Improved Semidefinite Programming Hierarchy for Entanglement Testing with tools from Algebraic Geometry

Aram W. Harrow, Anand Natarajan, Xiaodi Wu

MIT Center for Theoretical Physics
IQC Colloquium, Nov 17th 2014

Entanglement Detection

Definition (Separable and Entangled States)

A bi-partitie state $\rho \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y})$ is separable if \exists dist. $\left\{p_{i}\right\}$,

$$
\rho=\sum p_{i} \sigma_{X}^{i} \otimes \sigma_{Y}^{i}, \text { s.t. } \sigma_{X}^{i} \in \mathrm{D}(\mathcal{X}), \sigma_{Y}^{i} \in \mathrm{D}(\mathcal{Y})
$$

Otherwise, ρ is entangled. Let Sep $\stackrel{\text { def }}{=}\{$ separable states $\}$.

Entanglement Detection

Definition (Separable and Entangled States)

A bi-partitie state $\rho \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y})$ is separable if \exists dist. $\left\{p_{i}\right\}$,

$$
\rho=\sum p_{i} \sigma_{X}^{i} \otimes \sigma_{Y}^{i}, \text { s.t. } \sigma_{X}^{i} \in \mathrm{D}(\mathcal{X}), \sigma_{Y}^{i} \in \mathrm{D}(\mathcal{Y})
$$

Otherwise, ρ is entangled. Let Sep $\stackrel{\text { def }}{=}\{$ separable states $\}$.

Definition (Entanglement Detection)

A KEY problem: given the description of $\rho \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y})$, decide
Either $\rho \in \operatorname{Sep}$, or ρ is far away from Sep.

Introduction

Alternative Formulation

Definition (Weak Membership)

WMem $(\epsilon,\|\cdot\|)$: for any $\rho \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y})$, decide either $\rho \in$ Sep or $\|\rho-\operatorname{Sep}\| \geq \epsilon$.

Via standard techniques in convex optimization, equivalent to
\qquad
From now on, we focus on $W O p t(M$

Alternative Formulation

Definition (Weak Membership)

WMem $(\epsilon,\|\cdot\|)$: for any $\rho \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y})$, decide either $\rho \in$ Sep or $\|\rho-\operatorname{Sep}\| \geq \epsilon$.

Via standard techniques in convex optimization, equivalent to

Definition (Weak Optimization)

$\operatorname{WOpt}(M, \epsilon):$ for any $M \in \operatorname{Herm}(\mathcal{X} \otimes \mathcal{Y})$, estimate the value of

$$
\max _{\rho \in \operatorname{Sep}}\langle M, \rho\rangle,
$$

with additive error ϵ.
From now on, we focus on

Alternative Formulation

Definition (Weak Membership)

WMem $(\epsilon,\|\cdot\|)$: for any $\rho \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y})$, decide either $\rho \in$ Sep or $\|\rho-\operatorname{Sep}\| \geq \epsilon$.

Via standard techniques in convex optimization, equivalent to

Definition (Weak Optimization)

$\operatorname{WOpt}(M, \epsilon)$: for any $M \in \operatorname{Herm}(\mathcal{X} \otimes \mathcal{Y})$, estimate the value of

$$
\max _{\rho \in \operatorname{Sep}}\langle M, \rho\rangle,
$$

with additive error ϵ.
From now on, we focus on $\operatorname{WOpt}(M, \epsilon)$.

Connections

Quantum Information:

- Ground energy that is achieved by non-entangled states.

Connections

Quantum Information:

- Ground energy that is achieved by non-entangled states.
- Mean-field approximation in statistical quantum mechanics.

Connections

Quantum Information:

- Ground energy that is achieved by non-entangled states.
- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.

Connections

Quantum Information:

- Ground energy that is achieved by non-entangled states.
- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- 17 more examples in quantum information in [HM10].

Quantum Complexity:

- Quantum Merlin-Arthur Game with Two-Provers (QMA(2))

Classical Comnlexity
Unique Game Conjecture and Small-set Expansion.

Connections

Quantum Information:

- Ground energy that is achieved by non-entangled states.
- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- 17 more examples in quantum information in [HM10].

Quantum Complexity:

- Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:
Unique Game Conjecture and Small-set Expansion.

Connections

Quantum Information:

- Ground energy that is achieved by non-entangled states.
- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- 17 more examples in quantum information in [HM10].

Quantum Complexity:

- Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:

- Unique Game Conjecture and Small-set Expansion. ($\ell_{2} \rightarrow \ell_{4}$ norm)

Early Attempts

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{y}}=\rho$? [PH]

Early Attempts

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{\mathcal{Y}}}=\rho$? [PH]
- Reduction Criterions: $I_{\mathcal{X}} \otimes \rho_{Y} \geq \rho$? [HH]

Early Attempts

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{\mathcal{Y}}}=\rho$? [PH]
- Reduction Criterions: $I_{\mathcal{X}} \otimes \rho_{Y} \geq \rho$? [HH]
-

Early Attempts

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T y}=\rho$? [PH]
- Reduction Criterions: $I_{\mathcal{X}} \otimes \rho_{Y} \geq \rho$? [HH]
-
- FAILURE: any such test has arbitrarily large error. [BS]

Early Attempts

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{y}}=\rho$? [PH]
- Reduction Criterions: $I_{\mathcal{X}} \otimes \rho_{Y} \geq \rho$? [HH]
-
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

- ρ is k-extendible if \exists symmetric $\sigma \in \mathrm{D}\left(\mathcal{X} \otimes \mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}\right)$, $\forall i, \rho=\sigma_{X Y_{i}}$.

Early Attempts

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_{y}}=\rho$? [PH]
- Reduction Criterions: $I_{\mathcal{X}} \otimes \rho_{Y} \geq \rho$? [HH]
-
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

- ρ is k-extendible if \exists symmetric $\sigma \in \mathrm{D}\left(\mathcal{X} \otimes \mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}\right)$, $\forall i, \rho=\sigma_{X Y_{i}}$.
- $\rho \in$ Sep if and only if ρ is k-extendible for any $k \geq 0$.

Early Attempts

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T \mathcal{Y}}=\rho$? [PH]
- Reduction Criterions: $I_{\mathcal{X}} \otimes \rho_{Y} \geq \rho$? [HH]
-
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

- ρ is k-extendible if \exists symmetric $\sigma \in \mathrm{D}\left(\mathcal{X} \otimes \mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}\right)$, $\forall i, \rho=\sigma_{X Y_{i}}$.
- $\rho \in$ Sep if and only if ρ is k-extendible for any $k \geq 0$.
- Semidefinite program (SDP): size exponential in k.

Hardness

Let $h_{\mathrm{Sep}(n)}(M)$ denote the value of

$$
\max \langle\mathbf{M}, \rho\rangle \text { s.t. } \rho \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y}) \text { is separable, }
$$

where n refers to the dimension of $\mathcal{X} \otimes \mathcal{Y}$.

Hardness

Let $h_{\operatorname{Sep}(n)}(M)$ denote the value of

$$
\max \langle\mathbf{M}, \rho\rangle \text { s.t. } \rho \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y}) \text { is separable, }
$$

where n refers to the dimension of $\mathcal{X} \otimes \mathcal{Y}$.

Hardness

- NP-hard to approximate $h_{\text {Sep }(n)}(M)$ with additive error $\epsilon=1 / p o l y(n)$. [Gur03,loa07,Gha10], [deK08, LQNY09].

Hardness

Let $h_{\operatorname{Sep}(n)}(M)$ denote the value of

$$
\max \langle\mathbf{M}, \rho\rangle \text { s.t. } \rho \in \mathrm{D}(\mathcal{X} \otimes \mathcal{Y}) \text { is separable, }
$$

where n refers to the dimension of $\mathcal{X} \otimes \mathcal{Y}$.

Hardness

- NP-hard to approximate $h_{\text {Sep }(n)}(M)$ with additive error $\epsilon=1 / p o l y(n)$. [Gur03,loa07,Gha10], [deK08, LQNY09].
- Assuming Exponential Time Hypothesis (ETH), for constant ϵ, approximate $h_{\text {Sep }(n)}(M)$ needs $n^{\Omega(\log (n))}$ time. via the connection to $\mathrm{QMA}(2)$. $[\mathrm{HM}, \mathrm{AB}+]$

Upper bounds

When $\epsilon=1 / \operatorname{poly}(n)$

- DPS to $O(n / \sqrt{\epsilon})$ level: $\operatorname{time}(n / \sqrt{\epsilon})^{O(n)} \rightarrow n^{O(n)}$. [NOP]

Upper bounds

When $\epsilon=1 / \operatorname{poly}(n)$

- DPS to $O(n / \sqrt{\epsilon})$ level: time $(n / \sqrt{\epsilon})^{O(n)} \rightarrow n^{O(n)}$. [NOP]
- Epsilon-net (brute-force): time $(1 / \epsilon)^{O(n)} \rightarrow n^{O(n)}$.

Upper bounds

When $\epsilon=1 / \operatorname{poly}(n)$

- DPS to $O(n / \sqrt{\epsilon})$ level: time $(n / \sqrt{\epsilon})^{O(n)} \rightarrow n^{O(n)}$. [NOP]
- Epsilon-net (brute-force): time $(1 / \epsilon)^{O(n)} \rightarrow n^{O(n)}$.

Upper bounds

When $\epsilon=1 / \operatorname{poly}(n)$

- DPS to $O(n / \sqrt{\epsilon})$ level: time $(n / \sqrt{\epsilon})^{O(n)} \rightarrow n^{O(n)}$. [NOP]
- Epsilon-net (brute-force): time $(1 / \epsilon)^{O(n)} \rightarrow n^{O(n)}$.

When $\epsilon=$ const

- DPS to $O\left(\log (n) / \epsilon^{2}\right)$ level for 1-LOCC M : time $n^{O\left(\log (n) / \epsilon^{2}\right)} \rightarrow n^{O(\log (n))}$. [BYC, BH]

Upper bounds

When $\epsilon=1 / \operatorname{poly}(n)$

- DPS to $O(n / \sqrt{\epsilon})$ level: time $(n / \sqrt{\epsilon})^{O(n)} \rightarrow n^{O(n)}$. [NOP]
- Epsilon-net (brute-force): time $(1 / \epsilon)^{O(n)} \rightarrow n^{O(n)}$.

When $\epsilon=$ const

- DPS to $O\left(\log (n) / \epsilon^{2}\right)$ level for 1-LOCC M : time $n^{O\left(\log (n) / \epsilon^{2}\right)} \rightarrow n^{O(\log (n))}$. [BYC, BH]
- Epsilon-net for 1-LOCC M or M with small $\|M\|_{\text {F }}$: time similar to above. [SW, BH]

REMARK: all DPS results correspond to variants of quantum

Upper bounds

When $\epsilon=1 / \operatorname{poly}(n)$

- DPS to $O(n / \sqrt{\epsilon})$ level: time $(n / \sqrt{\epsilon})^{O(n)} \rightarrow n^{O(n)}$. [NOP]
- Epsilon-net (brute-force): time $(1 / \epsilon)^{O(n)} \rightarrow n^{O(n)}$.

When $\epsilon=$ const

- DPS to $O\left(\log (n) / \epsilon^{2}\right)$ level for 1-LOCC M : time $n^{O\left(\log (n) / \epsilon^{2}\right)} \rightarrow n^{O(\log (n))}$. [BYC, BH]
- Epsilon-net for 1-LOCC M or M with small $\|M\|_{\text {F }}$: time similar to above. [SW, BH]

REMARK: all DPS results correspond to variants of quantum

Upper bounds

When $\epsilon=1 / \operatorname{poly}(n)$

- DPS to $O(n / \sqrt{\epsilon})$ level: time $(n / \sqrt{\epsilon})^{O(n)} \rightarrow n^{O(n)}$. [NOP]
- Epsilon-net (brute-force): time $(1 / \epsilon)^{O(n)} \rightarrow n^{O(n)}$.

When $\epsilon=$ const

- DPS to $O\left(\log (n) / \epsilon^{2}\right)$ level for 1-LOCC M : time $n^{O\left(\log (n) / \epsilon^{2}\right)} \rightarrow n^{O(\log (n))}$. [BYC, BH]
- Epsilon-net for 1-LOCC M or M with small $\|M\|_{\mathrm{F}}$: time similar to above. [SW, BH]

REMARK: all DPS results correspond to variants of quantum de Finetti theorem.

Landscape

Table: Known results about approximating $h_{\operatorname{Sep}(n)}$ to error ϵ

Error ϵ	Lower bounds	Upper b. (DPS)	Upper b. (ϵ-net)
$1 /$ poly (n)	NP-hard	$(n / \sqrt{\epsilon})^{O(n)}$	$(1 / \epsilon)^{O(n)}$
const	$n^{O(\log (n))}$	$n^{O\left(\log (n) / \epsilon^{2}\right)}$	similar to left
	$($ ETH $)$	$(1-$ LOCC $)$	$(1-$ LOCC $)$

Landscape

Table: Known results about approximating $h_{\operatorname{Sep}(n)}$ to error ϵ

Error ϵ	Lower bounds	Upper b. (DPS)	Upper b. (ϵ-net)
$1 /$ poly (n)	NP-hard	$(n / \sqrt{\epsilon})^{O(n)}$	$(1 / \epsilon)^{O(n)}$
const	$n^{O(\log (n))}$	$n^{O\left(\log (n) / \epsilon^{2}\right)}$	similar to left
	$($ ETH $)$	$(1-$ LOCC $)$	$(1-$ LOCC $)$

REMARK: previous results focus on the dependence on n, which is sufficient for their purpose. However, the dependence on ϵ could be bad.

Landscape

Table: Known results about approximating $h_{\operatorname{Sep}(n)}$ to error ϵ

Error ϵ	Lower bounds	Upper b. (DPS)	Upper b. (ϵ-net)
$1 /$ poly (n)	NP-hard	poly $(1 / \epsilon)$	poly $(1 / \epsilon)$
const	$n^{O(\log (n))}$	$\exp (1 / \epsilon)$	similar to left
	$($ ETH $)$	$(1-$ LOCC $)$	$(1-$ LOCC $)$

REMARK: previous results focus on the dependence on n, which is sufficient for their purpose. However, the dependence on ϵ could be bad.

Landscape

Table: Known results about approximating $h_{\operatorname{Sep}(n)}$ to error ϵ

Error ϵ	Lower bounds	Upper b. (DPS)	Upper b. (ϵ-net)
$1 /$ poly (n)	NP-hard	poly $(1 / \epsilon)$	poly $(1 / \epsilon)$
const	$n^{O(\log (n))}$	$\exp (1 / \epsilon)$	similar to left
	$($ ETH $)$	$(1-$ LOCC $)$	$(1-$ LOCC $)$

REMARK: previous results focus on the dependence on n, which is sufficient for their purpose. However, the dependence on ϵ could be bad. Is such dependence necessary?

Introduction
Proof Technique
Conclusions

Motivations

Error dependence could be SIGNIFICANT

Complexity could grow with $1 / \epsilon$

- Infinite translationally invariant Hamiltonian: the complexity grows rapidly with $1 / \epsilon$ even with fixed local dimension. [CPW]
Quantum Interactive Proof: the complexity jumps from PSPACE to EXP with smaller ϵ

Will approximating $h_{\operatorname{Sep}(n)}$ be such a case?

Introduction
Proof Technique
Conclusions

Error dependence could be SIGNIFICANT

Complexity could grow with $1 / \epsilon$

- Infinite translationally invariant Hamiltonian: the complexity grows rapidly with $1 / \epsilon$ even with fixed local dimension. [CPW]
- Quantum Interactive Proof: the complexity jumps from PSPACE to EXP with smaller ϵ. [IKW]

Will approximating $h_{\operatorname{Sep}(n)}$ be such a case?

REMARK: It is not clear how to improve the error dependence

for either DPS or epsilon-net approach

Error dependence could be SIGNIFICANT

Complexity could grow with $1 / \epsilon$

- Infinite translationally invariant Hamiltonian: the complexity grows rapidly with $1 / \epsilon$ even with fixed local dimension. [CPW]
- Quantum Interactive Proof: the complexity jumps from PSPACE to EXP with smaller ϵ. [IKW]

Will approximating $h_{\operatorname{Sep}(n)}$ be such a case?
REMARK: It is not clear how to improve the error dependence
for either DPS or epsilon-net approach

Error dependence could be SIGNIFICANT

Complexity could grow with $1 / \epsilon$

- Infinite translationally invariant Hamiltonian: the complexity grows rapidly with $1 / \epsilon$ even with fixed local dimension. [CPW]
- Quantum Interactive Proof: the complexity jumps from PSPACE to EXP with smaller ϵ. [IKW]

Will approximating $h_{\mathrm{Sep}(n)}$ be such a case?
REMARK: It is not clear how to improve the error dependence for either DPS or epsilon-net approach.

Error dependence could be SIGNIFICANT

Complexity could grow with $1 / \epsilon$

- Infinite translationally invariant Hamiltonian: the complexity grows rapidly with $1 / \epsilon$ even with fixed local dimension. [CPW]
- Quantum Interactive Proof: the complexity jumps from PSPACE to EXP with smaller ϵ. [IKW]

Will approximating $h_{\mathrm{Sep}(n)}$ be such a case?
REMARK: It is not clear how to improve the error dependence for either DPS or epsilon-net approach.

- DPS hard due to tightness of de Finetti and k-extendibility.

Introduction

Main Result

Error dependence about $h_{\text {Sep }(n)}$

- NO error dependence except numerical errors.

For analytical purposes, there is no error at all. Numerically, the dependence is poly $\log (1 / \epsilon)$, exponential improvement from best known poly $(1 / \epsilon), \exp (1 / \epsilon)$.

Main Result

Error dependence about $h_{\text {Sep }(n)}$

- NO error dependence except numerical errors.
- For analytical purposes, there is no error at all.

Moreover, the dependence on n remains the same

Main Result

Error dependence about $h_{\text {Sep }(n)}$

- NO error dependence except numerical errors.
- For analytical purposes, there is no error at all.
- Numerically, the dependence is polylog(1/ ϵ), exponential improvement from best known poly $(1 / \epsilon), \exp (1 / \epsilon)$.

Moreover, the dependence on n remains the same

\square

Main Result

Error dependence about $h_{\text {Sep(n) }}$

- NO error dependence except numerical errors.
- For analytical purposes, there is no error at all.
- Numerically, the dependence is polylog(1/ ϵ), exponential improvement from best known poly $(1 / \epsilon), \exp (1 / \epsilon)$.

Moreover, the dependence on n remains the same.

Main Result

Error dependence about $h_{\text {Sep(n) }}$

- NO error dependence except numerical errors.
- For analytical purposes, there is no error at all.
- Numerically, the dependence is polylog(1/ ϵ), exponential improvement from best known poly $(1 / \epsilon), \exp (1 / \epsilon)$.

Moreover, the dependence on n remains the same.

Theorem (Main)

There exist two algorithms that estimate $h_{\operatorname{Sep}(n)}(M)$ to error ϵ in time $\exp (\operatorname{poly}(n))$ poly $\log (1 / \epsilon)$. similar for the multi-partite case.

Two Algorithms

Quantifier Elimination

- Based on a generic quantifier elimination solver, to solve

$$
\forall W,[\forall|\psi\rangle,|\phi\rangle,\langle\psi|\langle\phi| W|\psi\rangle|\phi\rangle \geq 0 \Longrightarrow\langle\rho, W\rangle \geq 0] .
$$

- No new insights into the problem. Omitted in this talk.

Improved DPS : DPS+

- Based on DPS hierarchy, with new constraints from

Karush-Kuhn-Tucker Conditions.

Two Algorithms

Quantifier Elimination

- Based on a generic quantifier elimination solver, to solve

$$
\forall W,[\forall|\psi\rangle,|\phi\rangle,\langle\psi|\langle\phi| W|\psi\rangle|\phi\rangle \geq 0 \Longrightarrow\langle\rho, W\rangle \geq 0] .
$$

- No new insights into the problem. Omitted in this talk.

Improved DPS : DPS+

- Based on DPS hierarchy, with new constraints from

Karush-Kuhn-Tucker Conditions.
Formulatad as ©nDs of similar sizos in terms of the level

Two Algorithms

Quantifier Elimination

- Based on a generic quantifier elimination solver, to solve

$$
\forall W,[\forall|\psi\rangle,|\phi\rangle,\langle\psi|\langle\phi| \boldsymbol{W}|\psi\rangle|\phi\rangle \geq 0 \Longrightarrow\langle\rho, W\rangle \geq 0] .
$$

- No new insights into the problem. Omitted in this talk.

Improved DPS : DPS+

- Based on DPS hierarchy, with new constraints from Karush-Kuhn-Tucker Conditions.
- Formulated as SDPs of similar sizes in terms of the level h
- The new hierarchy is exact when $k=\exp (\operatorname{poly}(n))$.

Two Algorithms

Quantifier Elimination

- Based on a generic quantifier elimination solver, to solve

$$
\forall W,[\forall|\psi\rangle,|\phi\rangle,\langle\psi|\langle\phi| \boldsymbol{W}|\psi\rangle|\phi\rangle \geq 0 \Longrightarrow\langle\rho, W\rangle \geq 0]
$$

- No new insights into the problem. Omitted in this talk.

Improved DPS : DPS+

- Based on DPS hierarchy, with new constraints from Karush-Kuhn-Tucker Conditions.
- Formulated as SDPs of similar sizes in terms of the level k.

Two Algorithms

Quantifier Elimination

- Based on a generic quantifier elimination solver, to solve

$$
\forall W,[\forall|\psi\rangle,|\phi\rangle,\langle\psi|\langle\phi| \boldsymbol{W}|\psi\rangle|\phi\rangle \geq 0 \Longrightarrow\langle\rho, W\rangle \geq 0] .
$$

- No new insights into the problem. Omitted in this talk.

Improved DPS : DPS+

- Based on DPS hierarchy, with new constraints from Karush-Kuhn-Tucker Conditions.
- Formulated as SDPs of similar sizes in terms of the level k.
- The new hierarchy is exact when $k=\exp (\operatorname{poly}(n))$.

DPS+ hierarchy

DPS+ hierarchy level k for $h_{\operatorname{Sep}(n)}(M)$

$$
\begin{array}{cl}
\max _{\rho} & \left\langle\rho_{X \mathcal{Y}_{1}}, M\right\rangle \\
\text { such that } & \rho \in \mathrm{D}\left(\mathcal{X} \otimes \mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}\right), \\
& \rho \text { is symmetric on } \mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}, \\
& \left\langle\rho, \Gamma_{i}\right\rangle=0, \forall i . \quad \text { KKT conditions }
\end{array}
$$

DPS+ hierarchy

DPS+ hierarchy level k for $h_{\operatorname{Sep}(n)}(M)$

$$
\begin{array}{cl}
\max _{\rho} & \left\langle\rho \times \mathcal{Y}_{1}, M\right\rangle \\
\text { such that } & \rho \in \mathrm{D}\left(\mathcal{X} \otimes \mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}\right), \\
& \rho \text { is symmetric on } \mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}, \\
& \left\langle\rho, \Gamma_{i}\right\rangle=0, \forall i . \quad \text { KKT conditions }
\end{array}
$$

Remarks

- KKT conditions Γ_{i} depend on M.

DPS+ hierarchy

DPS+ hierarchy level k for $h_{\operatorname{Sep}(n)}(M)$

$$
\begin{array}{cl}
\max _{\rho} & \left\langle\rho \times \mathcal{Y}_{1}, M\right\rangle \\
\text { such that } & \rho \in \mathrm{D}\left(\mathcal{X} \otimes \mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}\right), \\
& \rho \text { is symmetric on } \mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}, \\
& \left\langle\rho, \Gamma_{i}\right\rangle=0, \forall i . \quad \text { KKT conditions }
\end{array}
$$

Remarks

- KKT conditions Γ_{i} depend on M.
- KKT conditions are written without multipliers.

Consequences

DPS+ hierarchy as a SDP

- Primal of SDP: lead to a new type of monogamy relations. In the eye of any observable M, if the system satisfies DPS+, it has no difference from a separable state.

Consequences

DPS+ hierarchy as a SDP

- Primal of SDP: lead to a new type of monogamy relations. In the eye of any observable M, if the system satisfies DPS+, it has no difference from a separable state.
- Dual of SDP: lead to a new type of entanglement witness. Similar to [DPS], however, the set of entanglement witness could be non-convex.

Analogue of the exact convergence achievable for discrete optimization, e.g., SDP for integer programming.

Consequences

DPS+ hierarchy as a SDP

- Primal of SDP: lead to a new type of monogamy relations. In the eye of any observable M, if the system satisfies DPS+, it has no difference from a separable state.
- Dual of SDP: lead to a new type of entanglement witness. Similar to [DPS], however, the set of entanglement witness could be non-convex.
- Analogue of the exact convergence achievable for discrete optimization, e.g., SDP for integer programming.

Proof Overview

- Observe the connection between the DPS hierarchy and the Sum-of-Squares Lasserre/Parrilo hierarchy.
KKT conditions are necessary for critical points.
KKT conditions imply finite convergence (tri-exponential or higher) for a qeneric optimization problem.

Proof Overview

- Observe the connection between the DPS hierarchy and the Sum-of-Squares Lasserre/Parrilo hierarchy.
- KKT conditions are necessary for critical points.

KKT conditions imply finite convergence (tri-exponential or higher) for a generic optimization problem. Dring down the level for our problem to exponemtial

Proof Overview

- Observe the connection between the DPS hierarchy and the Sum-of-Squares Lasserre/Parrilo hierarchy.
- KKT conditions are necessary for critical points.
- KKT conditions imply finite convergence (tri-exponential or higher) for a generic optimization problem. [N, NR]

Proof Overview

- Observe the connection between the DPS hierarchy and the Sum-of-Squares Lasserre/Parrilo hierarchy.
- KKT conditions are necessary for critical points.
- KKT conditions imply finite convergence (tri-exponential or higher) for a generic optimization problem. [N, NR]
- Bring down the level for our problem to exponential.

Proof Overview

- Observe the connection between the DPS hierarchy and the Sum-of-Squares Lasserre/Parrilo hierarchy.
- KKT conditions are necessary for critical points.
- KKT conditions imply finite convergence (tri-exponential or higher) for a generic optimization problem. [N, NR]
- Bring down the level for our problem to exponential.
- KKT shrinks the feasible set to isolated points. (Bézout and Bertini)
- Exponential level suffices. (Grobner basis)
Handle arbitrary inputs rather than generic ones.

Proof Overview

- Observe the connection between the DPS hierarchy and the Sum-of-Squares Lasserre/Parrilo hierarchy.
- KKT conditions are necessary for critical points.
- KKT conditions imply finite convergence (tri-exponential or higher) for a generic optimization problem. [N, NR]
- Bring down the level for our problem to exponential.
- KKT shrinks the feasible set to isolated points. (Bézout and Bertini)
- Exponential level suffices. (Grobner basis)

Handle arbitrary inputs rather than generic ones.

Proof Overview

- Observe the connection between the DPS hierarchy and the Sum-of-Squares Lasserre/Parrilo hierarchy.
- KKT conditions are necessary for critical points.
- KKT conditions imply finite convergence (tri-exponential or higher) for a generic optimization problem. [N, NR]
- Bring down the level for our problem to exponential.
- KKT shrinks the feasible set to isolated points. (Bézout and Bertini)
- Exponential level suffices. (Grobner basis)
- Handle arbitrary inputs rather than generic ones.

The Problem: alternative formulation

Recall that $h_{\operatorname{Sep}(n)}(M)$ refers to

$$
\max \langle\mathbf{M}, \rho\rangle \text { s.t. } \rho \in \operatorname{Sep}(\mathcal{X} \otimes \mathcal{Y})
$$

For any $M \in \mathbb{C}^{n \times n}$, there exists $M^{\prime} \in \mathbb{C}^{2 n \times 2 n}$ s.t.

$$
h_{\text {ProdSym }(2 n)}\left(M^{\prime}\right)=\frac{1}{4} h_{\operatorname{Sep}(n)}(M)
$$

where $\operatorname{ProdSym}(n, k):=\operatorname{conv}\left\{(|\psi\rangle\langle\psi|)^{\otimes 2}:|\psi\rangle \in B\left(\mathbb{C}^{n}\right)\right\}$. [HM]
REDUCE our problem to the mathematically simpler $h_{\text {ProdSym }}(n)$.

The Problem: alternative formulation

Recall that $h_{\operatorname{Sep}(n)}(M)$ refers to

$$
\max \langle\mathbf{M}, \rho\rangle \text { s.t. } \rho \in \operatorname{Sep}(\mathcal{X} \otimes \mathcal{Y})
$$

For any $M \in \mathbb{C}^{n \times n}$, there exists $M^{\prime} \in \mathbb{C}^{2 n \times 2 n}$ s.t.

$$
h_{\text {ProdSym }(2 n)}\left(M^{\prime}\right)=\frac{1}{4} h_{\operatorname{Sep}(n)}(M)
$$

where $\operatorname{ProdSym}(n, k):=\operatorname{conv}\left\{(|\psi\rangle\langle\psi|)^{\otimes 2}:|\psi\rangle \in B\left(\mathbb{C}^{n}\right)\right\}$. [HM]
REDUCE our problem to the mathematically simpler $h_{\text {ProdSym }(n)}$.

Reduce $h_{\text {ProdSym(n) }}$ further

Let $|\psi\rangle=\sum_{i=1}^{n} a_{i}|i\rangle$ such that $\forall i, a_{i} \in \mathbb{C}$ and $\sum_{i}\left|a_{i}\right|^{2}=1$. It is easy to see that $h_{\operatorname{ProdSym}(n)}$ is equivalent to

$$
\begin{array}{ll}
\max _{a \in \mathbb{C}^{n}} & \sum_{i_{1}, i_{2}, j_{1}, j_{2}} \\
M_{\left(i_{1}, i_{2}\right),\left(j_{1}, j_{2}\right)} a_{i_{1}}^{*} a_{i_{2}}^{*} a_{j_{1}} a_{j_{2}} \\
\text { subject to } & \|a\|^{2}=1 . \tag{2}
\end{array}
$$

Now reduce from \mathbb{C} to \mathbb{R} by observing:

- M is a Hermitian so the objective function is real.

Decomoosina the comolex number into real and imaginary
parts.

Reduce $h_{\text {ProdSym(n) }}$ further

Let $|\psi\rangle=\sum_{i=1}^{n} a_{i}|i\rangle$ such that $\forall i, a_{i} \in \mathbb{C}$ and $\sum_{i}\left|a_{i}\right|^{2}=1$. It is easy to see that $h_{\operatorname{ProdSym}(n)}$ is equivalent to

$$
\begin{array}{ll}
\max _{a \in \mathbb{C}^{n}} & \sum_{i_{1}, i_{2}, i_{1}, j_{2}} \\
M_{\left(i_{1}, i_{2}\right),\left(j_{1}, j_{2}\right)} a_{i_{1}}^{*} a_{i_{2}}^{*} a_{j_{1}} a_{j_{2}} \\
\text { subject to } & \|a\|^{2}=1 . \tag{2}
\end{array}
$$

Now reduce from \mathbb{C} to \mathbb{R} by observing:

- M is a Hermitian so the objective function is real.
- Decomposing the complex number into real and imaginary parts.

$h_{\text {ProdSym }(n)}$ with real variables

By renaming, we arrive at the $h_{\text {ProdSym(n) }}$ with real variables:

$$
\begin{array}{ll}
\max _{x \in \mathbb{R}^{n}} & f_{0}(x)=\sum_{i_{1}, i_{2}, j_{1}, j_{2}} M_{\left.\left(i_{1}, i_{2}\right), j_{1}, j_{2}\right)} x_{i_{1}} x_{i_{2}} x_{j_{1}} x_{j_{2}} \\
\text { subject to } & f_{1}(x)=\|x\|^{2}-1=0 .
\end{array}
$$

REMARK: this is an instance of polynomial optimization problems with a homogenous degree 4 objective polynomial and a degree 2 constraint polynomial.

Principle of Sum-of-Squares

One way to show that a polynomial $f(x)$ is nonnegative could be

$$
f(x)=\sum a_{i}(x)^{2} \geq 0
$$

Example

$$
\begin{aligned}
f(x) & =2 x^{2}-6 x+5 \\
& =\left(x^{2}-2 x+1\right)+\left(x^{2}-4 x+4\right) \\
& =(x-1)^{2}+(x-2)^{2} \geq 0
\end{aligned}
$$

Such a decomposition is called a sum of squares (SOS) certificate for the non-negativity of f.

Principle of SoS : constrained domain

Definition (Variety)

A set $V \subseteq \mathbb{C}^{n}$ is called an algebraic variety if
$V=\left\{x \in \mathbb{C}^{n}: g_{1}(x)=\cdots=g_{k}(x)=0\right\}$.

Non-negativity of $f(x)$ on V could be shown by

$$
f(x)=\sum a_{i}(x)^{2}+\sum b_{j}(x) g_{j}(x) \geq 0
$$

Question: whether all nonnegative polynomials on certain
variety have a SOS certificate? Hilbert 17th problem!

Principle of SoS : constrained domain

Definition (Variety)

A set $V \subseteq \mathbb{C}^{n}$ is called an algebraic variety if
$V=\left\{x \in \mathbb{C}^{n}: g_{1}(x)=\cdots=g_{k}(x)=0\right\}$.
Non-negativity of $f(x)$ on V could be shown by

$$
f(x)=\sum a_{i}(x)^{2}+\sum b_{j}(x) g_{j}(x) \geq 0
$$

Question: whether all nonnegative polynomials on certain variety have a SOS certificate?

Principle of SoS : constrained domain

Definition (Variety)

A set $V \subseteq \mathbb{C}^{n}$ is called an algebraic variety if
$V=\left\{x \in \mathbb{C}^{n}: g_{1}(x)=\cdots=g_{k}(x)=0\right\}$.
Non-negativity of $f(x)$ on V could be shown by

$$
f(x)=\sum a_{i}(x)^{2}+\sum b_{j}(x) g_{j}(x) \geq 0
$$

Question: whether all nonnegative polynomials on certain variety have a SOS certificate? Hilbert 17th problem!

Putinar's Positivstellensatz

Definition (Ideal)

The polynomial ideal I generated by $g_{1}, \ldots, g_{k} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is

$$
I=\left\{\sum a_{i} g_{i}: a_{i} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\right\}=<g_{1}, \cdots, g_{k}>
$$

where $\sigma(x)$ is a SOS and $g(x) \in I$

Putinar's Positivstellensatz

Definition (Ideal)

The polynomial ideal I generated by $g_{1}, \ldots, g_{k} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is

$$
I=\left\{\sum a_{i} g_{i}: a_{i} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\right\}=<g_{1}, \cdots, g_{k}>.
$$

Theorem (Putinar's Positivstellensatz)

Under the Archimedean condition, if $f(x)>0$ on $V(I) \cap \mathbb{R}^{n}$, then

$$
f(x)=\sigma(x)+g(x),
$$

where $\sigma(x)$ is a SOS and $g(x) \in I$.

SoS in Optimization

$\max \quad f(x)$
subject to $\quad g_{i}(x)=0 \quad \forall i$
is equivalent to (under AC)
min ν
such that $\nu-f(x)=\sigma(x)+\sum_{i} b_{i}(x) g_{i}(x)$,
where $\sigma(x)$ is SOS and $b_{i}(x)$ is any polynomial.

SoS relaxation: Lasserre/Parrilo Hierarchy

- If $\sigma(x)$ and $b_{i}(x)$ can have arbitrarily high degrees, then the optimization problem (5) is equivalent to problem (4).

SoS relaxation: Lasserre/Parrilo Hierarchy

- If $\sigma(x)$ and $b_{i}(x)$ can have arbitrarily high degrees, then the optimization problem (5) is equivalent to problem (4).
- By bounding the degrees, i.e., $\operatorname{deg}(\sigma(x))$, $\operatorname{deg}\left(b_{i}(x) g_{i}(x)\right) \leq 2 D$ for some integer D, we get a hierarchy, namely the Lasserre/Parrilo hierarchy.
where $\sigma(x)$ is SOS and $b_{i}(x)$ is any polynomial and $\operatorname{deg}(\sigma(x))$,

SoS relaxation: Lasserre/Parrilo Hierarchy

- If $\sigma(x)$ and $b_{i}(x)$ can have arbitrarily high degrees, then the optimization problem (5) is equivalent to problem (4).
- By bounding the degrees, i.e., $\operatorname{deg}(\sigma(x))$, $\operatorname{deg}\left(b_{i}(x) g_{i}(x)\right) \leq 2 D$ for some integer D, we get a hierarchy, namely the Lasserre/Parrilo hierarchy.

SoS relaxation: Lasserre/Parrilo Hierarchy

- If $\sigma(x)$ and $b_{i}(x)$ can have arbitrarily high degrees, then the optimization problem (5) is equivalent to problem (4).
- By bounding the degrees, i.e., $\operatorname{deg}(\sigma(x))$, $\operatorname{deg}\left(b_{i}(x) g_{i}(x)\right) \leq 2 D$ for some integer D, we get a hierarchy, namely the Lasserre/Parrilo hierarchy.
$\min \quad \nu$
such that $\nu-f(x)=\sigma(x)+\sum_{i} b_{i}(x) g_{i}(x)$,
where $\sigma(x)$ is SOS and $b_{i}(x)$ is any polynomial and $\operatorname{deg}(\sigma(x))$, $\operatorname{deg}\left(b_{i}(x) g_{i}(x)\right) \leq 2 D$.

Why it is a SDP?

Observation

- Any $p(x)$ (of degree $2 D$) $=m^{T} Q m$, where m is the vector of monomials of degree up to $2 D$ and Q is the coefficients.
- $p(x)$ is a SOS iff $Q \geq 0$.

Why it is a SDP?

Observation

- Any $p(x)$ (of degree $2 D$) $=m^{T} Q m$, where m is the vector of monomials of degree up to $2 D$ and Q is the coefficients.
- $p(x)$ is a SOS iff $Q \geq 0$.

$$
\begin{array}{ll}
\min _{\nu, b_{i \alpha} \in \mathbb{R}} & \nu \\
\text { such that } & \nu A_{0}-F-\sum_{i \alpha} b_{i \alpha} G_{i \alpha} \geq 0 .
\end{array}
$$

Why it is a SDP?

Observation

- Any $p(x)$ (of degree $2 D$) $=m^{T} Q m$, where m is the vector of monomials of degree up to $2 D$ and Q is the coefficients.
- $p(x)$ is a SOS iff $Q \geq 0$.

$$
\begin{array}{ll}
\min _{\nu, b_{i \alpha} \in \mathbb{R}} & \nu \\
\text { such that } & \nu A_{0}-F-\sum_{i \alpha} b_{i \alpha} G_{i \alpha} \geq 0
\end{array}
$$

Complexity: poly (m) poly $\log (1 / \epsilon)$, where $m=\binom{n+D}{D}$.

Dual of the SDP: moment

Dual of the SOS cone

- Let $\Sigma_{n, 2 d}$ be the cone of all PSD matrices representing SOS polynomials with degree up to $2 d$.
- The dual cone $\Sigma_{n, 2 d}^{*}$ is moment $M_{d}(x) \geq 0$, where entry (α, β) of $M_{d}(x)$ is $\int x^{\alpha+\beta} \mu(d x),|\alpha|,|\beta| \leq d$.

Example

When $n=2, d=2$, the $M_{d}(x)$ for homogenous degree 4 moments is given by

$$
M_{2}(x)=\left(\begin{array}{lll}
x_{40} & x_{31} & x_{22} \\
x_{31} & x_{22} & x_{13} \\
x_{22} & x_{13} & x_{04}
\end{array}\right) \geq 0
$$

Full Symmetry \Longrightarrow DPS

Allow redundancy, we can put DPS in this picture.

Example

Now each entry is labelled with $((i, j),(k, l))$ for degree 4 case, i.e., $M_{d}(x)=\rho \in \mathrm{D}\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right)$.

$$
\rho=\sum_{(i, j),(k, l)} x_{i} x_{j} x_{k} x_{l}|i\rangle|j\rangle\langle k|\langle I| .
$$

Note that entry $((i, j),(k, I))$ and $((i, I),(k, j))$ have the same value $x_{i} x_{j} x_{k} x_{l}$. This is PPT condition. Similar for DPS.

Remark: more symmetry because in ProdSym. Flexible in
choosing more or less symmetry.

Full Symmetry \Longrightarrow DPS

Allow redundancy, we can put DPS in this picture.

Example

Now each entry is labelled with $((i, j),(k, I))$ for degree 4 case, i.e., $M_{d}(x)=\rho \in \mathrm{D}\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right)$.

$$
\rho=\sum_{(i, j),(k, l)} x_{i} x_{j} x_{k} x_{l}|i\rangle|j\rangle\langle k|\langle I| .
$$

Note that entry $((i, j),(k, I))$ and $((i, I),(k, j))$ have the same value $x_{i} x_{j} x_{k} x_{l}$. This is PPT condition. Similar for DPS.

Remark: more symmetry because in ProdSym. Flexible in choosing more or less symmetry.

Karush-Kuhn-Tucker Conditions

For any optimization problem

$$
\max f(x) \text { s.t. } g_{i}(x) \leq 0, h_{j}(x)=0, \forall i, j,
$$

if x^{*} is a local optimizer, then $\exists \mu_{i}, \lambda_{j}$,

$$
\begin{aligned}
\nabla f\left(x^{*}\right) & =\sum \mu_{i} \nabla g_{i}\left(x^{*}\right)+\sum \lambda_{j} \nabla h_{j}\left(x^{*}\right) \\
g_{i}\left(x^{*}\right) & \leq 0, h_{j}\left(x^{*}\right)=0 \\
\mu_{i} & \geq 0, \mu_{i} g_{i}\left(x^{*}\right)=0
\end{aligned}
$$

Remark: for convex optimization (our case), any global
optimizer satisfies KKT.

Karush-Kuhn-Tucker Conditions

For any optimization problem

$$
\max f(x) \text { s.t. } g_{i}(x) \leq 0, h_{j}(x)=0, \forall i, j,
$$

if x^{*} is a local optimizer, then $\exists \mu_{i}, \lambda_{j}$,

$$
\begin{aligned}
\nabla f\left(x^{*}\right) & =\sum \mu_{i} \nabla g_{i}\left(x^{*}\right)+\sum \lambda_{j} \nabla h_{j}\left(x^{*}\right) \\
g_{i}\left(x^{*}\right) & \leq 0, h_{j}\left(x^{*}\right)=0 \\
\mu_{i} & \geq 0, \mu_{i} g_{i}\left(x^{*}\right)=0
\end{aligned}
$$

Remark: for convex optimization (our case), any global optimizer satisfies KKT.

Our case

Recall our optimization problem is

$$
\max f_{0}(x) \text { s.t. } f_{1}(x)=0
$$

The KKT condition is $\nabla f_{0}(x)=\lambda \nabla f_{1}(x)$, which is equivalent to

$$
\operatorname{rank}\left(\begin{array}{cc}
\frac{\partial f_{0}(x)}{\partial x_{1}} & \frac{\partial f_{1}(x)}{\partial x_{1}} \\
\vdots & \vdots \\
\frac{\partial f_{0}(x)}{\partial x_{2 n}} & \frac{\partial f_{1}(x)}{\partial x_{2 n}}
\end{array}\right)<2
$$

Our case

Recall our optimization problem is

$$
\max f_{0}(x) \text { s.t. } f_{1}(x)=0
$$

The KKT condition is $\nabla f_{0}(x)=\lambda \nabla f_{1}(x)$, which is equivalent to

$$
\begin{gathered}
\operatorname{rank}\left(\begin{array}{cc}
\frac{\partial f_{0}(x)}{\partial x_{1}} & \frac{\partial f_{1}(x)}{\partial x_{1}} \\
\vdots & \vdots \\
\frac{\partial f_{0}(x)}{\partial x_{2 n}} & \frac{\partial f_{1}(x)}{\partial x_{2 n}}
\end{array}\right)<2 . \\
g_{i j}(x)=\frac{\partial f_{0}(x)}{\partial x_{i}} \frac{\partial f_{1}(x)}{\partial x_{j}}-\frac{\partial f_{0}(x)}{\partial x_{j}} \frac{\partial f_{1}(x)}{\partial x_{i}}, \quad \forall i, j
\end{gathered}
$$

Optimization Problem with KKT constraints

$$
\begin{array}{ll}
\min & \nu \\
\text { such that } & \nu-f_{0}(x) \geq 0 \\
& f_{1}(x)=0 \\
\text { KKT } & g_{i j}(x)=0 \quad \forall 1 \leq i \neq j \leq 2 n
\end{array}
$$

- Apply the degree bound D, we get the SoS SDP hierarchy.

Optimization Problem with KKT constraints

$\min \quad \nu$
such that $\nu-f_{0}(x) \geq 0$
$f_{1}(x)=0$
KKT

$$
g_{i j}(x)=0 \quad \forall 1 \leq i \neq j \leq 2 n
$$

- Apply the degree bound D, we get the SoS SDP hierarchy.
- Will show finite convergence when $D=\exp (\operatorname{poly}(n))$. Then $m=\binom{n+D}{D}=\exp (\operatorname{poly}(n))$. Thus the final time is $\exp (\operatorname{poly}(n))$ poly $\log (1 / \epsilon)$.

KKT Ideal

Definition (KKT Ideal \& Variety)

$$
\begin{aligned}
& I_{K}=\left\{v(x) f_{1}(x)+\sum h_{i j}(x) g_{i j}(x)\right\}=<f_{1}(x), g_{i j}(x)>. \\
& V\left(I_{K}\right)=\left\{x \in \mathbb{C}^{2 n}: \forall p(x) \in I_{K}, p(x)=0\right\}
\end{aligned}
$$

KKT Ideal

Definition (KKT Ideal \& Variety)

$$
\begin{gathered}
I_{K}=\left\{v(x) f_{1}(x)+\sum h_{i j}(x) g_{i j}(x)\right\}=<f_{1}(x), g_{i j}(x)>. \\
V\left(I_{K}\right)=\left\{x \in \mathbb{C}^{2 n}: \forall p(x) \in I_{K}, p(x)=0\right\}
\end{gathered}
$$

Definition (KKT Ideal to degree m)

$$
\begin{aligned}
I_{K}^{m}= & \left\{v(x) f_{1}(x)+\sum h_{i j}(x) g_{i j}(x): \operatorname{deg}\left(v(x) f_{1}(x)\right) \leq m,\right. \\
& \left.\forall i, j, \operatorname{deg}\left(h_{i j} g_{i j}\right) \leq m\right\}
\end{aligned}
$$

Main Theorems

Theorem (Zero-dimensional of generic I_{K})

For a generic $M,\left|V\left(I_{K}\right)\right|<\infty$ and I_{K} is zero-dimensional.
\qquad
\square
Estimate $h_{\text {ProdSym }(n)}(M)$ for a yeneric M to error cneeds exp(poly(n))poly log(1

Main Theorems

Theorem (Zero-dimensional of generic I_{K})

For a generic $M,\left|V\left(I_{K}\right)\right|<\infty$ and I_{K} is zero-dimensional.

Theorem (Degree bound)

There exists $m=O(\exp (\operatorname{poly}(n)))$, s.t. for a generic $M, \epsilon>0$,

$$
v-f_{0}(x)+\epsilon=\sigma(x)+g(x),
$$

where $\sigma(x)$ is SoS and $\operatorname{deg}(\sigma(x)) \leq m, g(x) \in I_{k}^{m}$.
Corolary (SDP solution)
Estimate $h_{\text {ProdSym(n) }}(M)$ for a generic M to error ϵ needs
\square

Main Theorems

Theorem (Zero-dimensional of generic I_{K})

For a generic $M,\left|V\left(I_{K}\right)\right|<\infty$ and I_{K} is zero-dimensional.

Theorem (Degree bound)

There exists $m=O(\exp (\operatorname{poly}(n)))$, s.t. for a generic $M, \epsilon>0$,

$$
v-f_{0}(x)+\epsilon=\sigma(x)+g(x)
$$

where $\sigma(x)$ is SoS and $\operatorname{deg}(\sigma(x)) \leq m, g(x) \in I_{K}^{m}$.

Corollary (SDP solution)

Estimate $h_{\text {ProdSym }(n)}(M)$ for a generic M to error ϵ needs $\exp ($ poly $(n))$ poly $\log (1 / \epsilon)$.

Arbitrary input M

Observations

- Generic M is dense. The opt of SDP could be continuous.

Issue: SOS SDP might be infeasible up to degree m for arbitrary input M.

Arbitrary input M

Observations

- Generic M is dense. The opt of SDP could be continuous.
- Issue: SOS SDP might be infeasible up to degree m for arbitrary input M.

Arbitrary input M

Observations

- Generic M is dense. The opt of SDP could be continuous.
- Issue: SOS SDP might be infeasible up to degree m for arbitrary input M.

Arbitrary input M

Observations

- Generic M is dense. The opt of SDP could be continuous.
- Issue: SOS SDP might be infeasible up to degree m for arbitrary input M.

Solutions

- Switch to the dual SDP (moment): satisfies Slater's condition, i.e, strictly feasible.

Arbitrary input M

Observations

- Generic M is dense. The opt of SDP could be continuous.
- Issue: SOS SDP might be infeasible up to degree m for arbitrary input M.

Solutions

- Switch to the dual SDP (moment): satisfies Slater's condition, i.e, strictly feasible.
- For a generic M, by strong duality, $h_{\text {ProdSym }(n)}(M)=O P T_{\text {mom }}(M)$.

Arbitrary input M

Observations

- Generic M is dense. The opt of SDP could be continuous.
- Issue: SOS SDP might be infeasible up to degree m for arbitrary input M.

Solutions

- Switch to the dual SDP (moment): satisfies Slater's condition, i.e, strictly feasible.
- For a generic M, by strong duality, $h_{\text {ProdSym }(n)}(M)=O P T_{\text {mom }}(M)$.
- For any input M, use the continuity of the dual SDP then.

Proof of Theorem 1

Let $\mathcal{U}=\left\{f_{1}(x)=0\right\}, \mathcal{W}=\left\{\forall i, j, g_{i j}=0\right\}$. then $V\left(I_{K}\right) \subseteq \mathcal{U} \cap \mathcal{W}$.
It suffices to show $\mathcal{U} \cap \mathcal{W} \mid<\infty$. Construct $\mathcal{A}=\mathcal{X} \cap \mathcal{U}$ s.t.
$\mathcal{A} \cap \mathcal{W}=\emptyset$ and $\operatorname{dim}(\mathcal{X})=n-1$. Note $\mathcal{W} \cap \mathcal{A}=(\mathcal{W} \cap \mathcal{U}) \cap \mathcal{X}$
Dy Dézout's theorem, two variotios with dimension sum n
must intersect. Thus
$\operatorname{dim}(\mathcal{W} \cap \mathcal{U})+\operatorname{dim}(\mathcal{X})=\operatorname{dim}(\mathcal{W} \cap \mathcal{U})+n-1<n$.

Proof of Theorem 1

Let $\mathcal{U}=\left\{f_{1}(x)=0\right\}, \mathcal{W}=\left\{\forall i, j, g_{i j}=0\right\}$. then $V\left(I_{K}\right) \subseteq \mathcal{U} \cap \mathcal{W}$.
It suffices to show $|\mathcal{U} \cap \mathcal{W}|<\infty$. Construct $\mathcal{A}=\mathcal{X} \cap \mathcal{U}$ s.t.
$\mathcal{A} \cap \mathcal{W}=\emptyset$ and $\operatorname{dim}(\mathcal{X})=n-1$. Note $\mathcal{W} \cap \mathcal{A}=(\mathcal{W} \cap \mathcal{U}) \cap \mathcal{X}$.
By Bézout's theorem, two varieties with dimension sum $\geq n$
must intersect. Thus
$\operatorname{dim}(\mathcal{W} \cap \mathcal{U})+\operatorname{dim}(\mathcal{X})=\operatorname{dim}(\mathcal{W} \cap \mathcal{U})+n-1<n$.
This implies dim $(W \cap U)=0$ and thus $\left|V\left(I_{k}\right)\right|$

Proof of Theorem 1

Let $\mathcal{U}=\left\{f_{1}(x)=0\right\}, \mathcal{W}=\left\{\forall i, j, g_{i j}=0\right\}$. then $V\left(I_{K}\right) \subseteq \mathcal{U} \cap \mathcal{W}$.
It suffices to show $|\mathcal{U} \cap \mathcal{W}|<\infty$. Construct $\mathcal{A}=\mathcal{X} \cap \mathcal{U}$ s.t.
$\mathcal{A} \cap \mathcal{W}=\emptyset$ and $\operatorname{dim}(\mathcal{X})=n-1$. Note $\mathcal{W} \cap \mathcal{A}=(\mathcal{W} \cap \mathcal{U}) \cap \mathcal{X}$.
By Bézout's theorem, two varieties with dimension sum $\geq n$ must intersect. Thus

$$
\operatorname{dim}(\mathcal{W} \cap \mathcal{U})+\operatorname{dim}(\mathcal{X})=\operatorname{dim}(\mathcal{W} \cap \mathcal{U})+n-1<n
$$

This implies $\operatorname{dim}(\mathcal{W} \cap \mathcal{U})=0$ and thus $\left|V\left(I_{K}\right)\right|<\infty$.

Proof of Theorem 1: construct \mathcal{X}

Let $\mathcal{X}=\left\{f_{0}(x)=\mu\right\}$ for generic $(\mu, M) . \operatorname{dim}(\mathcal{X})=n-1$. By Bertini's theorem, $\operatorname{dim}(\mathcal{A})=\operatorname{dim}(\mathcal{U} \cap \mathcal{X})=n-2$. \mathcal{W} by definition says $\operatorname{rank}\left(J_{\mathcal{A}}\right)=1$. Thus no intersection!

Proof of Theorem 1: construct \mathcal{X}

Let $\mathcal{X}=\left\{f_{0}(x)=\mu\right\}$ for generic $(\mu, M) . \operatorname{dim}(\mathcal{X})=n-1$.
By Bertini's theorem, $\operatorname{dim}(\mathcal{A})=\operatorname{dim}(\mathcal{U} \cap \mathcal{X})=n-2$.
The Jacobian matrix $J_{\mathcal{A}}=\left(\begin{array}{cc}\frac{\partial f_{0}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{1}} \\ \vdots & \vdots \\ \frac{\partial f_{0}}{\partial x_{n}} & \frac{\partial f_{1}}{\partial x_{n}}\end{array}\right)$ has rank $\left(J_{\mathcal{A}}\right)=2$.
\mathcal{W} by definition says $\operatorname{rank}\left(J_{\mathcal{A}}\right)=1$. Thus no intersection!
genericity; projective space; homogenization!

Proof of Theorem 1: construct \mathcal{X}

Let $\mathcal{X}=\left\{f_{0}(x)=\mu\right\}$ for generic $(\mu, M) . \operatorname{dim}(\mathcal{X})=n-1$.
By Bertini's theorem, $\operatorname{dim}(\mathcal{A})=\operatorname{dim}(\mathcal{U} \cap \mathcal{X})=n-2$.

$$
\text { The Jacobian matrix } J_{\mathcal{A}}=\left(\begin{array}{cc}
\frac{\partial f_{0}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{1}} \\
\vdots & \vdots \\
\frac{\partial f_{0}}{\partial x_{n}} & \frac{\partial f_{1}}{\partial x_{n}}
\end{array}\right) \text { has } \operatorname{rank}\left(J_{\mathcal{A}}\right)=2 \text {. }
$$

\mathcal{W} by definition says $\operatorname{rank}\left(J_{\mathcal{A}}\right)=1$. Thus no intersection!
genericity; projective space; homogenization!

Proof of Theorem 1: construct \mathcal{X}

Let $\mathcal{X}=\left\{f_{0}(x)=\mu\right\}$ for generic $(\mu, M) . \operatorname{dim}(\mathcal{X})=n-1$.
By Bertini's theorem, $\operatorname{dim}(\mathcal{A})=\operatorname{dim}(\mathcal{U} \cap \mathcal{X})=n-2$.

$$
\text { The Jacobian matrix } J_{\mathcal{A}}=\left(\begin{array}{cc}
\frac{\partial f_{0}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{1}} \\
\vdots & \vdots \\
\frac{\partial f_{0}}{\partial x_{n}} & \frac{\partial f_{1}}{\partial x_{n}}
\end{array}\right) \text { has } \operatorname{rank}\left(J_{\mathcal{A}}\right)=2 \text {. }
$$

\mathcal{W} by definition says $\operatorname{rank}\left(J_{\mathcal{A}}\right)=1$. Thus no intersection!

Subtly: genericity; projective space; homogenization!

Proof of Theorem 2

Let $\left\{\gamma_{i}\right\}$ be a Grobner basis for I_{K}.

$$
\left|V\left(I_{K}\right)\right|<\infty \Longrightarrow \max \operatorname{deg}\left\{\gamma_{i}\right\} \leq D=\exp (\operatorname{poly}(n)) .
$$

Let $\sigma(x)=\sum s_{a}(x)^{2}$. By property of Grobner basis

Proof of Theorem 2

Let $\left\{\gamma_{i}\right\}$ be a Grobner basis for I_{K}.

$$
\left|V\left(I_{K}\right)\right|<\infty \Longrightarrow \max \operatorname{deg}\left\{\gamma_{i}\right\} \leq D=\exp (\operatorname{poly}(n)) .
$$

Now, want to bound $\operatorname{deg}(\sigma(x)), \operatorname{deg}(g(x))$ in

$$
v-f_{0}(x)=\sigma(x)+g(x) \text {. s.t. } \sigma(x) \text { SOS }, g(x) \in \mathbb{I}_{K}^{m} .
$$

Proof of Theorem 2

Let $\left\{\gamma_{i}\right\}$ be a Grobner basis for I_{K}.

$$
\left|V\left(I_{K}\right)\right|<\infty \Longrightarrow \max \operatorname{deg}\left\{\gamma_{i}\right\} \leq D=\exp (\operatorname{poly}(n))
$$

Now, want to bound $\operatorname{deg}(\sigma(x)), \operatorname{deg}(g(x))$ in

$$
v-f_{0}(x)=\sigma(x)+g(x) . \text { s.t. } \sigma(x) \text { SOS }, g(x) \in I_{K}^{m}
$$

Let $\sigma(x)=\sum s_{a}(x)^{2}$. By property of Grobner basis

$$
s_{a}(x)=g_{a}(x)+u_{a}(x), \text { s.t. } g_{a}(x) \in I_{K}, \operatorname{deg}\left(u_{a}(x)\right) \leq n D
$$

Proof of Theorem 2

Let $\left\{\gamma_{i}\right\}$ be a Grobner basis for I_{K}.

$$
\left|V\left(I_{K}\right)\right|<\infty \Longrightarrow \max \operatorname{deg}\left\{\gamma_{i}\right\} \leq D=\exp (\operatorname{poly}(n))
$$

Now, want to bound $\operatorname{deg}(\sigma(x)), \operatorname{deg}(g(x))$ in

$$
v-f_{0}(x)=\sigma(x)+g(x) . \text { s.t. } \sigma(x) \text { SOS }, g(x) \in I_{K}^{m}
$$

Let $\sigma(x)=\sum s_{a}(x)^{2}$. By property of Grobner basis

$$
s_{a}(x)=g_{a}(x)+u_{a}(x), \text { s.t. } g_{a}(x) \in I_{K}, \operatorname{deg}\left(u_{a}(x)\right) \leq n D .
$$

Thus

$$
v-f_{0}(x)=\sigma^{\prime}(x)+g^{\prime}(x), \operatorname{deg}\left(\sigma^{\prime}(x)\right) \leq \exp (\operatorname{poly}(n)), g^{\prime} \in I_{K}
$$

Proof of Theorem 2: $g^{\prime} \in I_{K}^{m}$

All we need is to show $g^{\prime} \in I_{K}^{m}, m=\exp (\operatorname{poly}(n))$.

- $\operatorname{deg}\left(g^{\prime}(x)\right)=\operatorname{deg}\left(\sigma^{\prime}(x)\right)=m$.

Proof of Theorem 2: $g^{\prime} \in I_{K}^{m}$

All we need is to show $g^{\prime} \in I_{K}^{m}, m=\exp (p o l y(n))$.

- $\operatorname{deg}\left(g^{\prime}(x)\right)=\operatorname{deg}\left(\sigma^{\prime}(x)\right)=m$.
- In Grobner basis, $g^{\prime}(x)=\sum t_{k} \gamma_{k}(x), \operatorname{deg}\left(t_{k} \gamma_{k}(x)\right) \leq m$.

Proof of Theorem 2: $g^{\prime} \in I_{K}^{m}$

All we need is to show $g^{\prime} \in I_{K}^{m}, m=\exp ($ poly $(n))$.

- $\operatorname{deg}\left(g^{\prime}(x)\right)=\operatorname{deg}\left(\sigma^{\prime}(x)\right)=m$.
- In Grobner basis, $g^{\prime}(x)=\sum t_{k} \gamma_{k}(x), \operatorname{deg}\left(t_{k} \gamma_{k}(x)\right) \leq m$.
- (Omitted) $\gamma_{k}(x)=\sum u_{i j}(x) g_{i j}(x), \operatorname{deg}\left(u_{i j}\right) \leq m$.

Proof of Theorem 2: $g^{\prime} \in I_{K}^{m}$

All we need is to show $g^{\prime} \in I_{K}^{m}, m=\exp (\operatorname{poly}(n))$.

- $\operatorname{deg}\left(g^{\prime}(x)\right)=\operatorname{deg}\left(\sigma^{\prime}(x)\right)=m$.
- In Grobner basis, $g^{\prime}(x)=\sum t_{k} \gamma_{k}(x), \operatorname{deg}\left(t_{k} \gamma_{k}(x)\right) \leq m$.
- (Omitted) $\gamma_{k}(x)=\sum u_{i j}(x) g_{i j}(x), \operatorname{deg}\left(u_{i j}\right) \leq m$.

Proof of Theorem 2: $g^{\prime} \in I_{K}^{m}$

All we need is to show $g^{\prime} \in I_{K}^{m}, m=\exp (\operatorname{poly}(n))$.

- $\operatorname{deg}\left(g^{\prime}(x)\right)=\operatorname{deg}\left(\sigma^{\prime}(x)\right)=m$.
- In Grobner basis, $g^{\prime}(x)=\sum t_{k} \gamma_{k}(x)$, $\operatorname{deg}\left(t_{k} \gamma_{k}(x)\right) \leq m$.
- (Omitted) $\gamma_{k}(x)=\sum u_{i j}(x) g_{i j}(x), \operatorname{deg}\left(u_{i j}\right) \leq m$.

Thus, $g^{\prime}(x)=\sum t_{k} u_{i j} g_{i j}(x), \operatorname{deg}\left(t_{k} u_{i j}\right) \leq m, \Longrightarrow g^{\prime}(x) \in I_{K}^{m}$.

$$
\begin{aligned}
I_{K}^{m}= & \left\{v(x) f_{1}(x)+\sum h_{i j}(x) g_{i j}(x): \operatorname{deg}\left(v(x) f_{1}(x)\right) \leq m,\right. \\
& \left.\forall i, j, \operatorname{deg}\left(h_{i j} g_{i j}\right) \leq m\right\}
\end{aligned}
$$

Perspectives

DPS+

- Finite convergence at $\exp (\operatorname{poly}(n))$ level. Numerical error only.
- KKT constraints from optimization theory.
- Analysis follows from connection to the Sum-of-Squares analysis.

Perspectives

DPS+

- Finite convergence at $\exp (\operatorname{poly}(n))$ level. Numerical error only.
- KKT constraints from optimization theory.

Analysis follows from connection to the Sum-of-Squares analysis.
Generic solutions satisfy the constraints perfectly.

Perspectives

DPS+

- Finite convergence at $\exp (\operatorname{poly}(n))$ level. Numerical error only.
- KKT constraints from optimization theory.
- Analysis follows from connection to the Sum-of-Squares analysis.

Perspectives

DPS+

- Finite convergence at $\exp (\operatorname{poly}(n))$ level. Numerical error only.
- KKT constraints from optimization theory.
- Analysis follows from connection to the Sum-of-Squares analysis.
- Generic solutions satisfy the constraints perfectly.

Perspectives

DPS+

- Finite convergence at $\exp (\operatorname{poly}(n))$ level. Numerical error only.
- KKT constraints from optimization theory.
- Analysis follows from connection to the Sum-of-Squares analysis.
- Generic solutions satisfy the constraints perfectly.
- Continuity and feasibility of SDPs allow extension to arbitrary inputs.

Perspectives (cont'd)

Extensions

- To the non-commutative setting, e.g., the NPA hierarchy for approximating the non-local game value.

Perspectives (cont’d)

Extensions

- To the non-commutative setting, e.g., the NPA hierarchy for approximating the non-local game value.
- Partial progress: a NC version of KKT conditions.

The tip of the iceberg: lots of unknowns await discovery ?!

Perspectives (cont’d)

Extensions

- To the non-commutative setting, e.g., the NPA hierarchy for approximating the non-local game value.
- Partial progress: a NC version of KKT conditions.

The tip of the iceberg: lots of unknowns await discovery?!

Perspectives (cont’d)

Extensions

- To the non-commutative setting, e.g., the NPA hierarchy for approximating the non-local game value.
- Partial progress: a NC version of KKT conditions.

The tip of the iceberg: lots of unknowns await discovery ?!

Open Questions

DPS+

- Analyze the low levels of DPS+.
- Advantages of adding KKT conditions other than presented here.

NPA+

- The use of NC KKT conditions.
- Can we have finite convergence for the field value?

SoS hierarchy

- Any other applications to quantum information?

Introduction

Question And Answer

Thank you!
 Q \& A

