsie and IBMQ Johannesburg
used in the evaluation by Murali et al. [21] are currently un-
available so we use similar SWAP sequences based on IBMQ
Boeblingen. We run 8192 trials for each SWAP sequence
and consider those with desired outputs to be successful. We
compare the PST of four scheduling strategies: running all
instructions serially (Seq); running all instructions maximally
in parallel (Par) which is the default strategy used by Qiskit;
the strategy produced by Murali et al. (Xtalk); and the
strategy produced by MQCC. Figure 8 shows the result.
Circuits generated by MQCC always have higher PST than
Seq and Par. They have performance similar to Xtalk.

3) Advantage of MQCC: MQCC is flexible enough to
encode Murali et al.’s crosstalk mitigation strategy, and that
flexibility extends to incorporating other methods for crosstalk
mitigation as well: e.g., transforming circuits into cross-talk
resistant forms. We demonstrate this in Figure 9.

Figure 9(a) shows two equivalent circuits. In the presence
of another CNOT gate, as shown in Figure 9(b), the first
structure may introduce much higher crosstalk than the second
one since the crosstalk between two CNOT gates is much
greater than the crosstalk between a CNOT and a single qubit
gate. One can encode choices between these equivalent forms
by MQCC choice variables, which will then automatically
determine which one to use toward meeting its goal. We will
explain the details of this idea and evaluate it in Section V-D.

C. Cost-Effective Circuit Uncomputation

When compiling large hierarchy quantum programs into
low-level circuits, compilers need to deal with the target

an SMT instance that encodes the crosstalk along with other
constraints based on features of each gate.

1) Solution of MQCC: We encode possible gate schedules
via choice variables in a MQCC meta-program. We make
use of the OpenQASM barrier operation described in
Section II-B, which is also used in Murali et al. [21]. For
example, consider the following module for each CNOT gate:

1 module cnotb(c,q1,q2){

2 choice (c){

3 0: cnot(q1,q2);

4 1: barrier(q1,q2);

5 cnot(q1,q2);

6 } }

When c = 0, it is applied normally (maximum parallel);
otherwise, it is executed sequentially only after previous gates
on q1,q2 are finished (i.e., barrier(q1,q2)).

Our goal is to minimize both decoherence error and
crosstalk. We define attributes Crosstalk and Decoherence
which take into account the expected appearance of the
barrier operations in the meta-program. The definition of the
Crosstalk attribute is the following.

Attribute Crosstalk

T: dep : Map of Reg ! N
rep : Map of N ! Set of (str ⇥ ��!

Reg)
empty ():= init s:T, s.dep = ;, s.rep = ;

return s

value (s : T):= return calCross(rep)

op (s : T, opID : str, exps :
�!R, regs :

��!
Reg):=

if opId == "barrier" :

cur = max s.dep.values

for i2regs: s.dep.update(i, cur)

else:

share = s.dep.keys \ regs

next = max {s.dep[i] | i 2 share} + 1

s.rep[next].insert( (OpID, regs) )

for i2regs: s.dep.update(i, next)

return s

case (s : T, group : Vector of T):=

all =

S
n.dep.keys, n2group

s.dep = {(k, max {n.dep[k]|n2group})| k2all}
s.rep = {(k,

S
n2group n.rep[k]) |9u 2 group, k2 u}

return s

With rep, we know which gates are executed simultaneously
(in the same layer) and use function calCross to calculate the
program’s crosstalk according to the hardware information.
The op method, when meeting a barrier operation, updates
the depth of registers specified by barrier in dep to the
current depth of the program. Thus, future operations applied
on these registers will run in layers following the barrier

statement. For other operations, op updates dep in the same
way as in Depth and inserts this operation into rep.

The probability of decoherence error can be calculated as
1� e�↵d where ↵ is some constant and d is the circuit depth.
So the design of Decoherence is almost the same as Crosstalk
except that Decoherence returns 1� e�↵d where d=dep.keys
in the value method.

2) Evaluation: We follows Murali et al.’s evaluation
methodology [21]. In particular, we use the same meet-in-the-
middle SWAP sequences as benchmarks. In superconducting
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Fig. 8: The measured PST for SWAP circuits on IBMQ
Boeblingen using the four schedulers. Higher PST is better.
a-b refers a SWAP circuit connecting qubit a and b.

QC systems, CNOTs are permitted only between adjacent
qubits. To apply a CNOT between two far-away qubits,
compilers usually insert a sequence of SWAP operations that
move two qubits into adjacent locations through exchanges.
For example, in IBMQ Boeblingen, CNOT 15 8 can be im-
plemented as SWAP 15 16; SWAP 16 11; SWAP 8 7; SWAP 7

12; CNOT 11 12 where the two qubits meet in the middle as
in Figure 7.

The machine IBMQ Poughkeepsie and IBMQ Johannesburg
used in the evaluation by Murali et al. [21] are currently un-
available so we use similar SWAP sequences based on IBMQ
Boeblingen. We run 8192 trials for each SWAP sequence
and consider those with desired outputs to be successful. We
compare the PST of four scheduling strategies: running all
instructions serially (Seq); running all instructions maximally
in parallel (Par) which is the default strategy used by Qiskit;
the strategy produced by Murali et al. (Xtalk); and the
strategy produced by MQCC. Figure 8 shows the result.
Circuits generated by MQCC always have higher PST than
Seq and Par. They have performance similar to Xtalk.

3) Advantage of MQCC: MQCC is flexible enough to
encode Murali et al.’s crosstalk mitigation strategy, and that
flexibility extends to incorporating other methods for crosstalk
mitigation as well: e.g., transforming circuits into cross-talk
resistant forms. We demonstrate this in Figure 9.

Figure 9(a) shows two equivalent circuits. In the presence
of another CNOT gate, as shown in Figure 9(b), the first
structure may introduce much higher crosstalk than the second
one since the crosstalk between two CNOT gates is much
greater than the crosstalk between a CNOT and a single qubit
gate. One can encode choices between these equivalent forms
by MQCC choice variables, which will then automatically
determine which one to use toward meeting its goal. We will
explain the details of this idea and evaluate it in Section V-D.

C. Cost-Effective Circuit Uncomputation

When compiling large hierarchy quantum programs into
low-level circuits, compilers need to deal with the target

running all instructions serially an SMT instance that encodes the crosstalk along with other
constraints based on features of each gate.

1) Solution of MQCC: We encode possible gate schedules
via choice variables in a MQCC meta-program. We make
use of the OpenQASM barrier operation described in
Section II-B, which is also used in Murali et al. [21]. For
example, consider the following module for each CNOT gate:

1 module cnotb(c,q1,q2){

2 choice (c){

3 0: cnot(q1,q2);

4 1: barrier(q1,q2);

5 cnot(q1,q2);

6 } }

When c = 0, it is applied normally (maximum parallel);
otherwise, it is executed sequentially only after previous gates
on q1,q2 are finished (i.e., barrier(q1,q2)).

Our goal is to minimize both decoherence error and
crosstalk. We define attributes Crosstalk and Decoherence
which take into account the expected appearance of the
barrier operations in the meta-program. The definition of the
Crosstalk attribute is the following.

Attribute Crosstalk

T: dep : Map of Reg ! N
rep : Map of N ! Set of (str ⇥ ��!

Reg)
empty ():= init s:T, s.dep = ;, s.rep = ;

return s

value (s : T):= return calCross(rep)

op (s : T, opID : str, exps :
�!R, regs :

��!
Reg):=

if opId == "barrier" :

cur = max s.dep.values

for i2regs: s.dep.update(i, cur)

else:

share = s.dep.keys \ regs

next = max {s.dep[i] | i 2 share} + 1

s.rep[next].insert( (OpID, regs) )

for i2regs: s.dep.update(i, next)

return s

case (s : T, group : Vector of T):=

all =

S
n.dep.keys, n2group

s.dep = {(k, max {n.dep[k]|n2group})| k2all}
s.rep = {(k,

S
n2group n.rep[k]) |9u 2 group, k2 u}

return s

With rep, we know which gates are executed simultaneously
(in the same layer) and use function calCross to calculate the
program’s crosstalk according to the hardware information.
The op method, when meeting a barrier operation, updates
the depth of registers specified by barrier in dep to the
current depth of the program. Thus, future operations applied
on these registers will run in layers following the barrier

statement. For other operations, op updates dep in the same
way as in Depth and inserts this operation into rep.

The probability of decoherence error can be calculated as
1� e�↵d where ↵ is some constant and d is the circuit depth.
So the design of Decoherence is almost the same as Crosstalk
except that Decoherence returns 1� e�↵d where d=dep.keys
in the value method.

2) Evaluation: We follows Murali et al.’s evaluation
methodology [21]. In particular, we use the same meet-in-the-
middle SWAP sequences as benchmarks. In superconducting
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Fig. 8: The measured PST for SWAP circuits on IBMQ
Boeblingen using the four schedulers. Higher PST is better.
a-b refers a SWAP circuit connecting qubit a and b.

QC systems, CNOTs are permitted only between adjacent
qubits. To apply a CNOT between two far-away qubits,
compilers usually insert a sequence of SWAP operations that
move two qubits into adjacent locations through exchanges.
For example, in IBMQ Boeblingen, CNOT 15 8 can be im-
plemented as SWAP 15 16; SWAP 16 11; SWAP 8 7; SWAP 7

12; CNOT 11 12 where the two qubits meet in the middle as
in Figure 7.

The machine IBMQ Poughkeepsie and IBMQ Johannesburg
used in the evaluation by Murali et al. [21] are currently un-
available so we use similar SWAP sequences based on IBMQ
Boeblingen. We run 8192 trials for each SWAP sequence
and consider those with desired outputs to be successful. We
compare the PST of four scheduling strategies: running all
instructions serially (Seq); running all instructions maximally
in parallel (Par) which is the default strategy used by Qiskit;
the strategy produced by Murali et al. (Xtalk); and the
strategy produced by MQCC. Figure 8 shows the result.
Circuits generated by MQCC always have higher PST than
Seq and Par. They have performance similar to Xtalk.

3) Advantage of MQCC: MQCC is flexible enough to
encode Murali et al.’s crosstalk mitigation strategy, and that
flexibility extends to incorporating other methods for crosstalk
mitigation as well: e.g., transforming circuits into cross-talk
resistant forms. We demonstrate this in Figure 9.

Figure 9(a) shows two equivalent circuits. In the presence
of another CNOT gate, as shown in Figure 9(b), the first
structure may introduce much higher crosstalk than the second
one since the crosstalk between two CNOT gates is much
greater than the crosstalk between a CNOT and a single qubit
gate. One can encode choices between these equivalent forms
by MQCC choice variables, which will then automatically
determine which one to use toward meeting its goal. We will
explain the details of this idea and evaluate it in Section V-D.

C. Cost-Effective Circuit Uncomputation

When compiling large hierarchy quantum programs into
low-level circuits, compilers need to deal with the target

maximize the parallel execution, default in Qiskit



Case Study:  Multi-Programming + Cross-Talk
Benchmark Discription Qubits Number of Gates

bv3 Bernstein-Vazirani 3 8
bv4 Bernstein-Vazirani 4 11
h3 Hamiltonian Simulation 3 11
h4 Hamiltonian Simulation 4 15

TABLE III: Benchmarks for multi-programming
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(a) Probability of Successful Trial. Here higher PST is
better.
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(b) Circuit Depth. Here lower circuit depth is better.

Fig. 12: Evaluation of Multi-Programming with Crosstalk
Mitigation. A-B (or A-B-C) is defined similarly as in Figure 6.

depth among three scheduling strategies: running benchmarks
in serial (seq), multi-programmed by MQCC without consid-
ering crosstalk (multi-p), and when considering crosstalk
(multi-c). As shown in Fig. 12, workloads scheduled by
multi-p and multi-c have lower circuit depth than seq.
However, the PST of multi-p is lower than both seq and
multi-c because of high crosstalk,3 where the difference is
more significant when multi-programming more applications.
In contrast, multi-c could always maintain a comparable
PST to seq while reducing the circuit depth significantly.

VI. RELATED WORK

Fast but error-prone chips in classical computation inspired
the development of frameworks to trade correctness for per-

3There is one exception with the case of bv3-bv4 and it might be caused
by the fluctuation of the quantum machine.

formance. Carbin et al. [6] proposed Rely to handle reliability
specifications and analysis. Users of Rely can specify the
quantitative reliability of each component, and the compiler
automatically reasons whether the program is reliable enough.
Misailovic et al. [18] made one step further with Chisel,
automatically optimizing the tradeoff between reliability and
accuracy via integer linear programs. MQCC is inspired by
Chisel, in light of its ability to select instructions based on
resource consumption. Errors in quantum computing emerge
naturally since quantum operations are inherently noisy. Hung
et al. [16] proposed a logic of quantum robustness to analyze
the noise accumulation in quantum programs.

The optimized quantities in these works—reliability, noise,
resource, etc.—are additive attributes, in our terminology. For
our applications, we also crucially rely on the flexibility of
general attributes provided by MQCC.

SMT solvers are widely used in programming language
and architecture designs, e.g., as the basis for automation in
program verification [12], [26], and specification-based pro-
gram synthesis [15], [25], [27]. The solver-aided host language
Rosette [30], [31] has been designed to ease the construction of
solver-aided domain specific languages. Powerful SMT solvers
have also been employed to design NISQ applications. In
addition to the crosstalk example [21], one can also model
the qubit mapping and gate scheduling problems as SMT
instances [19], [20]. MQCC provides a flexible framework that
leverages SMT solvers to automate NISQ designs.
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We present MQCC, a meta-programming framework, to as-
sist NISQ application designers to identify the best balance of
trade-offs among heterogeneous factors specific to the targeted
application and quantum hardware in an automatic way. We
also demonstrate MQCC’s expressiveness through an extensive
case study, where we showcase MQCC programs implement-
ing ideas from previous examples of NISQ application design,
such as multi-programming, crosstalk mitigation, and cost-
effective uncomputation, as well as their combination, which
produce comparable results and exhibit certain advantages.

MQCC constitutes the first step toward a fully automatic
design framework for NISQ applications. Ideally, it would be
desirable to have a front end, which might be application-
specific, that takes the developers’ code and trade-off spec-
ification as inputs and generates the corresponding MQCC
programs automatically. It would also be highly desirable to
incorporate more expression optimization and improve the
overall efficiency of MQCC framework, so that MQCC can
handle more complex attributes in an affordable way.
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Optimizing Goal:  
  Noise + Decoherence + Crosstalk          

 Sequential: always high-quality qubits. 

                    but larger depth (decoherence)

Multi-programs without considering crosstalk

          short depth, but large crosstalk errors

EASY implementation in MQCC

Multi-programs with crosstalk

          short depth and large successful probability

All experiments performed on IBMQ machines

(a)
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Fig. 9: (a) Two equivalent circuit structures. (b) Different struc-
tures may introduce different crosstalk due to the contextual
circuit.

machine’s size constraints (limited number of qubits) and time
constraints (limited circuit depth). Reusing ancilla qubits (used
for temporary storage) requires uncomputing them first, due to
quantum mechanics’ no cloning rule. Eagerly uncomputing an-
cilla qubits as soon as they are no longer needed can minimize
the total number of qubits used in the circuit. However, each
uncomputation adds more gates, which increases the circuit’s
depth. Uncomputation thus represents a space-time tradeoff:
Delay uncomputation to reduce time consumption at the cost
of qubit memory consumption, or do the reverse.

A few different strategies have been proposed to address
this tradeoff. Parent et al. [22] consider two basic strategies:
“Eager” cleanup and “Lazy” cleanup. The eager strategy
performs uncomputation and reclaims ancilla qubits for each
function The lazy strategy reclaims qubits only at the top-level
function. Ding et al. [10] propose SQUARE, a compilation
infrastructure that tackles allocation and reclamation of ancilla
qubits at the same time. SQUARE makes uncomputation de-
cisions for each function with a heuristic cost-benefit analysis.
At each potential reclamation point, SQUARE estimates and
compares two quantities: the cost of no uncomputation as
C0, and the cost of uncomputation denoted as C1, where
both quantities involve a lot of factors and heuristics. As an
important metric behind these calculations, Ding et al. [10]
propose the Active Quantum Volume (AQV) as the active
variant of IBM’s Quantum Volume [4] to accurately estimate
the workload of a program.

1) Solution of MQCC: We demonstrate how to use
MQCC to implement basic ideas behind the cost-effective
uncomputation part of SQUARE [10]. In particular, we use
choice variables in MQCC to encode the uncomputation
strategies. We design attribute AQV to estimate the
corresponding workload for each valuation of choice
variables. Each function in the MQCC program is written
as a module with an input choice variable c 2 {0, 1},
where reclaimed ancilla qubits are declared by the release

operation, and hence no longer active.

1 module foo(c,...){

2 ...

3 choice (c) {

4 0: pass \\No uncomputation

5 1: uncomputation code; \\Do uncomputation

6 release(ancillas);

7 }

8 }

For any top-level function calling several sub-routines, its un-
computation can be decided by a limited choice variable which
will logically depend on the sub-routines’ choice variables. For
example, if all of its sub-routines decide to do uncomputation,
there is no need for the top-level function to do uncomputation.
This logical dependence can be captured by ct=1-c1*c2: when
all the sub-routines decide to do uncomputation(c1=c2=1), the
top-level function won’t do uncomputation as determined by
ct=1-c1*c2=0.

1 fcho c1,c2 = {0,1};

2 lcho ct = 1 - c1*c2;

3

4 foo1(c1,...);

5 foo2(c2,...);

6 choice (ct) {

7 0: pass \\No uncomputation

8 1: uncompute code \\Do uncomputation

9 }

AQV is defined as the total active time for which each qubit
is used in the circuit. A qubit is active if it is not |0i. AQV’s
attribute definition is similar to that of Depth except that it
uses an additional set to store the active qubits. In the presence
of the release operation, it will remove those released qubits
from the active set and calculate their active time. The total
AQV of the program is the accumulation of active qubits’
active time and released qubits’ active time. MQCC is then
used to generate uncomputation strategies with minimized
AQV.

2) Evaluation: Since we only recover part of SQUARE’s
functionality, we cannot directly compare our result with
SQUARE.2 Instead, we compare the MQCC solution with the
Eager and Lazy strategies, directly based on the measure of
AQV and the total variation distance by using IBM Qiskit

Aer noise simulator. Moreover, we make use of exactly the
same benchmarks used in Ding et al. [10], which are reversible
arithmetic functions, and applications that use ancilla qubits;
see Table II. Note that the above setup puts our evaluation in
almost the same setting as Ding et al.’s [10] evaluation except
we replace SQUARE by MQCC.

Our evaluation result is presented in Figure 10, where we
can clearly see the advantage of MQCC, which is qualitatively
comparable to the one in SQUARE’s evaluation [10]. In
particular, circuits generated by MQCC have the least AQV
in all benchmarks while maintaining high fidelity.

3) Advantage of MQCC: Identifying the best uncompu-
tation point for each function is a hard problem due to its
inherent high complexity. One option to reduce the problem

2We are also unable to access SQUARE’s source code.

More Optimization w/ MQCC



Case Study:  Cost-Effective Uncomputation

Name Discription Gate
Number Qubits

2of5 Output is 1 if number of 1s in its
input equals two. 1528 8

6sym Function with 6 inputs and 1 output. 1620 11

rd53 Input weight function with 5 inputs
and 3 outputs. 1849 10

adder4 4-bit in-place controlled-addition. 1748 12

elsa Heavy workload and shallowly
nested synthetic function. 256 14

jasmine Shallowly nested synthetic function. 604 11

belle Light workload and deeply nested
synthetic function. 768 9

TABLE II: Benchmark Programs for Section V-C.
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Fig. 10: Evaluation of Circuit Uncomputation by MQCC.

complexity is to provide heuristics about the potential relation
between uncomputation choices for different functions. As we
demonstrated, MQCC allows easy implementation of these
heuristics with limited choice variables. One can also readily
add many other heuristics with MQCC. Another simple ex-
ample could be the case of functions A,B without overlapping
qubits and of comparable circuit structures. In this case,
whenever A decides to uncompute, it also make senses to
uncompute B as it won’t increase the circuit depth but will
reclaim ancilla qubits. Thus, one can simply use the same
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Fig. 11: (a) Equivalent Circuits; (b) 3-qubit BV circuit.

choice variable to encode the uncomputation choice for both.

D. Multi-programming with Crosstalk Mitigation

In this section, we combine problems from Section V-A
and Section V-B to show MQCC’s ability to handle multiple
optimization tradeoffs simultaneously.

1) Motivation: Crosstalk corrupts quantum states when
multiple gates are executed simultaneously. This phenomenon
could be especially significant when multiple applications
are executed in parallel (i.e., multi-programming). Thus, it is
highly desirable to take the effect of crosstalk into considera-
tion in the context of multi-programming.

2) Solution of MQCC: Combining these two optimization
goals can be readily implemented in MQCC, by basically
reusing attribute Noise, Crosstalk and Depth as defined pre-
viously. Our goal is to minimize Depth while maintaining the
total error Crosstalk + Noise instead of Noise only.

Following the discussion at the end of Section V-B, let us
consider equivalent circuit structures as shown in Figure 11(a),
the choice of which can be encoded by the following MQCC:

1 module twoCnot(c,q1,q2,q3){

2 choice (c){

3 0: cnot(q1,q3); cnot(q2,q3);

4 1: cnot(q2,q3); cnot(q1,q3);

5 }

6 }

This circuit is a common part of many quantum applications
such as Bernstein-Vazirani algorithm (BV) (Figure 11(b)) and
Hamiltonian Simulation (HS). For example, the 3-qubit BV
circuit in Figure 11(b) can be coded as

1 module BV3(c,q1,q2,q3){

2 h(q1,q2,q3);

3 twoCnot(c,q1,q2,q3);

4 h(q1,q2,q3);

5 }

One can similarly code other applications involving Fig-
ure 11(a) with MQCC. We will then reuse the MQCC setup in
Section V-A to multi-program these applications. MQCC will
determine which form to use for each twoCnot in addition to
the choice variables for multi-programming.

3) Evaluation: We choose small-size instances of BV and
HS as shown in Table III for evaluation. This size-restriction
is due to the size limit of IBMQ Boebligen, on which we will
multi-program these instances.

Our evaluation setup is similar to the one for multi-
programming in Section V-A. We compare the PST and circuit
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1) Motivation: Crosstalk corrupts quantum states when
multiple gates are executed simultaneously. This phenomenon
could be especially significant when multiple applications
are executed in parallel (i.e., multi-programming). Thus, it is
highly desirable to take the effect of crosstalk into considera-
tion in the context of multi-programming.

2) Solution of MQCC: Combining these two optimization
goals can be readily implemented in MQCC, by basically
reusing attribute Noise, Crosstalk and Depth as defined pre-
viously. Our goal is to minimize Depth while maintaining the
total error Crosstalk + Noise instead of Noise only.

Following the discussion at the end of Section V-B, let us
consider equivalent circuit structures as shown in Figure 11(a),
the choice of which can be encoded by the following MQCC:

1 module twoCnot(c,q1,q2,q3){

2 choice (c){

3 0: cnot(q1,q3); cnot(q2,q3);

4 1: cnot(q2,q3); cnot(q1,q3);

5 }

6 }

This circuit is a common part of many quantum applications
such as Bernstein-Vazirani algorithm (BV) (Figure 11(b)) and
Hamiltonian Simulation (HS). For example, the 3-qubit BV
circuit in Figure 11(b) can be coded as

1 module BV3(c,q1,q2,q3){

2 h(q1,q2,q3);

3 twoCnot(c,q1,q2,q3);

4 h(q1,q2,q3);

5 }

One can similarly code other applications involving Fig-
ure 11(a) with MQCC. We will then reuse the MQCC setup in
Section V-A to multi-program these applications. MQCC will
determine which form to use for each twoCnot in addition to
the choice variables for multi-programming.

3) Evaluation: We choose small-size instances of BV and
HS as shown in Table III for evaluation. This size-restriction
is due to the size limit of IBMQ Boebligen, on which we will
multi-program these instances.

Our evaluation setup is similar to the one for multi-
programming in Section V-A. We compare the PST and circuit
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Fig. 9: (a) Two equivalent circuit structures. (b) Different struc-
tures may introduce different crosstalk due to the contextual
circuit.

machine’s size constraints (limited number of qubits) and time
constraints (limited circuit depth). Reusing ancilla qubits (used
for temporary storage) requires uncomputing them first, due to
quantum mechanics’ no cloning rule. Eagerly uncomputing an-
cilla qubits as soon as they are no longer needed can minimize
the total number of qubits used in the circuit. However, each
uncomputation adds more gates, which increases the circuit’s
depth. Uncomputation thus represents a space-time tradeoff:
Delay uncomputation to reduce time consumption at the cost
of qubit memory consumption, or do the reverse.

A few different strategies have been proposed to address
this tradeoff. Parent et al. [22] consider two basic strategies:
“Eager” cleanup and “Lazy” cleanup. The eager strategy
performs uncomputation and reclaims ancilla qubits for each
function The lazy strategy reclaims qubits only at the top-level
function. Ding et al. [10] propose SQUARE, a compilation
infrastructure that tackles allocation and reclamation of ancilla
qubits at the same time. SQUARE makes uncomputation de-
cisions for each function with a heuristic cost-benefit analysis.
At each potential reclamation point, SQUARE estimates and
compares two quantities: the cost of no uncomputation as
C0, and the cost of uncomputation denoted as C1, where
both quantities involve a lot of factors and heuristics. As an
important metric behind these calculations, Ding et al. [10]
propose the Active Quantum Volume (AQV) as the active
variant of IBM’s Quantum Volume [4] to accurately estimate
the workload of a program.

1) Solution of MQCC: We demonstrate how to use
MQCC to implement basic ideas behind the cost-effective
uncomputation part of SQUARE [10]. In particular, we use
choice variables in MQCC to encode the uncomputation
strategies. We design attribute AQV to estimate the
corresponding workload for each valuation of choice
variables. Each function in the MQCC program is written
as a module with an input choice variable c 2 {0, 1},
where reclaimed ancilla qubits are declared by the release

operation, and hence no longer active.

1 module foo(c,...){

2 ...

3 choice (c) {

4 0: pass \\No uncomputation

5 1: uncomputation code; \\Do uncomputation

6 release(ancillas);

7 }

8 }

For any top-level function calling several sub-routines, its un-
computation can be decided by a limited choice variable which
will logically depend on the sub-routines’ choice variables. For
example, if all of its sub-routines decide to do uncomputation,
there is no need for the top-level function to do uncomputation.
This logical dependence can be captured by ct=1-c1*c2: when
all the sub-routines decide to do uncomputation(c1=c2=1), the
top-level function won’t do uncomputation as determined by
ct=1-c1*c2=0.

1 fcho c1,c2 = {0,1};

2 lcho ct = 1 - c1*c2;

3

4 foo1(c1,...);

5 foo2(c2,...);

6 choice (ct) {

7 0: pass \\No uncomputation

8 1: uncompute code \\Do uncomputation

9 }

AQV is defined as the total active time for which each qubit
is used in the circuit. A qubit is active if it is not |0i. AQV’s
attribute definition is similar to that of Depth except that it
uses an additional set to store the active qubits. In the presence
of the release operation, it will remove those released qubits
from the active set and calculate their active time. The total
AQV of the program is the accumulation of active qubits’
active time and released qubits’ active time. MQCC is then
used to generate uncomputation strategies with minimized
AQV.

2) Evaluation: Since we only recover part of SQUARE’s
functionality, we cannot directly compare our result with
SQUARE.2 Instead, we compare the MQCC solution with the
Eager and Lazy strategies, directly based on the measure of
AQV and the total variation distance by using IBM Qiskit

Aer noise simulator. Moreover, we make use of exactly the
same benchmarks used in Ding et al. [10], which are reversible
arithmetic functions, and applications that use ancilla qubits;
see Table II. Note that the above setup puts our evaluation in
almost the same setting as Ding et al.’s [10] evaluation except
we replace SQUARE by MQCC.

Our evaluation result is presented in Figure 10, where we
can clearly see the advantage of MQCC, which is qualitatively
comparable to the one in SQUARE’s evaluation [10]. In
particular, circuits generated by MQCC have the least AQV
in all benchmarks while maintaining high fidelity.

3) Advantage of MQCC: Identifying the best uncompu-
tation point for each function is a hard problem due to its
inherent high complexity. One option to reduce the problem

2We are also unable to access SQUARE’s source code.
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Thank You!

MQCC:    
    -   github/sqrta/MQCC


