{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Name: Your name here\n", "UID: Your student ID num here" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Homework 4: Gradients \n", " \n", "Use either the slides, or Boyd $\\S$3.2 as a reference.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Problem 1\n", "For this problem, you may use any of the results/rules from the lecture slides.\n", "\n", "### (a) Consider the function\n", " $$f(x) = \\begin{cases}\n", "0, \\text{ if } x<0\\\\\n", "\\infty , \\text{ if } x\\ge 0\\\\\n", "\\end{cases}.$$\n", "\n", "Is this function closed and proper?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "*Your work here*\n", "\n", "No. It is proper but not closed because the epigraph does not contain the point (0,0) or anything above it. This means the epigraph has an open edge.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### (b) Consider the set of $n\\times n$ low-rank matrices $\\{A\\in\\mathbb{R}^{n\\times n} | \\, \\text{rank}(A)\\le k \\},$ where $00$ with \n", " $$ \\langle x-y,\\nabla f(x) - \\nabla f(y) \\rangle \\ge m\\|x-y\\|^2.$$\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "*Your work here*\n", "\n", "By the definition of strong convexity\n", "$$f(y) \\ge f(x) + (y-x)^T\\nabla f(x) + \\frac{m}{2}\\|y-x\\|^2.$$\n", "We also have\n", "$$f(x) \\ge f(y) + (x-y)^T\\nabla f(y) + \\frac{m}{2}\\|x-y\\|^2.$$\n", "Adding these together and cancelling terms yields\n", "\n", "$$0 \\ge (x-y)^T(\\nabla f(y)-\\nabla f(x)) + m\\|x-y\\|^2,$$\n", "which re-arranges to yield the result." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Problem 3\n", " Suppose that $g(x)$ is convex and $h(x)$ is concave (i.e. $-h(x)$ is convex). Suppose we restrict both functions into a closed, convex set $C$ such that both $g(x)$ and $h(x)$ are always positive when $x \\in C.$ Prove that the function\n", " $f(x) = g(x)/h(x)$ \n", " is quasi-convex. (note: It follows that every local minimum is also global)\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "*Your work here*\n", "\n", "Choose some $\\alpha \\ge 0$ and consider the sub-level set $S_\\alpha = \\{x| f(x) \\le \\alpha \\}.$ If $x\\in S_\\alpha,$ then \n", "$$g(x)/h(x) \\le \\alpha \\quad \\longrightarrow \\quad g(x) \\le \\alpha h(x) \\quad \\longrightarrow \\quad g(x) - \\alpha h(x) \\le 0.$$\n", "But $-h(x)$ is convex and $\\alpha \\ge 0,$ and so $g(x) - \\alpha h(x)$ is convex. Because the set $S_\\alpha$ is a sub-level set of the convex function $g(x) - \\alpha h(x),$ it is convex." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 2 }