Improved Semidefinite Programming Hierarchy for Entanglement Testing with tools from Algebraic Geometry

Aram W. Harrow, Anand Natarajan, Xiaodi Wu

MIT Center for Theoretical Physics

IQC Colloquium, Nov 17th 2014

Entanglement Detection

Definition (Separable and Entangled States)

A bi-partitie state $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$ is *separable* if \exists dist. $\{p_i\}$,

$$\rho = \sum p_{i}\sigma_{X}^{i}\otimes\sigma_{Y}^{i}, \text{ s.t. } \sigma_{X}^{i}\in \mathrm{D}\left(\mathcal{X}\right), \sigma_{Y}^{i}\in \mathrm{D}\left(\mathcal{Y}\right).$$

Otherwise, ρ is *entangled*. Let Sep $\stackrel{\text{def}}{=}$ { separable states }.

Definition (Entanglement Detection

A KEY problem: given the description of $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$, decide

Either $ho\in\mathsf{Sep},$ or ho is far away from $\mathsf{Sep}.$

Entanglement Detection

Definition (Separable and Entangled States)

A bi-partitie state $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$ is *separable* if \exists dist. $\{p_i\}$,

$$\rho = \sum \textbf{\textit{p}}_{\textit{i}} \sigma_{\textit{X}}^{\textit{i}} \otimes \sigma_{\textit{Y}}^{\textit{i}}, \text{ s.t. } \sigma_{\textit{X}}^{\textit{i}} \in D\left(\mathcal{X}\right), \sigma_{\textit{Y}}^{\textit{i}} \in D\left(\mathcal{Y}\right).$$

Otherwise, ρ is *entangled*. Let Sep $\stackrel{\text{def}}{=}$ { separable states }.

Definition (Entanglement Detection)

A KEY problem: given the description of $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$, decide

Either $\rho \in \text{Sep}$, or ρ is far away from Sep.

Alternative Formulation

Definition (Weak Membership)

 $\mathsf{WMem}(\epsilon, \|\cdot\|)$: for any $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$, decide either $\rho \in \mathsf{Sep}$ or $\|\rho - \mathsf{Sep}\| \ge \epsilon$.

Via standard techniques in convex optimization, equivalent to

Definition (Weak Optimization

 $\mathsf{WOpt}(M, \epsilon)$: for any $M \in \mathsf{Herm}\,(\mathcal{X} \otimes \mathcal{Y})$, estimate the value of

$$\max_{\rho \in \mathsf{Sep}} \langle M, \rho \rangle$$

with additive error ϵ .

From now on, we focus on $WOpt(M, \epsilon)$.

Alternative Formulation

Definition (Weak Membership)

 $\mathsf{WMem}(\epsilon, \|\cdot\|)$: for any $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$, decide either $\rho \in \mathsf{Sep}$ or $\|\rho - \mathsf{Sep}\| \ge \epsilon$.

Via standard techniques in convex optimization, equivalent to

Definition (Weak Optimization)

 $\mathsf{WOpt}(M, \epsilon)$: for any $M \in \mathsf{Herm}\,(\mathcal{X} \otimes \mathcal{Y})$, estimate the value of

$$\max_{\rho \in \mathsf{Sep}} \left\langle \mathbf{\textit{M}}, \rho \right\rangle,$$

with additive error ϵ .

From now on, we focus on $WOpt(M, \epsilon)$

Alternative Formulation

Definition (Weak Membership)

 $\mathsf{WMem}(\epsilon, \|\cdot\|)$: for any $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$, decide either $\rho \in \mathsf{Sep}$ or $\|\rho - \mathsf{Sep}\| \ge \epsilon$.

Via standard techniques in convex optimization, equivalent to

Definition (Weak Optimization)

 $\mathsf{WOpt}(M, \epsilon)$: for any $M \in \mathsf{Herm}\,(\mathcal{X} \otimes \mathcal{Y})$, estimate the value of

$$\max_{\rho \in \mathsf{Sep}} \left\langle \mathbf{\textit{M}}, \rho \right\rangle,$$

with additive error ϵ .

From now on, we focus on $WOpt(M, \epsilon)$.

Quantum Information:

- Ground energy that is achieved by non-entangled states.
- Mean-field approximation in statistical quantum mechanics
- Positivity test of quantum channels
- 17 more examples in quantum information in [HM10].

Quantum Complexity

Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:

• Unique Game Conjecture and Small-set Expansion. $(\ell_2 \rightarrow \ell_4 \text{ norm})$

Quantum Information:

- Ground energy that is achieved by non-entangled states.
- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels
- 17 more examples in quantum information in [HM10].

Quantum Complexity

Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:

• Unique Game Conjecture and Small-set Expansion $(\ell_2 \rightarrow \ell_4 \text{ norm})$

Quantum Information:

- Ground energy that is achieved by non-entangled states.
- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- 17 more examples in quantum information in [HM10].

Quantum Complexity

Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:

• Unique Game Conjecture and Small-set Expansion $(\ell_2 \rightarrow \ell_4 \text{ norm})$

Quantum Information:

- Ground energy that is achieved by non-entangled states.
- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- 17 more examples in quantum information in [HM10].

Quantum Complexity

Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity

• Unique Game Conjecture and Small-set Expansion $(\ell_2 \to \ell_4 \text{ norm})$

Quantum Information:

- Ground energy that is achieved by non-entangled states.
- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- 17 more examples in quantum information in [HM10].

Quantum Complexity:

Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:

• Unique Game Conjecture and Small-set Expansion. $(\ell_2 \rightarrow \ell_4 \text{ norm})$

Quantum Information:

- Ground energy that is achieved by non-entangled states.
- Mean-field approximation in statistical quantum mechanics.
- Positivity test of quantum channels.
- 17 more examples in quantum information in [HM10].

Quantum Complexity:

Quantum Merlin-Arthur Game with Two-Provers (QMA(2)).

Classical Complexity:

• Unique Game Conjecture and Small-set Expansion. $(\ell_2 \rightarrow \ell_4 \text{ norm})$

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_y} = \rho$? [PH]
- Reduction Criterions: $I_X \otimes \rho_Y \geq \rho$? [HH]
-
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy

• ρ is k-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$, $\forall i, \rho = \sigma_{XY_i}$.

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_y} = \rho$? [PH]
- Reduction Criterions: $I_X \otimes \rho_Y \geq \rho$? [HH]
- • • • •
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy:

• ρ is k-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$. $\forall i, \rho = \sigma_{XY_i}$.

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_y} = \rho$? [PH]
- Reduction Criterions: $I_{\mathcal{X}} \otimes \rho_{\mathcal{Y}} \geq \rho$? [HH]
-
- FAILURE: any such test has arbitrarily large error. [BS]

Doherty-Parrilo-Spedalieri (DPS) hierarchy

• ρ is k-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$, $\forall i, \rho = \sigma_{XY_i}$.

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_y} = \rho$? [PH]
- Reduction Criterions: $I_X \otimes \rho_Y \geq \rho$? [HH]
-
- FAILURE: any such test has arbitrarily large error. [BS]

- ρ is k-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$, $\forall i, \rho = \sigma_{XY_i}$.
- ullet $ho \in \operatorname{Sep}$ if and only if ho is k-extendible for any $k \geq 0$.

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_y} = \rho$? [PH]
- Reduction Criterions: $I_X \otimes \rho_Y \ge \rho$? [HH]
-
- FAILURE: any such test has arbitrarily large error. [BS]

- ρ is k-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$, $\forall i, \rho = \sigma_{XY_i}$.
- $\rho \in \text{Sep}$ if and only if ρ is k-extendible for any $k \geq 0$.
- Semidefinite program (SDP): size exponential in k.

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_y} = \rho$? [PH]
- Reduction Criterions: $I_X \otimes \rho_Y \geq \rho$? [HH]
-
- FAILURE: any such test has arbitrarily large error. [BS]

- ρ is k-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$, $\forall i, \rho = \sigma_{XY_i}$.
- $\rho \in \text{Sep }$ if and only if ρ is k-extendible for any $k \geq 0$.
- Semidefinite program (SDP): size exponential in k.

Separability Criterions:

- Positive Partial Transpose (PPT) : $\rho^{T_y} = \rho$? [PH]
- Reduction Criterions: $I_X \otimes \rho_Y \geq \rho$? [HH]
-
- FAILURE: any such test has arbitrarily large error. [BS]

- ρ is k-extendible if \exists symmetric $\sigma \in D(\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_k)$, $\forall i, \rho = \sigma_{XY_i}$.
- $\rho \in \text{Sep if and only if } \rho \text{ is } k\text{-extendible for any } k \geq 0.$
- Semidefinite program (SDP): size exponential in *k*.

Hardness

Let $h_{Sep(n)}(M)$ denote the value of

$$\max \langle \mathbf{M}, \rho \rangle$$
 s.t. $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$ is *separable*,

where *n* refers to the dimension of $\mathcal{X} \otimes \mathcal{Y}$.

Hardness

 $\epsilon = 1/poly(n)$. [Gur03,loa07,Gha10], [deK08, LQNY09].

• Assuming Exponential Time Hypothesis (ETH), for

constant ϵ , approximate $h_{\mathrm{Sep}(n)}(M)$ needs $n^{\Omega(\log(n))}$ time.

Hardness

Let $h_{Sep(n)}(M)$ denote the value of

$$\max \langle \mathbf{M}, \rho \rangle$$
 s.t. $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$ is separable,

where *n* refers to the dimension of $\mathcal{X} \otimes \mathcal{Y}$.

Hardness

- NP-hard to approximate $h_{Sep(n)}(M)$ with additive error $\epsilon = 1/poly(n)$. [Gur03,loa07,Gha10], [deK08, LQNY09].
- Assuming **Exponential Time Hypothesis (ETH)**, for constant ϵ , approximate $h_{\text{Sep}(n)}(M)$ needs $n^{\Omega(\log(n))}$ time via the connection to QMA(2). [HM, AB+]

Hardness

Let $h_{Sep(n)}(M)$ denote the value of

$$\max \langle \mathbf{M}, \rho \rangle$$
 s.t. $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$ is *separable*,

where *n* refers to the dimension of $\mathcal{X} \otimes \mathcal{Y}$.

Hardness

- NP-hard to approximate $h_{Sep(n)}(M)$ with additive error $\epsilon = 1/poly(n)$. [Gur03,loa07,Gha10], [deK08, LQNY09].
- Assuming Exponential Time Hypothesis (ETH), for constant ϵ , approximate $h_{\text{Sep}(n)}(M)$ needs $n^{\Omega(\log(n))}$ time. via the connection to QMA(2). [HM, AB+]

When $\epsilon = 1/poly(n)$

- DPS to $O(n/\sqrt{\epsilon})$ level: time $(n/\sqrt{\epsilon})^{O(n)} \to n^{O(n)}$. [NOP]
- Epsilon-net (brute-force): time $(1/\epsilon)^{O(n)} \to n^{O(n)}$

When $\epsilon = \text{const}$

When $\epsilon = 1/poly(n)$

- DPS to $O(n/\sqrt{\epsilon})$ level: time $(n/\sqrt{\epsilon})^{O(n)} \to n^{O(n)}$. [NOP]
- Epsilon-net (brute-force): time $(1/\epsilon)^{O(n)} \to n^{O(n)}$.

When $\epsilon = \text{const}$

DPS to $O(log(n)/\epsilon^2)$ level for 1-LOCC M: time $n^{O(log(n)/\epsilon^2)} \rightarrow n^{O(log(n))}$. [BYC, BH]

When $\epsilon = 1/poly(n)$

- DPS to $O(n/\sqrt{\epsilon})$ level: time $(n/\sqrt{\epsilon})^{O(n)} \to n^{O(n)}$. [NOP]
- Epsilon-net (brute-force): time $(1/\epsilon)^{O(n)} \to n^{O(n)}$.

When $\epsilon = \text{const}$

DPS to $O(log(n)/\epsilon^2)$ level for 1-LOCC M: time $n^{O(log(n)/\epsilon^2)} \rightarrow n^{O(log(n))}$. IBYC, BHI

 Epsilon-net for 1-LOCC M or M with small || M ||_F: time similar to above. [SW, BH]

When $\epsilon = 1/poly(n)$

- DPS to $O(n/\sqrt{\epsilon})$ level: time $(n/\sqrt{\epsilon})^{O(n)} \to n^{O(n)}$. [NOP]
- Epsilon-net (brute-force): time $(1/\epsilon)^{O(n)} \to n^{O(n)}$.

When $\epsilon = \text{const}$

- DPS to $O(log(n)/\epsilon^2)$ level for **1-LOCC** M: time $n^{O(log(n)/\epsilon^2)} \rightarrow n^{O(log(n))}$. [BYC, BH]
- Epsilon-net for 1-LOCC M or M with small || M ||_F: time similar to above. [SW, BH]

When $\epsilon = 1/poly(n)$

- DPS to $O(n/\sqrt{\epsilon})$ level: time $(n/\sqrt{\epsilon})^{O(n)} \to n^{O(n)}$. [NOP]
- Epsilon-net (brute-force): time $(1/\epsilon)^{O(n)} \to n^{O(n)}$.

When $\epsilon = \text{const}$

- DPS to $O(log(n)/\epsilon^2)$ level for **1-LOCC** M: time $n^{O(log(n)/\epsilon^2)} \rightarrow n^{O(log(n))}$. [BYC, BH]
- Epsilon-net for 1-LOCC M or M with small || M ||_F: time similar to above. [SW, BH]

When $\epsilon = 1/poly(n)$

- DPS to $O(n/\sqrt{\epsilon})$ level: time $(n/\sqrt{\epsilon})^{O(n)} \to n^{O(n)}$. [NOP]
- Epsilon-net (brute-force): time $(1/\epsilon)^{O(n)} \to n^{O(n)}$.

When $\epsilon = \text{const}$

- DPS to $O(log(n)/\epsilon^2)$ level for **1-LOCC** M: time $n^{O(log(n)/\epsilon^2)} \rightarrow n^{O(log(n))}$. [BYC, BH]
- Epsilon-net for **1-LOCC** M or M with small $||M||_F$: time similar to above. [SW, BH]

When $\epsilon = 1/poly(n)$

- DPS to $O(n/\sqrt{\epsilon})$ level: time $(n/\sqrt{\epsilon})^{O(n)} \to n^{O(n)}$. [NOP]
- Epsilon-net (brute-force): time $(1/\epsilon)^{O(n)} \to n^{O(n)}$.

When $\epsilon = \text{const}$

- DPS to $O(log(n)/\epsilon^2)$ level for **1-LOCC** M: time $n^{O(log(n)/\epsilon^2)} \rightarrow n^{O(log(n))}$. [BYC, BH]
- Epsilon-net for **1-LOCC** M or M with small $||M||_F$: time similar to above. [SW, BH]

Table: Known results about approximating $h_{Sep(n)}$ to error ϵ

Error ϵ	Lower bounds	Upper b. (DPS)	Upper b. $(\epsilon$ -net)
1/poly(n)	NP-hard	$(n/\sqrt{\epsilon})^{O(n)}$	$(1/\epsilon)^{O(n)}$
const	$n^{O(log(n))}$	$n^{O(\log(n)/\epsilon^2)}$	similar to left
	(ETH)	(1-LOCC)	(1-LOCC)

REMARK: previous results focus on the *dependence on n*, which is sufficient for their purpose. However, the *dependence on* ϵ could be bad.

Table: Known results about approximating $h_{Sep(n)}$ to error ϵ

Error ϵ	Lower bounds	Upper b. (DPS)	Upper b. $(\epsilon$ -net)
1/poly(n)	NP-hard	$(n/\sqrt{\epsilon})^{O(n)}$	$(1/\epsilon)^{O(n)}$
const	$n^{O(log(n))}$	$n^{O(\log(n)/\epsilon^2)}$	similar to left
	(ETH)	(1-LOCC)	(1-LOCC)

REMARK: previous results focus on the *dependence on n*, which is sufficient for their purpose. However, the *dependence on* ϵ could be bad.

Table: Known results about approximating $h_{Sep(n)}$ to error ϵ

Error ϵ	Lower bounds	Upper b. (DPS)	Upper b. (ϵ -net)
1/poly(n)	NP-hard	$poly(1/\epsilon)$	$poly(1/\epsilon)$
const	$n^{O(log(n))}$	$\exp(1/\epsilon)$	similar to left
	(ETH)	(1-LOCC)	(1-LOCC)

REMARK: previous results focus on the *dependence on n*, which is sufficient for their purpose. However, the *dependence on* ϵ could be bad. Is such dependence necessary?

Table: Known results about approximating $h_{Sep(n)}$ to error ϵ

Error ϵ	Lower bounds	Upper b. (DPS)	Upper b. $(\epsilon$ -net)
1/poly(n)	NP-hard	$poly(1/\epsilon)$	$poly(1/\epsilon)$
const	$n^{O(log(n))}$	$\exp(1/\epsilon)$	similar to left
	(ETH)	(1-LOCC)	(1-LOCC)

REMARK: previous results focus on the *dependence on n*, which is sufficient for their purpose. However, the *dependence on \epsilon* could be bad. Is such dependence necessary?

Error dependence could be **SIGNIFICANT**

Complexity could grow with $1/\epsilon$

- Infinite translationally invariant Hamiltonian: the complexity grows rapidly with $1/\epsilon$ even with fixed local dimension. [CPW]
- Quantum Interactive Proof: the complexity jumps from PSPACE to EXP with smaller ε. [IKW]

Will approximating $h_{Sep(n)}$ be such a case?

REMARK: It is not clear how to improve the error dependence for either DPS or epsilon-net approach.

Error dependence could be **SIGNIFICANT**

Complexity could grow with $1/\epsilon$

- Infinite translationally invariant Hamiltonian: the complexity grows rapidly with $1/\epsilon$ even with fixed local dimension. [CPW]
- Quantum Interactive Proof: the complexity jumps from PSPACE to EXP with smaller ϵ . [IKW]

Will approximating $h_{Sep(n)}$ be such a case?

REMARK: It is not clear how to improve the error dependence for either DPS or epsilon-net approach.

Error dependence could be **SIGNIFICANT**

Complexity could grow with $1/\epsilon$

- Infinite translationally invariant Hamiltonian: the complexity grows rapidly with $1/\epsilon$ even with fixed local dimension. [CPW]
- Quantum Interactive Proof: the complexity jumps from PSPACE to EXP with smaller ϵ . [IKW]

Will approximating $h_{Sep(n)}$ be such a case?

REMARK: It is not clear how to improve the error dependence for either DPS or epsilon-net approach.

Error dependence could be **SIGNIFICANT**

Complexity could grow with $1/\epsilon$

- Infinite translationally invariant Hamiltonian: the complexity grows rapidly with $1/\epsilon$ even with fixed local dimension. [CPW]
- Quantum Interactive Proof: the complexity jumps from PSPACE to EXP with smaller ϵ . [IKW]

Will approximating $h_{Sep(n)}$ be such a case?

REMARK: It is not clear how to improve the error dependence for either DPS or epsilon-net approach.

DPS hard due to tightness of de Finetti and k-extendibility

Error dependence could be **SIGNIFICANT**

Complexity could grow with $1/\epsilon$

- Infinite translationally invariant Hamiltonian: the complexity grows rapidly with $1/\epsilon$ even with fixed local dimension. [CPW]
- Quantum Interactive Proof: the complexity jumps from PSPACE to EXP with smaller ϵ . [IKW]

Will approximating $h_{Sep(n)}$ be such a case?

REMARK: It is not clear how to improve the error dependence for either DPS or epsilon-net approach.

DPS hard due to tightness of de Finetti and k-extendibility.

Error dependence about $h_{Sep(n)}$

- NO error dependence except numerical errors.
- For analytical purposes, there is no error at all
- Numerically, the dependence is $polylog(1/\epsilon)$, *exponential* improvement from best known $poly(1/\epsilon)$, $exp(1/\epsilon)$.

Moreover, the dependence on *n* remains the same.

Theorem (Main)

There exist two algorithms that estimate $h_{Sep(n)}(M)$ to error ϵ in time exp(poly(n)) poly $log(1/\epsilon)$. similar for the multi-partite case.

Error dependence about $h_{Sep(n)}$

- NO error dependence except numerical errors.
- For analytical purposes, there is no error at all.
- Numerically, the dependence is $polylog(1/\epsilon)$, *exponential* improvement from best known $poly(1/\epsilon)$, $exp(1/\epsilon)$.

Moreover, the dependence on *n* remains the same.

Theorem (Main)

There exist two algorithms that estimate $h_{Sep(n)}(M)$ to error ϵ in time exp(poly(n)) poly $log(1/\epsilon)$. similar for the multi-partite case.

Error dependence about $h_{Sep(n)}$

- NO error dependence except numerical errors.
- For analytical purposes, there is no error at all.
- Numerically, the dependence is $\operatorname{polylog}(1/\epsilon)$, *exponential* improvement from best known $\operatorname{poly}(1/\epsilon)$, $\exp(1/\epsilon)$.

Moreover, the dependence on *n* remains the same.

Theorem (Main)

There exist two algorithms that estimate $h_{Sep(n)}(M)$ to error ϵ in time $\exp(\text{poly}(n))$ poly $\log(1/\epsilon)$. similar for the multi-partite case.

Error dependence about $h_{Sep(n)}$

- NO error dependence except numerical errors.
- For analytical purposes, there is no error at all.
- Numerically, the dependence is $polylog(1/\epsilon)$, *exponential* improvement from best known $poly(1/\epsilon)$, $exp(1/\epsilon)$.

Moreover, the dependence on *n* **remains the same**.

Theorem (Main)

There exist two algorithms that estimate $h_{Sep(n)}(M)$ to error ϵ in time exp(poly(n)) poly $log(1/\epsilon)$. similar for the multi-partite case.

Error dependence about $h_{Sep(n)}$

- NO error dependence except numerical errors.
- For analytical purposes, there is no error at all.
- Numerically, the dependence is $polylog(1/\epsilon)$, *exponential* improvement from best known $poly(1/\epsilon)$, $exp(1/\epsilon)$.

Moreover, the dependence on *n* **remains the same**.

Theorem (Main)

There exist two algorithms that estimate $h_{Sep(n)}(M)$ to error ϵ in time $\exp(\text{poly}(n))$ poly $\log(1/\epsilon)$. similar for the multi-partite case.

Quantifier Elimination

• Based on a generic quantifier elimination solver, to solve

$$\forall W, \left[\forall \left|\psi\right\rangle, \left|\phi\right\rangle, \left\langle\psi\right| \left\langle\phi\right| W \left|\psi\right\rangle \left|\phi\right\rangle \geq 0 \implies \left\langle\rho, W\right\rangle \geq 0\right].$$

• No new insights into the problem. Omitted in this talk

- Based on DPS hierarchy, with new constraints from Karush-Kuhn-Tucker Conditions.
- Formulated as SDPs of similar sizes in terms of the level k
- The new hierarchy is **exact** when $k = \exp(\text{poly}(n))$

Quantifier Elimination

• Based on a generic quantifier elimination solver, to solve

$$\forall W, [\forall |\psi\rangle, |\phi\rangle, \langle \psi| \langle \phi| W |\psi\rangle |\phi\rangle \ge 0 \implies \langle \rho, W\rangle \ge 0].$$

• No new insights into the problem. Omitted in this talk.

- Based on DPS hierarchy, with new constraints from Karush-Kuhn-Tucker Conditions.
- Formulated as SDPs of similar sizes in terms of the level k
- The new hierarchy is **exact** when $k = \exp(\text{poly}(n))$

Quantifier Elimination

• Based on a generic quantifier elimination solver, to solve

$$\forall W, [\forall |\psi\rangle, |\phi\rangle, \langle \psi| \langle \phi| W |\psi\rangle |\phi\rangle \ge 0 \implies \langle \rho, W\rangle \ge 0].$$

• No new insights into the problem. Omitted in this talk.

- Based on DPS hierarchy, with new constraints from Karush-Kuhn-Tucker Conditions.
- ullet Formulated as SDPs of similar sizes in terms of the level k
- The new hierarchy is **exact** when $k = \exp(\text{poly}(n))$.

Quantifier Elimination

Based on a generic quantifier elimination solver, to solve

$$\forall W, [\forall |\psi\rangle, |\phi\rangle, \langle \psi| \langle \phi| W |\psi\rangle |\phi\rangle \ge 0 \implies \langle \rho, W\rangle \ge 0].$$

• No new insights into the problem. Omitted in this talk.

- Based on DPS hierarchy, with new constraints from Karush-Kuhn-Tucker Conditions.
- Formulated as SDPs of similar sizes in terms of the level k.
- The new hierarchy is exact when k = exp(poly(n)).

Quantifier Elimination

• Based on a generic quantifier elimination solver, to solve

$$\forall W, [\forall |\psi\rangle, |\phi\rangle, \langle \psi| \langle \phi| W |\psi\rangle |\phi\rangle \ge 0 \implies \langle \rho, W\rangle \ge 0].$$

No new insights into the problem. Omitted in this talk.

- Based on DPS hierarchy, with new constraints from Karush-Kuhn-Tucker Conditions.
- Formulated as SDPs of similar sizes in terms of the level k.
- The new hierarchy is **exact** when $k = \exp(\text{poly}(n))$.

DPS+ hierarchy

DPS+ hierarchy level k for $h_{Sep(n)}(M)$

$$\begin{aligned} \max_{\rho} & & \left\langle \rho_{\mathcal{X}\mathcal{Y}_{1}}, \textit{M} \right\rangle \\ \text{such that} & & \rho \in \mathrm{D}\left(\mathcal{X} \otimes \mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}\right), \\ & & \rho \text{ is symmetric on } \mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}, \\ & & \left\langle \rho, \Gamma_{i} \right\rangle = 0, \forall i. \quad \mathsf{KKT} \text{ conditions} \end{aligned}$$

Remarks

KKT conditions T_i depend on M.

KKT conditions are written without multipliers.

DPS+ hierarchy

DPS+ hierarchy level k for $h_{Sep(n)}(M)$

$$\begin{array}{ll} \max_{\rho} & \left\langle \rho_{\mathcal{X}\mathcal{Y}_{1}}, \textit{M} \right\rangle \\ \text{such that} & \rho \in \mathrm{D}\left(\mathcal{X} \otimes \mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}\right), \\ & \rho \text{ is symmetric on } \mathcal{Y}_{1} \otimes \cdots \otimes \mathcal{Y}_{k}, \\ & \left\langle \rho, \Gamma_{i} \right\rangle = 0, \forall i. \quad \mathsf{KKT conditions} \end{array}$$

Remarks

- KKT conditions Γ_i depend on M.
- KKT conditions are written without multipliers

DPS+ hierarchy

DPS+ hierarchy level k for $h_{Sep(n)}(M)$

Remarks

- KKT conditions Γ_i depend on M.
- KKT conditions are written without multipliers.

Consequences

DPS+ hierarchy as a SDP

- Primal of SDP: lead to a new type of monogamy relations.
 In the eye of any observable M, if the system satisfies
 DPS+, it has no difference from a separable state.
- Dual of SDP: lead to a new type of entanglement witness.
 Similar to [DPS], however, the set of entanglement witness could be non-convex.
- Analogue of the exact convergence achievable for discrete optimization, e.g., SDP for integer programming.

Consequences

DPS+ hierarchy as a SDP

- Primal of SDP: lead to a new type of monogamy relations.
 In the eye of any observable M, if the system satisfies
 DPS+, it has no difference from a separable state.
- Dual of SDP: lead to a new type of entanglement witness.
 Similar to [DPS], however, the set of entanglement witness could be non-convex.
- Analogue of the exact convergence achievable for discrete optimization, e.g., SDP for integer programming.

Consequences

DPS+ hierarchy as a SDP

- Primal of SDP: lead to a new type of monogamy relations.
 In the eye of any observable M, if the system satisfies
 DPS+, it has no difference from a separable state.
- Dual of SDP: lead to a new type of entanglement witness.
 Similar to [DPS], however, the set of entanglement witness could be non-convex.
- Analogue of the exact convergence achievable for discrete optimization, e.g., SDP for integer programming.

- Observe the connection between the DPS hierarchy and the Sum-of-Squares Lasserre/Parrilo hierarchy.
- KKT conditions are necessary for critical points
- KKT conditions imply finite convergence (tri-exponential or higher) for a generic optimization problem. [N, NR]
- Bring down the level for our problem to exponential

- Exponential level suttices. (Grooner basis)
- Handle arbitrary inputs rather than generic ones.

- Observe the connection between the DPS hierarchy and the Sum-of-Squares Lasserre/Parrilo hierarchy.
- KKT conditions are necessary for critical points.

- Observe the connection between the DPS hierarchy and the Sum-of-Squares Lasserre/Parrilo hierarchy.
- KKT conditions are necessary for critical points.
- KKT conditions imply finite convergence (tri-exponential or higher) for a generic optimization problem. [N, NR]
- Bring down the level for our problem to exponential.

Handle arbitrary inputs rather than generic ones.

- Observe the connection between the DPS hierarchy and the Sum-of-Squares Lasserre/Parrilo hierarchy.
- KKT conditions are necessary for critical points.
- KKT conditions imply finite convergence (tri-exponential or higher) for a generic optimization problem. [N, NR]
- Bring down the level for our problem to exponential.
 - KKT shrinks the feasible set to isolated points. (Bézout and Bertini)
 - Exponential level suffices. (Grobner basis)
- Handle arbitrary inputs rather than generic ones.

- Observe the connection between the DPS hierarchy and the Sum-of-Squares Lasserre/Parrilo hierarchy.
- KKT conditions are necessary for critical points.
- KKT conditions imply finite convergence (tri-exponential or higher) for a generic optimization problem. [N, NR]
- Bring down the level for our problem to exponential.
 - KKT shrinks the feasible set to isolated points. (Bézout and Bertini)
 - Exponential level suffices. (Grobner basis)
- Handle arbitrary inputs rather than generic ones

- Observe the connection between the DPS hierarchy and the Sum-of-Squares Lasserre/Parrilo hierarchy.
- KKT conditions are necessary for critical points.
- KKT conditions imply finite convergence (tri-exponential or higher) for a generic optimization problem. [N, NR]
- Bring down the level for our problem to exponential.
 - KKT shrinks the feasible set to isolated points. (Bézout and Bertini)
 - Exponential level suffices. (Grobner basis)
- Handle arbitrary inputs rather than generic ones.

- Observe the connection between the DPS hierarchy and the Sum-of-Squares Lasserre/Parrilo hierarchy.
- KKT conditions are necessary for critical points.
- KKT conditions imply finite convergence (tri-exponential or higher) for a generic optimization problem. [N, NR]
- Bring down the level for our problem to exponential.
 - KKT shrinks the feasible set to isolated points. (Bézout and Bertini)
 - Exponential level suffices. (Grobner basis)
- Handle arbitrary inputs rather than generic ones.

The Problem: alternative formulation

Recall that $h_{Sep(n)}(M)$ refers to

$$\max \langle \mathbf{M}, \rho \rangle$$
 s.t. $\rho \in \operatorname{Sep}(\mathcal{X} \otimes \mathcal{Y})$.

For any $M \in \mathbb{C}^{n \times n}$, there exists $M' \in \mathbb{C}^{2n \times 2n}$ s.t.

$$h_{\mathsf{ProdSym}(2n)}(M') = \frac{1}{4} h_{\mathsf{Sep}(n)}(M),$$

where $\operatorname{ProdSym}(n, k) := \operatorname{conv}\{(|\psi\rangle \langle \psi|)^{\otimes 2} : |\psi\rangle \in B(\mathbb{C}^n)\}.$ [HM]

REDUCE our problem to the mathematically simpler $h_{ProdSym(n)}$.

The Problem: alternative formulation

Recall that $h_{Sep(n)}(M)$ refers to

$$\max \langle \mathbf{M}, \rho \rangle$$
 s.t. $\rho \in \operatorname{Sep}(\mathcal{X} \otimes \mathcal{Y})$.

For any $M \in \mathbb{C}^{n \times n}$, there exists $M' \in \mathbb{C}^{2n \times 2n}$ s.t.

$$h_{\mathsf{ProdSym}(2n)}(M') = \frac{1}{4}h_{\mathsf{Sep}(n)}(M),$$

where $\operatorname{ProdSym}(n, k) := \operatorname{conv}\{(|\psi\rangle \langle \psi|)^{\otimes 2} : |\psi\rangle \in B(\mathbb{C}^n)\}.$ [HM]

REDUCE our problem to the mathematically simpler $h_{\text{ProdSym}(n)}$.

Reduce $h_{\text{ProdSym}(n)}$ further

Let $|\psi\rangle = \sum_{i=1}^n a_i |i\rangle$ such that $\forall i, a_i \in \mathbb{C}$ and $\sum_i |a_i|^2 = 1$. It is easy to see that $h_{\mathsf{ProdSym}(n)}$ is equivalent to

$$\max_{a \in \mathbb{C}^n} \sum_{i_1, i_2, j_1, j_2} M_{(i_1, i_2), (j_1, j_2)} a_{i_1}^* a_{i_2}^* a_{j_1} a_{j_2}$$
subject to $||a||^2 = 1$. (2)

Now reduce from \mathbb{C} to \mathbb{R} by observing:

- M is a Hermitian so the objective function is real.
- Decomposing the complex number into real and imaginary parts.

Reduce $h_{\text{ProdSym}(n)}$ further

Let $|\psi\rangle = \sum_{i=1}^n a_i |i\rangle$ such that $\forall i, a_i \in \mathbb{C}$ and $\sum_i |a_i|^2 = 1$. It is easy to see that $h_{\mathsf{ProdSym}(n)}$ is equivalent to

$$\max_{a \in \mathbb{C}^n} \sum_{i_1, i_2, j_1, j_2} M_{(i_1, i_2), (j_1, j_2)} a_{i_1}^* a_{i_2}^* a_{j_1} a_{j_2}$$
subject to $||a||^2 = 1$. (2)

Now reduce from \mathbb{C} to \mathbb{R} by observing:

- M is a Hermitian so the objective function is real.
- Decomposing the complex number into real and imaginary parts.

$h_{\text{ProdSym}(n)}$ with real variables

By renaming, we arrive at the $h_{ProdSvm(n)}$ with real variables:

$$\max_{x \in \mathbb{R}^n} f_0(x) = \sum_{i_1, i_2, j_1, j_2} M_{(i_1, i_2), (j_1, j_2)} x_{i_1} x_{i_2} x_{j_1} x_{j_2}$$
subject to $f_1(x) = ||x||^2 - 1 = 0$. (3)

REMARK: this is an instance of *polynomial optimization* problems with a homogenous degree 4 objective polynomial and a degree 2 constraint polynomial.

Principle of Sum-of-Squares

One way to show that a polynomial f(x) is *nonnegative* could be

$$f(x)=\sum a_i(x)^2\geq 0.$$

Example

$$f(x) = 2x^2 - 6x + 5$$

= $(x^2 - 2x + 1) + (x^2 - 4x + 4)$
= $(x - 1)^2 + (x - 2)^2 \ge 0$.

Such a decomposition is called a *sum of squares (SOS) certificate* for the non-negativity of *f*.

Principle of SoS: constrained domain

Definition (Variety)

A set $V \subseteq \mathbb{C}^n$ is called an *algebraic variety* if $V = \{x \in \mathbb{C}^n : g_1(x) = \dots = g_k(x) = 0\}.$

Non-negativity of f(x) on V could be shown by

$$f(x) = \sum a_i(x)^2 + \sum b_j(x)g_j(x) \ge 0.$$

Question: whether all nonnegative polynomials on certain variety have a SOS certificate? Hilbert 17th problem!

Principle of SoS: constrained domain

Definition (Variety)

A set $V \subseteq \mathbb{C}^n$ is called an *algebraic variety* if $V = \{x \in \mathbb{C}^n : g_1(x) = \dots = g_k(x) = 0\}.$

Non-negativity of f(x) on V could be shown by

$$f(x) = \sum a_i(x)^2 + \sum b_j(x)g_j(x) \ge 0.$$

Question: whether all nonnegative polynomials on certain variety have a SOS certificate? Hilbert 17th problem!

Principle of SoS: constrained domain

Definition (Variety)

A set $V \subseteq \mathbb{C}^n$ is called an *algebraic variety* if $V = \{x \in \mathbb{C}^n : g_1(x) = \dots = g_k(x) = 0\}.$

Non-negativity of f(x) on V could be shown by

$$f(x) = \sum a_i(x)^2 + \sum b_j(x)g_j(x) \ge 0.$$

Question: whether all nonnegative polynomials on certain variety have a SOS certificate? Hilbert 17th problem!

Putinar's Positivstellensatz

Definition (Ideal)

The *polynomial ideal I* generated by $g_1, \ldots, g_k \in \mathbb{C}[x_1, \ldots, x_n]$ is

$$I = \{ \sum a_i g_i : a_i \in \mathbb{C}[x_1, \ldots, x_n] \} = \langle g_1, \cdots, g_k \rangle.$$

Theorem (Putinar's Positivstellensatz

Under the Archimedean condition, if f(x) > 0 on $V(I) \cap \mathbb{R}^n$, then

$$f(x) = \sigma(x) + g(x)$$

where $\sigma(x)$ is a SOS and $g(x) \in I$.

Putinar's Positivstellensatz

Definition (Ideal)

The *polynomial ideal I* generated by $g_1, \ldots, g_k \in \mathbb{C}[x_1, \ldots, x_n]$ is

$$I = \{ \sum a_i g_i : a_i \in \mathbb{C}[x_1, \ldots, x_n] \} = \langle g_1, \cdots, g_k \rangle.$$

Theorem (Putinar's Positivstellensatz)

Under the Archimedean condition, if f(x) > 0 on $V(I) \cap \mathbb{R}^n$, then

$$f(x) = \sigma(x) + g(x),$$

where $\sigma(x)$ is a SOS and $g(x) \in I$.

SoS in Optimization

is equivalent to (under AC)

min
$$\nu$$
 such that $\nu - f(x) = \sigma(x) + \sum_{i} b_i(x)g_i(x),$ (5)

where $\sigma(x)$ is SOS and $b_i(x)$ is any polynomial.

- If $\sigma(x)$ and $b_i(x)$ can have *arbitrarily high* degrees, then the optimization problem (5) is equivalent to problem (4).
- By bounding the degrees, i.e., deg(σ(x)), deg(b_i(x)g_i(x)) ≤ 2D for some integer D, we get a hierarchy, namely the Lasserre/Parrilo hierarchy.

min
$$\nu$$
 such that $\nu - f(x) = \sigma(x) + \sum_{i} b_{i}(x)g_{i}(x),$ (6)

- If $\sigma(x)$ and $b_i(x)$ can have *arbitrarily high* degrees, then the optimization problem (5) is equivalent to problem (4).
- By bounding the degrees, i.e., $\deg(\sigma(x))$, $\deg(b_i(x)g_i(x)) \leq 2D$ for some integer D, we get a hierarchy, namely the Lasserre/Parrilo hierarchy.

min
$$\nu$$
 such that $\nu - f(x) = \sigma(x) + \sum_{i} b_i(x)g_i(x),$ (6)

- If $\sigma(x)$ and $b_i(x)$ can have *arbitrarily high* degrees, then the optimization problem (5) is equivalent to problem (4).
- By bounding the degrees, i.e., $\deg(\sigma(x))$, $\deg(b_i(x)g_i(x)) \leq 2D$ for some integer D, we get a hierarchy, namely the Lasserre/Parrilo hierarchy.

min
$$\nu$$
 such that $\nu - f(x) = \sigma(x) + \sum_{i} b_{i}(x)g_{i}(x),$ (6)

- If $\sigma(x)$ and $b_i(x)$ can have *arbitrarily high* degrees, then the optimization problem (5) is equivalent to problem (4).
- By bounding the degrees, i.e., $\deg(\sigma(x))$, $\deg(b_i(x)g_i(x)) \leq 2D$ for some integer D, we get a hierarchy, namely the Lasserre/Parrilo hierarchy.

min
$$\nu$$
 such that $\nu - f(x) = \sigma(x) + \sum_{i} b_{i}(x)g_{i}(x),$ (6)

Why it is a SDP?

Observation

- Any p(x) (of degree 2D) = $m^T Qm$, where m is the vector of monomials of degree up to 2D and Q is the coefficients.
- p(x) is a SOS iff $Q \ge 0$.

$$\min_{\nu,b_{i\alpha}\in\mathbb{R}} \quad \nu$$
 such that
$$\nu A_0 - F - \sum_{i\alpha} b_{i\alpha} G_{i\alpha} \ge 0.$$
 (7)

Complexity: poly(m) poly log($1/\epsilon$), where $m = \binom{n+D}{D}$.

Why it is a SDP?

Observation

- Any p(x) (of degree 2D) = $m^T Qm$, where m is the vector of monomials of degree up to 2D and Q is the coefficients.
- p(x) is a SOS iff $Q \ge 0$.

$$\min_{\substack{\nu,b_{i\alpha}\in\mathbb{R}}} \quad \nu$$
 such that
$$\nu A_0 - F - \sum_{i\alpha} b_{i\alpha} G_{i\alpha} \ge 0.$$
 (7)

Complexity: poly(m) poly log($1/\epsilon$), where $m = \binom{n+D}{D}$.

Why it is a SDP?

Observation

- Any p(x) (of degree 2D) = $m^T Qm$, where m is the vector of monomials of degree up to 2D and Q is the coefficients.
- p(x) is a SOS iff $Q \ge 0$.

$$\min_{\substack{\nu,b_{i\alpha}\in\mathbb{R}}} \quad \nu$$
 such that
$$\nu A_0 - F - \sum_{i\alpha} b_{i\alpha} G_{i\alpha} \geq 0.$$
 (7)

Complexity: poly(m) poly log($1/\epsilon$), where $m = \binom{n+D}{D}$.

Dual of the SDP: moment

Dual of the SOS cone

- Let $\Sigma_{n,2d}$ be the cone of all PSD matrices representing SOS polynomials with degree up to 2d.
- The dual cone $\Sigma_{n,2d}^*$ is moment $M_d(x) \ge 0$, where entry (α, β) of $M_d(x)$ is $\int x^{\alpha+\beta} \mu(dx), |\alpha|, |\beta| \le d$.

Example

When n = 2, d = 2, the $M_d(x)$ for homogenous degree 4 moments is given by

$$M_2(x) = \begin{pmatrix} x_{40} & x_{31} & x_{22} \\ x_{31} & x_{22} & x_{13} \\ x_{22} & x_{13} & x_{04} \end{pmatrix} \ge 0$$

Full Symmetry ⇒ DPS

Allow *redundancy*, we can put DPS in this picture.

Example

Now each entry is labelled with ((i,j),(k,l)) for degree 4 case, i.e., $M_d(x) = \rho \in D(\mathbb{C}^n \otimes \mathbb{C}^n)$.

$$\rho = \sum_{(i,j),(k,l)} x_i x_j x_k x_l |i\rangle |j\rangle \langle k| \langle l|.$$

Note that entry ((i,j),(k,l)) and ((i,l),(k,j)) have the same value $x_ix_jx_kx_l$. This is **PPT** condition. Similar for **DPS**.

Remark: more symmetry because in ProdSym. Flexible in choosing more or less symmetry.

Full Symmetry \implies DPS

Allow *redundancy*, we can put DPS in this picture.

Example

Now each entry is labelled with ((i,j),(k,l)) for degree 4 case, i.e., $M_d(x) = \rho \in D(\mathbb{C}^n \otimes \mathbb{C}^n)$.

$$\rho = \sum_{(i,j),(k,l)} x_i x_j x_k x_l |i\rangle |j\rangle \langle k| \langle l|.$$

Note that entry ((i,j),(k,l)) and ((i,l),(k,j)) have the same value $x_ix_ix_kx_l$. This is **PPT** condition. Similar for **DPS**.

Remark: more symmetry because in ProdSym. Flexible in choosing more or less symmetry.

Karush-Kuhn-Tucker Conditions

For any optimization problem

$$\max f(x) \text{ s.t. } g_i(x) \le 0, h_j(x) = 0, \forall i, j,$$

if x^* is a *local* optimizer, then $\exists \mu_i, \lambda_j$,

$$\nabla f(x^*) = \sum_{i} \mu_i \nabla g_i(x^*) + \sum_{i} \lambda_j \nabla h_j(x^*)$$

$$g_i(x^*) \leq 0, h_j(x^*) = 0,$$

$$\mu_i \geq 0, \mu_i g_i(x^*) = 0.$$

Remark: for convex optimization (our case), any global optimizer satisfies KKT.

Karush-Kuhn-Tucker Conditions

For any optimization problem

$$\max f(x) \text{ s.t. } g_i(x) \leq 0, h_j(x) = 0, \forall i, j,$$

if x^* is a *local* optimizer, then $\exists \mu_i, \lambda_j$,

$$\nabla f(x^*) = \sum_{i} \mu_i \nabla g_i(x^*) + \sum_{i} \lambda_j \nabla h_j(x^*)$$

$$g_i(x^*) \leq 0, h_j(x^*) = 0,$$

$$\mu_i \geq 0, \mu_i g_i(x^*) = 0.$$

Remark: for convex optimization (our case), any global optimizer satisfies KKT.

Our case

Recall our optimization problem is

$$\max f_0(x) \text{ s.t. } f_1(x) = 0.$$

The KKT condition is $\nabla f_0(x) = \lambda \nabla f_1(x)$, which is equivalent to

$$\text{rank} \begin{pmatrix} \frac{\partial f_0(x)}{\partial x_1} & \frac{\partial f_1(x)}{\partial x_1} \\ \vdots & \vdots \\ \frac{\partial f_0(x)}{\partial x_{2n}} & \frac{\partial f_1(x)}{\partial x_{2n}} \end{pmatrix} < 2.$$

$$g_{ij}(x) = \frac{\partial f_0(x)}{\partial x_i} \frac{\partial f_1(x)}{\partial x_i} - \frac{\partial f_0(x)}{\partial x_i} \frac{\partial f_1(x)}{\partial x_i}, \quad \forall i, j$$

Our case

Recall our optimization problem is

$$\max f_0(x) \text{ s.t. } f_1(x) = 0.$$

The KKT condition is $\nabla f_0(x) = \lambda \nabla f_1(x)$, which is equivalent to

$$\operatorname{rank}\begin{pmatrix} \frac{\partial f_0(x)}{\partial x_1} & \frac{\partial f_1(x)}{\partial x_1} \\ \vdots & \vdots \\ \frac{\partial f_0(x)}{\partial x_{2n}} & \frac{\partial f_1(x)}{\partial x_{2n}} \end{pmatrix} < 2.$$

$$g_{ij}(x) = \frac{\partial f_0(x)}{\partial x_i} \frac{\partial f_1(x)}{\partial x_i} - \frac{\partial f_0(x)}{\partial x_i} \frac{\partial f_1(x)}{\partial x_i}, \quad \forall i, j$$

Optimization Problem with KKT constraints

min
$$u$$
 such that $u - f_0(x) \ge 0$ $f_1(x) = 0$ KKT $g_{ij}(x) = 0 \quad \forall \, 1 \le i \ne j \le 2n$

- Apply the degree bound D, we get the SoS SDP hierarchy.
- Will show finite convergence when $D = \exp(\operatorname{poly}(n))$. Then $m = \binom{n+D}{D} = \exp(\operatorname{poly}(n))$. Thus the final time is $\exp(\operatorname{poly}(n)) \operatorname{poly} \log(1/\epsilon)$.

Optimization Problem with KKT constraints

min
$$u$$
 such that $u - f_0(x) \ge 0$ $f_1(x) = 0$ KKT $g_{ij}(x) = 0 \quad \forall \, 1 \le i \ne j \le 2n$

- Apply the degree bound *D*, we get the SoS SDP hierarchy.
- Will show finite convergence when $D = \exp(\operatorname{poly}(n))$. Then $m = \binom{n+D}{D} = \exp(\operatorname{poly}(n))$. Thus the final time is $\exp(\operatorname{poly}(n)) \operatorname{poly} \log(1/\epsilon)$.

KKT Ideal

Definition (KKT Ideal & Variety)

$$I_{K} = \left\{ v(x)f_{1}(x) + \sum h_{ij}(x)g_{ij}(x) \right\} = \langle f_{1}(x), g_{ij}(x) \rangle.$$

$$V(I_{K}) = \left\{ x \in \mathbb{C}^{2n} : \forall p(x) \in I_{K}, p(x) = 0 \right\}$$

Definition (KKT Ideal to degree m)

$$I_K^m = \{v(x)f_1(x) + \sum h_{ij}(x)g_{ij}(x) : \deg(v(x)f_1(x)) \le m, \\ \forall i, j, \deg(h_{ij}g_{ij}) \le m\}.$$

KKT Ideal

Definition (KKT Ideal & Variety)

$$I_{K} = \left\{ v(x)f_{1}(x) + \sum h_{ij}(x)g_{ij}(x) \right\} = \langle f_{1}(x), g_{ij}(x) \rangle.$$
$$V(I_{K}) = \left\{ x \in \mathbb{C}^{2n} : \forall p(x) \in I_{K}, p(x) = 0 \right\}$$

Definition (KKT Ideal to degree *m*)

$$I_K^m = \{v(x)f_1(x) + \sum h_{ij}(x)g_{ij}(x) : \deg(v(x)f_1(x)) \le m, \\ \forall i, j, \deg(h_{ij}g_{ij}) \le m\}.$$

Main Theorems

Theorem (Zero-dimensional of generic I_K)

For a generic M, $|V(I_K)| < \infty$ and I_K is zero-dimensional.

Theorem (Degree bound)

There exists $m=\mathit{O}(\exp(\mathsf{poly}(n)))$, s.t. for a generic M, $\epsilon>0$,

$$V - f_0(x) + \epsilon = \sigma(x) + g(x),$$

where $\sigma(x)$ is SoS and $\deg(\sigma(x)) \leq m, g(x) \in I_K^m$.

Corollary (SDP solution)

Estimate $h_{\text{ProdSym}(n)}(M)$ for a generic M to error ϵ needs $\exp(\text{poly}(n))\text{poly}\log(1/\epsilon)$.

Main Theorems

Theorem (Zero-dimensional of generic I_K)

For a generic M, $|V(I_K)| < \infty$ and I_K is zero-dimensional.

Theorem (Degree bound)

There exists $m = O(\exp(\text{poly}(n)))$, s.t. for a generic M, $\epsilon > 0$,

$$v - f_0(x) + \epsilon = \sigma(x) + g(x),$$

where $\sigma(x)$ is SoS and $\deg(\sigma(x)) \leq m, g(x) \in I_K^m$.

Corollary (SDP solution)

Estimate $h_{\mathsf{ProdSym}(n)}(M)$ for a generic M to error ϵ needs $\mathsf{exp}(\mathsf{poly}(n))\mathsf{poly}\log(1/\epsilon)$.

Main Theorems

Theorem (Zero-dimensional of generic I_K)

For a generic M, $|V(I_K)| < \infty$ and I_K is zero-dimensional.

Theorem (Degree bound)

There exists $m = O(\exp(\text{poly}(n)))$, s.t. for a generic M, $\epsilon > 0$,

$$v - f_0(x) + \epsilon = \sigma(x) + g(x),$$

where $\sigma(x)$ is SoS and $\deg(\sigma(x)) \leq m, g(x) \in I_K^m$.

Corollary (SDP solution)

Estimate $h_{\mathsf{ProdSym}(n)}(M)$ for a generic M to error ϵ needs $\mathsf{exp}(\mathsf{poly}(n))\mathsf{poly}\,\mathsf{log}(1/\epsilon)$.

Observations

- Generic *M* is *dense*. The opt of SDP could be continuous.
 - Issue: SOS SDP might be infeasible up to degree m for arbitrary input M.

Observations

- Generic M is dense. The opt of SDP could be continuous.
- Issue: SOS SDP might be infeasible up to degree m for arbitrary input M.

Solutions

 Switch to the dual SDP (moment): satisfies Slater's condition i.e. strictly feasible

Observations

- Generic *M* is *dense*. The opt of SDP could be continuous.
- Issue: SOS SDP might be infeasible up to degree m for arbitrary input M.

- Switch to the dual SDP (moment): satisfies Slater's
- For a generic M, by strong duality,
- $h_{\text{ProdSym}(n)}(M) = OPT_{\text{mom}}(M).$

Observations

- Generic M is dense. The opt of SDP could be continuous.
- Issue: SOS SDP might be infeasible up to degree m for arbitrary input M.

- Switch to the dual SDP (moment): satisfies Slater's condition, i.e, strictly feasible.
- For a generic M, by strong duality, $h_{\text{ProdSym}(n)}(M) = OPT_{\text{mom}}(M)$.
- For any input M, use the continuity of the dual SDP then.

Observations

- Generic M is dense. The opt of SDP could be continuous.
- Issue: SOS SDP might be infeasible up to degree m for arbitrary input M.

- Switch to the dual SDP (moment): satisfies Slater's condition, i.e, strictly feasible.
- For a generic M, by strong duality,
 h_{ProdSym(n)}(M) = OPT_{mom}(M).
- For any input M, use the continuity of the dual SDP then

Observations

- Generic M is dense. The opt of SDP could be continuous.
- Issue: SOS SDP might be infeasible up to degree m for arbitrary input M.

- Switch to the dual SDP (moment): satisfies Slater's condition, i.e, strictly feasible.
- For a generic M, by strong duality,
 h_{ProdSym(n)}(M) = OPT_{mom}(M).
- For any input *M*, use the continuity of the dual SDP then.

Let
$$\mathcal{U}=\{f_1(x)=0\}, \mathcal{W}=\{\forall\, i,j,g_{ij}=0\}.$$
 then $V(I_K)\subseteq\mathcal{U}\cap\mathcal{W}.$

It suffices to show $|\mathcal{U} \cap \mathcal{W}| < \infty$. Construct $\mathcal{A} = \mathcal{X} \cap \mathcal{U}$ s.t.

$$A \cap W = \emptyset$$
 and dim $(X) = n - 1$. Note $W \cap A = (W \cap U) \cap X$.

By Bézout's theorem, two varieties with dimension sum $\geq n$ must intersect. Thus

$$\dim(\mathcal{W} \cap \mathcal{U}) + \dim(\mathcal{X}) = \dim(\mathcal{W} \cap \mathcal{U}) + n - 1 < n.$$

This implies $\dim(\mathcal{W} \cap \mathcal{U}) = 0$ and thus $|V(I_K)| < \infty$.

Let
$$\mathcal{U} = \{f_1(x) = 0\}, \mathcal{W} = \{\forall i, j, g_{ij} = 0\}.$$
 then $V(I_K) \subseteq \mathcal{U} \cap \mathcal{W}$.

It suffices to show $|\mathcal{U} \cap \mathcal{W}| < \infty$. Construct $\mathcal{A} = \mathcal{X} \cap \mathcal{U}$ s.t.

$$A \cap W = \emptyset$$
 and dim $(X) = n - 1$. Note $W \cap A = (W \cap U) \cap X$.

By Bézout's theorem, two varieties with dimension sum $\geq n$ must intersect. Thus

$$\dim(\mathcal{W} \cap \mathcal{U}) + \dim(\mathcal{X}) = \dim(\mathcal{W} \cap \mathcal{U}) + n - 1 < n.$$

This implies $\dim(\mathcal{W} \cap \mathcal{U}) = 0$ and thus $|V(I_K)| < \infty$.

Let
$$\mathcal{U} = \{f_1(x) = 0\}, \mathcal{W} = \{\forall i, j, g_{ij} = 0\}.$$
 then $V(I_K) \subseteq \mathcal{U} \cap \mathcal{W}$.

It suffices to show $|\mathcal{U} \cap \mathcal{W}| < \infty$. Construct $\mathcal{A} = \mathcal{X} \cap \mathcal{U}$ s.t.

$$A \cap W = \emptyset$$
 and dim $(X) = n - 1$. Note $W \cap A = (W \cap U) \cap X$.

By Bézout's theorem, two varieties with dimension sum $\geq n$ must intersect. Thus

$$\dim(\mathcal{W} \cap \mathcal{U}) + \dim(\mathcal{X}) = \dim(\mathcal{W} \cap \mathcal{U}) + n - 1 < n.$$

This implies $\dim(\mathcal{W} \cap \mathcal{U}) = 0$ and thus $|V(I_K)| < \infty$.

Let
$$\mathcal{X} = \{f_0(x) = \mu\}$$
 for generic (μ, M) . dim $(\mathcal{X}) = n - 1$.

By Bertini's theorem, $\dim(A) = \dim(U \cap X) = n - 2$.

The Jacobian matrix
$$J_{\mathcal{A}} = \begin{pmatrix} \frac{\partial f_0}{\partial x_1} & \frac{\partial f_1}{\partial x_1} \\ \vdots & \vdots \\ \frac{\partial f_0}{\partial x_n} & \frac{\partial f_1}{\partial x_n} \end{pmatrix}$$
 has $\operatorname{rank}(J_{\mathcal{A}}) = 2$.

W by definition says rank(J_A) = 1. Thus no intersection!

Let
$$\mathcal{X} = \{f_0(x) = \mu\}$$
 for generic (μ, M) . dim $(\mathcal{X}) = n - 1$.

By Bertini's theorem, $dim(A) = dim(U \cap X) = n - 2$.

The Jacobian matrix
$$J_{\mathcal{A}} = \begin{pmatrix} \frac{\partial f_0}{\partial x_1} & \frac{\partial f_1}{\partial x_1} \\ \vdots & \vdots \\ \frac{\partial f_0}{\partial x_n} & \frac{\partial f_1}{\partial x_n} \end{pmatrix}$$
 has rank $(J_{\mathcal{A}}) = 2$.

W by definition says rank(J_A) = 1. Thus no intersection!

Let
$$\mathcal{X} = \{f_0(x) = \mu\}$$
 for generic (μ, M) . dim $(\mathcal{X}) = n - 1$.

By Bertini's theorem, $\dim(A) = \dim(U \cap X) = n - 2$.

The Jacobian matrix
$$J_{\mathcal{A}} = \begin{pmatrix} \frac{\partial f_0}{\partial x_1} & \frac{\partial f_1}{\partial x_1} \\ \vdots & \vdots \\ \frac{\partial f_0}{\partial x_n} & \frac{\partial f_1}{\partial x_n} \end{pmatrix}$$
 has rank $(J_{\mathcal{A}}) = 2$.

W by definition says rank(J_A) = 1. Thus no intersection!

Let
$$\mathcal{X} = \{f_0(x) = \mu\}$$
 for generic (μ, M) . dim $(\mathcal{X}) = n - 1$.

By Bertini's theorem, $dim(A) = dim(U \cap X) = n - 2$.

The Jacobian matrix
$$J_{\mathcal{A}} = \begin{pmatrix} \frac{\partial f_0}{\partial x_1} & \frac{\partial f_1}{\partial x_1} \\ \vdots & \vdots \\ \frac{\partial f_0}{\partial x_n} & \frac{\partial f_1}{\partial x_n} \end{pmatrix}$$
 has rank $(J_{\mathcal{A}}) = 2$.

 \mathcal{W} by definition says rank $(J_{\mathcal{A}})=1$. Thus no intersection!

Let $\{\gamma_i\}$ be a Grobner basis for I_K .

$$|V(I_K)| < \infty \implies \max \deg\{\gamma_i\} \le D = \exp(\operatorname{poly}(n)).$$

Now, want to bound $deg(\sigma(x)), deg(g(x))$ in

$$v - f_0(x) = \sigma(x) + g(x)$$
. s.t. $\sigma(x) SOS, g(x) \in I_K^m$

Let $\sigma(x) = \sum s_a(x)^2$. By property of Grobner basis

$$s_a(x) = g_a(x) + u_a(x), \text{ s.t. } g_a(x) \in I_K, \deg(u_a(x)) \le nD.$$

Thus

$$v - f_0(x) = \sigma'(x) + g'(x), \deg(\sigma'(x)) \le \exp(\operatorname{poly}(n)), g' \in I_K.$$

Proof of Theorem 2

Let $\{\gamma_i\}$ be a Grobner basis for I_K .

$$|V(I_K)| < \infty \implies \max \deg\{\gamma_i\} \le D = \exp(\operatorname{poly}(n)).$$

Now, want to bound $deg(\sigma(x)), deg(g(x))$ in

$$v - f_0(x) = \sigma(x) + g(x)$$
. s.t. $\sigma(x)$ SOS, $g(x) \in I_K^m$.

Let $\sigma(x) = \sum s_a(x)^2$. By property of Grobner basis

$$s_a(x) = g_a(x) + u_a(x)$$
, s.t. $g_a(x) \in I_K$, $\deg(u_a(x)) \leq nD$.

Thus

$$v - f_0(x) = \sigma'(x) + g'(x), \deg(\sigma'(x)) \le \exp(\operatorname{poly}(n)), g' \in I_K.$$

Proof of Theorem 2

Let $\{\gamma_i\}$ be a Grobner basis for I_K .

$$|V(I_K)| < \infty \implies \max \deg\{\gamma_i\} \le D = \exp(\operatorname{poly}(n)).$$

Now, want to bound $deg(\sigma(x)), deg(g(x))$ in

$$v - f_0(x) = \sigma(x) + g(x)$$
. s.t. $\sigma(x)$ SOS, $g(x) \in I_K^m$.

Let $\sigma(x) = \sum s_a(x)^2$. By property of Grobner basis

$$s_a(x) = g_a(x) + u_a(x)$$
, s.t. $g_a(x) \in I_K$, $\deg(u_a(x)) \le nD$.

Thus

$$v - f_0(x) = \sigma'(x) + g'(x), \deg(\sigma'(x)) \le \exp(\operatorname{poly}(n)), g' \in I_K.$$

Proof of Theorem 2

Let $\{\gamma_i\}$ be a Grobner basis for I_K .

$$|V(I_K)| < \infty \implies \max \deg\{\gamma_i\} \le D = \exp(\operatorname{poly}(n)).$$

Now, want to bound $deg(\sigma(x)), deg(g(x))$ in

$$v - f_0(x) = \sigma(x) + g(x)$$
. s.t. $\sigma(x)$ SOS, $g(x) \in I_K^m$.

Let $\sigma(x) = \sum s_a(x)^2$. By property of Grobner basis

$$s_a(x)=g_a(x)+u_a(x), \text{ s.t. } g_a(x)\in I_K, \deg(u_a(x))\leq nD.$$

Thus

$$v - f_0(x) = \sigma'(x) + g'(x), \deg(\sigma'(x)) \le \exp(\operatorname{poly}(n)), g' \in I_K.$$

- In Grobner basis, $g'(x) = \sum t_k \gamma_k(x)$, $\deg(t_k \gamma_k(x)) \leq m$
- (Omitted) $\gamma_k(x) = \sum u_{ij}(x)g_{ij}(x)$, $\deg(u_{ij}) \leq m$

Thus,
$$g'(x) = \sum t_k u_{ij} g_{ij}(x)$$
, $\deg(t_k u_{ij}) \leq m$, $\implies g'(x) \in I_K^m$.

$$I_K^m = \{v(x)f_1(x) + \sum h_{ij}(x)g_{ij}(x) : \deg(v(x)f_1(x)) \le m, \\ \forall i, j, \deg(h_{ij}g_{ij}) \le m\}.$$

- $\deg(g'(x)) = \deg(\sigma'(x)) = m$.
- In Grobner basis, $g'(x) = \sum t_k \gamma_k(x)$, $\deg(t_k \gamma_k(x)) \leq m$.
- (Omitted) $\gamma_k(x) = \sum u_{ij}(x)g_{ij}(x)$, $\deg(u_{ij}) \leq m$.

Thus,
$$g'(x) = \sum t_k u_{ij} g_{ij}(x)$$
, $\deg(t_k u_{ij}) \leq m$, $\implies g'(x) \in I_K^m$.

$$I_K^m = \{v(x)f_1(x) + \sum h_{ij}(x)g_{ij}(x) : \deg(v(x)f_1(x)) \le m, \\ \forall i, j, \deg(h_{ij}g_{ij}) \le m\}.$$

- $\deg(g'(x)) = \deg(\sigma'(x)) = m$.
- In Grobner basis, $g'(x) = \sum t_k \gamma_k(x)$, $\deg(t_k \gamma_k(x)) \leq m$.
- (Omitted) $\gamma_k(x) = \sum u_{ij}(x)g_{ij}(x)$, $\deg(u_{ij}) \leq m$.

Thus,
$$g'(x) = \sum t_k u_{ij} g_{ij}(x)$$
, $\deg(t_k u_{ij}) \leq m$, $\implies g'(x) \in I_K^m$.

$$I_K^m = \{v(x)f_1(x) + \sum h_{ij}(x)g_{ij}(x) : \deg(v(x)f_1(x)) \le m, \\ \forall i, j, \deg(h_{ij}g_{ij}) \le m\}.$$

- $\deg(g'(x)) = \deg(\sigma'(x)) = m$.
- In Grobner basis, $g'(x) = \sum t_k \gamma_k(x)$, $\deg(t_k \gamma_k(x)) \leq m$.
- (Omitted) $\gamma_k(x) = \sum u_{ij}(x)g_{ij}(x)$, $\deg(u_{ij}) \leq m$.

Thus,
$$g'(x) = \sum t_k u_{ij} g_{ij}(x)$$
, $\deg(t_k u_{ij}) \leq m$, $\implies g'(x) \in I_K^m$.

$$I_K^m = \{v(x)f_1(x) + \sum h_{ij}(x)g_{ij}(x) : \deg(v(x)f_1(x)) \le m, \\ \forall i, j, \deg(h_{ij}g_{ij}) \le m\}.$$

- $\deg(g'(x)) = \deg(\sigma'(x)) = m$.
- In Grobner basis, $g'(x) = \sum t_k \gamma_k(x)$, $\deg(t_k \gamma_k(x)) \leq m$.
- (Omitted) $\gamma_k(x) = \sum u_{ij}(x)g_{ij}(x)$, $\deg(u_{ij}) \leq m$.

Thus,
$$g'(x) = \sum t_k u_{ij} g_{ij}(x)$$
, $\deg(t_k u_{ij}) \leq m$, $\implies g'(x) \in I_K^m$.

$$I_K^m = \{v(x)f_1(x) + \sum h_{ij}(x)g_{ij}(x) : \deg(v(x)f_1(x)) \le m, \\ \forall i, j, \deg(h_{ij}g_{ij}) \le m\}.$$

- Finite convergence at exp(poly(n)) level. Numerical error only.
- KKT constraints from optimization theory.
- Analysis follows from connection to the Sum-of-Squares analysis.
- Generic solutions satisfy the constraints perfectly.
- Continuity and feasibility of SDPs allow extension to arbitrary inputs.

- Finite convergence at exp(poly(n)) level. Numerical error only.
- KKT constraints from optimization theory.
- Analysis follows from connection to the Sum-of-Squares analysis.
- Generic solutions satisfy the constraints perfectly.
- Continuity and feasibility of SDPs allow extension to arbitrary inputs.

- Finite convergence at exp(poly(n)) level. Numerical error only.
- KKT constraints from optimization theory.
- Analysis follows from connection to the Sum-of-Squares analysis.
- Generic solutions satisfy the constraints perfectly.
- Continuity and feasibility of SDPs allow extension to arbitrary inputs.

- Finite convergence at exp(poly(n)) level. Numerical error only.
- KKT constraints from optimization theory.
- Analysis follows from connection to the Sum-of-Squares analysis.
- Generic solutions satisfy the constraints perfectly.
- Continuity and feasibility of SDPs allow extension to arbitrary inputs.

- Finite convergence at exp(poly(n)) level. Numerical error only.
- KKT constraints from optimization theory.
- Analysis follows from connection to the Sum-of-Squares analysis.
- Generic solutions satisfy the constraints perfectly.
- Continuity and feasibility of SDPs allow extension to arbitrary inputs.

Extensions

- To the non-commutative setting, e.g., the NPA hierarchy for approximating the non-local game value.
- Partial progress: a NC version of KKT conditions

The tip of the iceberg: lots of unknowns await discovery ?!

Extensions

- To the non-commutative setting, e.g., the NPA hierarchy for approximating the non-local game value.
- Partial progress: a NC version of KKT conditions.

The tip of the iceberg: lots of unknowns await discovery?

Extensions

- To the non-commutative setting, e.g., the NPA hierarchy for approximating the non-local game value.
- Partial progress: a NC version of KKT conditions.

The tip of the iceberg: lots of unknowns await discovery ?!

Extensions

- To the non-commutative setting, e.g., the NPA hierarchy for approximating the non-local game value.
- Partial progress: a NC version of KKT conditions.

The tip of the iceberg: lots of unknowns await discovery ?!

Open Questions

DPS+

- Analyze the low levels of DPS+.
- Advantages of adding KKT conditions other than presented here.

NPA+

- The use of NC KKT conditions.
- Can we have finite convergence for the field value?

SoS hierarchy

• Any other applications to quantum information?

Question And Answer

Thank you! Q & A