Machine Learning

Stabilizing GANs with Prediction

Why are GANs hard to train?

Adversarial neural networks solve many important problems in data science, but are notoriously difficult to train. These difficulties come from the fact that optimal weights for adversarial nets correspond to saddle points, and not minimizers, of the loss function. The alternating stochastic gradient methods typically used for such problems do not reliably converge to saddle points, and when convergence does happen it is often highly sensitive to learning rates.

Continue reading

Training Quantized Nets: A Deeper Understanding

Why quantized nets?

Deep neural networks are an integral part of state-of-the-art computer vision and natural language processing systems. Because of their high memory requirements and computational complexity, networks are usually trained using powerful hardware. There is an increasing interest in training and deploying neural networks directly on battery-powered devices, such as cell phones or other platforms. Such low-power embedded systems are memory and power limited, and in some cases lack basic support for floating-point arithmetic.

Continue reading

Distributed Machine Learning

server

Distributed


Machine Learning



-

Classical machine learning methods, include stochastic gradient descent (also known as backprop), work great on one machine, but don’t scale well to the cloud or cluster setting. We propose a variety of algorithmic frameworks for scaling machine learning across many workers. Many of our distributed ML experiments are done using USNA’s Grace Supercomputer, which is currently hosted at University of Maryland.

Continue reading