{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Name: **Your name here** \n", "UID: **Your student ID num here**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Homework 7: Dual methods \n", "Upload a pdf version of your solution to gradescope.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Problem 1: The conjugate and the dual\n", "Consider the \"monotropic\" program\n", "\\begin{align}\n", "\\text{minimize} & \\quad \\|x\\|_\\infty \\\\\n", "\\text{subject to} & \\quad Ax=b . \\nonumber\n", "\\end{align}\n", "\n", "Write this as an unconstrained (or implicitly constrained) problem using the characteristic function of the zero vector $\\chi_0(z) .$ This function is zero if its argument is zero, and infinite otherwise.\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`Your answer here...`\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### a) What is the conjugate of $f(z)= \\|z\\|_\\infty$?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`Your answer here...`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### b) What is the conjugate of $g(z)=\\chi_0(z)$?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`Your answer here...`\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### c) Using the conjugate functions, write down the dual of the monotropic problem." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`Your answer here...`\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Problem 2: Linear programming\n", "Consider the linear program\n", "\\begin{align*}\n", "\\text{minimize} \\quad & c^T x \\\\\n", "\\text{subject to} \\quad & Ax=b\\\\\n", " & x\\ge 0.\n", "\\end{align*}\n", "\n", "#### a) Write the optimality conditions for this problem (i.e., the KKT system). Your solution should contain 5 equations." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`Your answer here...`\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### b) Write the Lagrangian for this problem.\n", "Use $\\lambda$ and $\\eta$ are your lagrange multipliers for the equality and inequality constraints, respectively." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`Your answer here...`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### c) Minimize out the primal variables in the Lagrangian, and write the dual formulation of this linear program." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`Your answer here...`\n", "\n", " \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Problem 3: Sensitivity bound\n", "Consider the problem\n", "\\begin{align}\n", "\\text{minimize} \\quad & f(x) \\\\\n", "\\text{subject to}\\quad & g(x) \\le 0.\n", "\\end{align}\n", "Let $x_0$ be a solution to this problem, and $\\lambda_0$ be the corresponding optimal Lagrange multiplier. Now, define a perturbed problem\n", " \\begin{align}\n", "\\text{minimize}\\quad & f(x) \\\\\n", "\\text{subject to}\\quad & g(x) \\le \\epsilon\n", "\\end{align}\n", "where $\\epsilon$ is a vector. Let $x_\\epsilon$ be a solution to the perturbed problem. Note, if we put large negative values in $\\epsilon$, then the constraint set gets smaller, and we expect the corresponding value of $f(x_\\epsilon)$ to increase. \n", "\n", "Prove the \"sensitivity bound\"\n", "$$ f(x_0) - \\lambda_0^T \\epsilon \\le f(x_\\epsilon). $$\n", "This bound shows that the Lagrange multipliers determine how much the objective increases as the vector $\\epsilon$ becomes more negative." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`Your answer here...`" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 2 }