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Abstract

This paper proposes two different models for
equitable resource allocation in online settings.
The first one is called external equity promotion,
where sequentially arriving agents are heteroge-
neous in their external attributes, namely how
many resources they demand, which are drawn
from a probability distribution (accessible to the
algorithm). The focus is then to devise an alloca-
tion policy such that every requester can get a fair
share of resources proportional to their demands,
regardless of their arrival time. The second is
called internal equity promotion, where arriving
requesters can be treated homogeneously in exter-
nal attributes (demands) but are heterogeneous in
internal traits such as demographics. In particu-
lar, each requester can be identified as belonging
to one or several groups, and an allocation of re-
sources is regarded as equitable when every group
of requesters can receive a fair share of resources
proportional to the percentage of that group in
the whole population. For both models above, we
consider as the benchmark a clairvoyant optimal
solution that has the privilege to access all random
demand realizations in advance. We consider two
equity metrics, namely ex-post and ex-ante, and
discuss the challenges under the two metrics in de-
tail. Specifically, we present two linear program
(LP)-based policies for external equity promotion
under ex-ante with independent demands, each
achieving an optimal CR of 1/2 with respect to
the benchmark LP. For internal equity promotion,
we present optimal policies under both ex-ante
and ex-post metrics.
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1. Introduction
We consider online resource allocation under a typical non-
profit setting, where limited or even scarce resources are
administered by a not-for-profit organization like a gov-
ernment, and our priority is equity such that every type of
online agent could receive a fair share of the limited sup-
plies. Examples include refugee resettlement (Ahani et al.,
2021), allocation of public housing for lower-income fami-
lies (Benabbou et al., 2018), distribution of emergency aid
for natural disasters like wildfires (Wang et al., 2019), al-
location of food donation from mobile pantries for needy
families (Lien et al., 2014), and the distribution of urgent
medical equipment to local hospitals and nursing homes
during a pandemic (Manshadi et al., 2021).

In this work, we identify two different classes of models for
equitable resource allocation in online settings. In the first
class, which we refer to as external equity promotion, the
arriving requesters can be heterogeneous in their external
attributes, namely how much resource they demand, which
is drawn from a probability distribution. The focus is then to
devise an allocation policy such that every requester can get
a fair share of resources proportional to their demand, re-
gardless of their arrival time. Some representative works for
this class investigate distributing medical suppliers (Man-
shadi et al., 2021) and allocating food donations to different
agencies (Lien et al., 2014). By contrast, in the second
class, the arriving requesters all demand exactly one unit
of resource. We call this class internal equity promotion
because the emphasis is on the differences between the de-
mographics of requesters. The requesters can be identified
as belonging to one or several groups, and the distribution
of resources is regarded as equitable when every group of
requesters can receive a fair share of resources proportional
to the percentage of that group in the whole population.
Internal equity has been studied in ride-hailing services
(during peak hours especially), where we need to allocate
(limited) available drivers to arriving riders such that riders
of each group (based on gender, race, etc.) can receive a
fair share of drivers (Ma et al., 2022; Nanda et al., 2020; Xu
& Xu, 2020). The issue of internal equity has been raised
again and well reported in the COVID-19 vaccine distribu-
tion. There is much news showing stark racial disparities
existing in the early stages of the vaccine rollout across the
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country (Stolberg, 2021; Fitzsimmons, 2021; Board, 2021;
Singer, 2021; Blackstock & Blackstock, 2021; Jones, 2021;
Abcarian, 2021; Adamson, 2021). The article (Walker et al.,
2021) published on March 5, 2021, in The New York Times,
showed that “The vaccination rate for Black Americans is
half that of white people, and the gap for Hispanic people
is even larger, according to a New York Times analysis of
state-reported race and ethnicity information.”

In this work, we derive online allocation algorithms that
optimize for equity, as well as compare their performance to
the equity attainable by offline algorithms, on parsimonious
models from both classes. For internal equity, we consider
the simplified setting where every agent belongs to their own
group. Surprisingly, even this simple problem of rationing
a single resource among identical individuals is non-trivial,
and we expect our techniques for solving it to be extendable
to group settings in the future.

We now present models of external and internal equity pro-
motion where equity can be defined with respect to two
different metrics, sometimes called ex-post and ex-ante in
the literature (Freeman et al., 2020; Aziz, 2020).

External Equity Promotion (EEP) under Ex-Post and
Ex-Ante Metrics. Our setting is mainly inspired by the
work (Manshadi et al., 2021). There is an infinitely-divisible
total supply, normalized to 1, which is allocated over n
rounds. During each round i ∈ [n] := {1, 2, . . . , n}, an
agent with random non-negative demand Di is observed,
and the n random demands D := (D1, D2, . . . , Dn) can
be either independent or correlated with each other. Let
π denote an online allocation policy (or algorithm).1 π
has access to the distribution of D in advance, but it must
make an irrevocable commitment Xi ≤ min(Di, Ri) to
each realized demand Di before seeing the realizations of
demands Dj for j > i, where Ri refers to the resource
remaining at the beginning of time i. We note that the allo-
cated amounts X1, . . . , Xn are random, depending on the
realizations D1, . . . , Dn and also potentially on the random-
ness in allocation policy π. We study the metrics of equity
defined as follows.

Ex-Post Equity: σP (π) = ED,π
[

mini∈[n]Xi/Di

]
;

Ex-Ante Equity: σA(π) = mini∈[n] ED,π
[
Xi/Di

]
.

Remarks. (1) For any agent i with Di = 0, we assume by
default that any policy will make a commitment Xi = 0,
with Xi/Di understood to be 1. (2) The expectation in the
two definitions above is taken over the randomness in both
of the n random demands of {Di|i ∈ [n]} and the possible
randomness in the policy π.

Internal Equity Promotion (IEP) under Ex-Post and Ex-
1In this paper, we use the two terms “algorithm” and “policy”

interchangeably.

Ante Metrics. Recall that internal equity has been an issue
in applications such as ride-hailing services and distributing
vaccines, where arriving agents each have a uniform and
unsplittable demand while they are heterogeneous in their
internal attributes like demographics. In this paper, we focus
on individual-level equity.2 Assume WLOG that each agent
requests a unit resource (indivisible) and each represents
a specific group different from others. Suppose we have a
serving capacity of b ∈ Z+, i.e., we can serve up to b agents,
and we expect to see a random number N of arriving agents,
where N follows a known Poisson distribution Pois(λ).
Consider a given policy π. Similar to external equity, we
have that (1) π has access to λ in advance and (2) upon the
arrival of each agent, π should decide irrevocably if to serve
her or not when the serving capacity remains (If yes, then
the serving capacity should be decreased by 1 after serving
the arriving agent). For each arriving agent i ∈ [N ], let
Xi = 1 indicate i is served in π. We define the ex-post and
ex-ante equity achieved by π as follows, respectively.

Ex-Post Equity: σP (π) = EN,π
[

mini∈[N ]Xi];

Ex-Ante Equity: σA(π) = EN
[

mini∈[N ] Eπ
[
Xi

]]
.

Remarks. For the ex-post equity above, the expectation is
taken over the randomness in the total number of arrivals
(N ) and that of π; as for the ex-ante equity, the outer ex-
pectation is over the total number of arrivals (N ), while the
inner is over the potential randomness of π.

Competitive Ratio (CR). Recall that all policies considered
here are required to make an instant and irrevocable deci-
sion upon each arrival of online agents. When it comes to
evaluating the performance of an online policy, a common
benchmark, called clairvoyant optimal (denoted by OPT),
enjoys the privilege that it can optimize its decision after
observing all arriving agents. Consider a given metric of
equity (either ex-post or ex-ante) and a given objective (max-
imization of either EEP or IEP). We say a policy π achieves
a competitive ratio of α ∈ [0, 1] if σ(π, I) ≥ α ·σ(OPT, I)
for all possible instances I, where σ(π, I) and σ(OPT, I)
denote the respective performance of π and OPT on the
instance I under the pre-specified metric of equity.

In many cases, it is interesting enough to identify an optimal
policy. For a given problem and a given metric of equity,
we say a policy π is optimal if σ(π, I) ≥ σ(π′, I) for all
possible instances I and all possible (online) policies π′. 3

When it comes to policy design, we restrict our attention to
policies that run efficiently with a running time polynomial
in the input size. Note that π is 1-competitive shows that

2See a detailed discussion on the challenge in promoting group-
level internal equity in Appendix A.

3Here we just require π′ should conform to the real-time
decision-making requirement: There is no requirement on its time
efficiency (e.g., polynomial running time).
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π is optimal but not vice versa: The former statement is
stronger, indicating that π is not only optimal among all
policies but also matches the clairvoyant optimal that can
access well in advance all arriving agents together with their
demands and demographics.

1.1. Ex-post vs. Ex-ante

In this section, we list a few facts regarding ex-post and
ex-ante to expose the subtle differences between the two.

Observation 1. For internal equity promotion (IEP) under
ex-post, the greedy policy (Greedy), which will serve any
arriving agent until capacity is exhausted, is 1-competitive.

Proof of Observation 1. By definition of ex-post equity un-
der IEP, no policy has any incentive to reserve any ca-
pacity for an arriving agent. We can verify that Greedy
matches the clairvoyant optimal for any arrival sequence in
the way that σP (Greedy) = σP (OPT) = 1 if N ≤ b and
σP (Greedy) = σP (OPT) = 0 if N > b, where N is the
total number of arrivals and b is the serving capacity.

Observation 2. For both IEP and EEP, a clairvoyant op-
timal algorithm under ex-post can differ from that under
ex-ante.

Proof of Observation 2. Let OPTP and OPTA denote the
respective clairvoyant optimal policy under ex-post and
ex-ante. Consider an instance of IEP where b = 1 and
N = 2 with probability 1. From Observation 1, we see
OPTP = Greedy and σP (OPTP ) = 0. However, OPTA
should serve agents 1 and 2 each with probability 1/2, with
σA(OPTA) = 1/2.

For EEP, it is slightly tricky to see that OPTP can differ
from OPTA. Consider an instance of EEP where n = 3,
D1 = Ber(1), D2 = Ber(1), and D3 = Ber(1/2), where
Ber(p) denotes a Bernoulli random variable of mean p. We
can verify that OPTA will completely ignore agent i = 3
by committing X1 = X2 = 1/2 to agents i = 1, 2. The
resulting ex-ante equity is σA(OPTA) = 1/2. Note that
by definition, the ex-ante equity on agent i = 3 in OPTA
should be 1/2 · 1 + 1/2 · 0 = 1/2. In contrast, OPTP
will commit X1 = X2 = X3 = 1/3 when D3 = 1 and
X1 = X2 = 1/2 when D3 = 0. The resulting ex-post
equity should be σP (OPTP ) = 1/2 · 1/3 + 1/2 · 1/2 =
5/12.

Observation 3. For external equity promotion (EEP) under
ex-post with correlated demands, no policy can achieve a
competitive ratio (CR) better than O(1/ lnn).4

4Note that in the case of correlated demands, it may take ex-
ponential space (in terms of n) to represent the input distribution
of n demands. The negative results shown in Observations 3
and 4 hold even if the algorithm has access to this full (possibly

Example 1. Consider an instance of EEP due to (Manshadi
et al., 2021) as follows. We have n arriving agents and a
unit supply. The distribution of D = (Di) is specified as
D = Dk := (1, . . . , 1, 0, . . . , 0) with probability 1/n for
each k ∈ [n], where Dk consists of k consecutive ones
followed by n− k zeros. �

Proof of Observation 3. Focus on the instance as stated in
Example 1. We show that Claim (1): for any policy π, it
achieves an ex-post equity σP (π) ≤ 1/n; and Claim (2):
for the clairvoyant optimal (OPT), it achieves an ex-post
equity σP (OPT) ∼ lnn/n.

We show Claim (1) first. Consider any policy π and let
αi ∈ [0, 1] be the total commitment of resources to agent i
when Di = 1. Under the metric of ex-post, we can assume
WLOG that α1 ≥ α2 ≥ · · · ≥ αn (it gains nothing to make
a larger commitment than previous ones). Observe that π
achieves an ex-post equity equal to σP (π) =

∑n
i=1 αi/n.

Since the total supply is 1, we have
∑n
i=1 αi ≤ 1, which

suggests that σP (π) ≤ 1/n. Now we show Claim (2).
Recall that the clairvoyant optimal (OPT) is allowed to
optimize its decision after observing the full realization of
D. Thus, OPT will choose to allocate an amount of 1/k
resources to each agent with no-zero demand when D =
Dk. As a result, σP (OPT) = 1

n

∑n
k=1 1/k ∼ lnn/n. By

definition of competitive ratio, we establish that any policy
will achieve a competitive ratio no more than O(1/ lnn) for
EEP under ex-post.

Observation 4. For external equity promotion (EEP) under
ex-ante with correlated demands, no policy can achieve a
competitive ratio (CR) better than O(1/ lnn).
Example 2. Consider an instance of EEP as follows.
We have n arriving agents and a unit supply. The dis-
tribution of D = (Di) is specified as D = D′k :=
(1, 1, . . . , 1,∞, . . . ,∞) with probability 1/n for each k ∈
[n], where D′k consists of k consecutive ones followed by
n− k infinites. �

Proof of Observation 4. We show that on Example 2,
Claim 1: a clairvoyant optimal (OPT) achieves an ex-ante
equity equal to 1/n; and Claim 2: any policy π achieves an
ex-ante equity at most O(1/(n lnn)).

We show Claim 1 first. Observe that σA(OPT) ≤ 1/n
since for agent i = n, the marginal demand distribution has
Dn = 1 with probability 1/n andDn =∞ with probability
1 − 1/n. Second, σA(OPT) ≥ 1/n since there exists at
least an (offline) policy ALG that achieves an ex-ante equity
equal to 1/n. ALG operates as follows: For each realization
D = D′k, ALG will commit Xi = 1 for i = k and Xi = 0
for all i 6= k. In this case, we can verify that E[Xi/Di] =
1/n for all i ∈ [n], and thus, σA(ALG) = 1/n.

exponentially-large) representation.
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We show Claim 2. Consider a given policy π. Let αi ∈
[0, 1] be the fraction of resource committed to agent i when
π observes the realization of Di = 1. Thus, E[Xi/Di] =
αi · (1− (i− 1)/n). An optimal policy π can be obtained
by solving the program below,

max

[
min
i∈[n]

(
1− i− 1

n

)
αi

]
:

n∑
i=1

αi = 1, αi ∈ [0, 1],∀i.

We can verify that the program above has an optimal value
of 1/(n

∑n
k=1 1/k) ∼ 1/(n lnn), suggesting σA(π) ≤

1/(n lnn). Thus, by definition, we conclude that any policy
π achieves a CR of no more than O(1/ lnn) for EEP under
ex-ante with correlated demands.

Example 2 suggests another nuance between ex-post and
ex-ante.

Observation 5. Any policy π achieves an ex-ante equity as
least as large as the ex-post equity on any instance I of EEP
or IEP. However, this does not necessarily mean π achieves
a competitive ratio under ex-ante as least as large as that
under ex-post when restricted on any instance I.

Proof of Observation 5. Note that the function f : Rn →
R defined as f(x1, . . . , xn) = min1≤i≤n xi is concave over
Rn. Thus, E[f(X)] ≤ f(E[X]) for any random vector-
valued variable X ∈ Rn. This suggests that σP (π) ≤
σA(π) for all possible instances of EEP and IEP. The sec-
ond part of the claim can be seen in Example 2 as fol-
lows: Consider a policy π∗ that will always commit 1/n
resource to all agent i with Di = 1. We can verify that
σP (π∗) = σP (OPT) = 1/n2. Thus, π∗ is 1-competitive
(and surely optimal) on Example 2 under ex-post. However,
as Observation 4 indicates, any policy achieves a CR of no
more than O(1/ lnn) on Example 2 under ex-ante.

In this paper, we assume that (1) for EEP (under either ex-
ante or ex-post), we focus on independent demands only.
This is necessary since, otherwise, no constant competitive
ratio can be obtained, as suggested by Observations 3 and 4
and (2) for IEP, we focus on the metric of ex-ante only
since Greedy is 1-competitive (optimal) for ex-post due to
Observation 1.

1.2. Main Results

Throughout this paper, we focus on efficiently-computable
policies only. Specifically, all policies presented in this
paper are computable within polynomial time in terms of
the input size.

Theorem 1. [Section 3] There exists an LP-based policy
with attenuations that achieves an optimal competitive ratio
(CR) of 1/2 for EEP under ex-ante.

Remarks on Theorem 1. (i) In Appendix B, we offer an-
other policy (DTH) achieving the same optimal CR of 1/2
for EEP under ex-ante. It features a double-layer threshold-
ing system that designates two specific thresholds, namely
(pi, βi), for each arriving agent i, and these serve differ-
ent purposes. The first one, pi ∈ [0, 1], is obtained by
solving an alternative benchmark LP (6) and ensures that
agent i only gets served anything at all if Fi(Di) ≤ pi,
where Fi is the CDF of the demand distribution of i. The
second one, βi, ensures that agent i is allocated at most
βi of the resource under any circumstances. DTH distin-
guishes itself from single-layer threshold-based frameworks
widely used in online resource allocation (Alaei et al., 2012;
2013; Manshadi et al., 2021). (ii) The optimalities of the
1/2-competitiveness for ATT and DTH are with respect to
benchmark LP (1) and LP (6), respectively, and the two LPs
are equivalent to each other. We are not yet certain if the op-
timality holds unconditionally, i.e., when directly compared
against a clairvoyant optimal. That being said, we manage to
get an unconditional upper bound of 1/(2− 2/e) ≈ 0.791;
see Section 3.1.

We also consider two special cases: (1) EEP under ex-ante
when every demand takes large non-zero values (i.e., at
least one) only, and (2) EEP under ex-post when every
demand takes small values only. For each case, we offer
an optimal (or nearly optimal) policy. We stress that both
optimality results are unconditional, i.e., when evaluated
directly against a clairvoyant optimal policy.
Theorem 2. [Appendix D] There exists an optimal policy
for EEP under ex-ante when every agent’s demand takes
values of either zero or at least one (possibly non-integers).
Theorem 3. [Appendix E] There exists a (1−ε)-competitive
policy for EEP under ex-post when every agent’s demand
is upper bounded by K · ε2/ ln(1/ε)), where K > 0 is an
absolute constant.

Remarks on Theorems 2 and 3. (i) The idea behind Theo-
rem 2 is inspired by the work (Papadimitriou et al., 2021),
which introduced the problem of designing approximation
algorithms for online matching using an online optimal as
the benchmark. We successfully construct an LP that serves
as an upper bound for any online optimal and then design an
online policy whose performance can match the LP value.
(ii) The optimality of the result in Theorem 2) and the near
optimality of that in Theorem 3 in CR are both uncondi-
tional, i.e., when evaluated against a clairvoyant optimal.
Theorem 4. [Section 4] There is an optimal policy for IEP
under ex-ante.

Remarks on Theorem 4. (1) The optimality is indepen-
dent of any benchmark, i.e., it is directly compared against a
clairvoyant optimal. (2) The result can be generalized to all
unimodal distributions, including Poisson and binomial dis-
tributions, where there is one single peak in the probability
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Table 1. Summary of results related to External Equity Promotion (EEP) obtained in the paper. “Indep./Corre.” in the second row
represents “independent” and “correlated” demands, respectively. In the first row, we present only the upper bounds of competitiveness
for all online policies under ex-post and ex-ante, respectively. The term “optimal*” at the lower-right corner represents optimality with
respect to the benchmark LP (1).

Ex-Post Ex-Ante

Corre. Demands
σP (ALG) = O(1/ lnn),∀ALG σA(ALG) = O(1/ lnn),∀ALG

(Observation 3, Section 1.1) (Observation 4, Section 1.1)

Indep. Demands

σP (π̃) = 1− ε, for small demands. Algorithm 4 is optimal for large demands.

(Theorem 3, Appendix E) (Theorem 2, Appendix D)

Not considered (for general cases).
Algorithm 1 (ATT) is optimal* (Section 3).

Algorithm 3 (DTH) is optimal* (Appendix B).

Table 2. Summary of results related to Internal Equity Promotion (IEP) obtained in the paper. “Indep./Corre.” on the second row
represents “independent” and “correlated” demands, respectively. Note that in IEP, each arriving agent is assumed to request one unit
(deterministic and unsplittable) resource; thus, “Indep./Corre.” does not apply here. In the third row, the term “N ∼ Pois(λ)” means that
the total number of arriving agents, denoted by N , follows a Poisson distribution with parameter λ > 0, where λ is accessible to the
algorithm. Note that Greedy is one-competitive under ex-post, implying it is optimal among all online policies. However, we only claim
that RD (Algorithm 2) is optimal among all online policies under ex-ante; we have not yet evaluated its competitiveness.

Ex-Post Ex-Ante

Indep./Corre. Demands N/A N/A

Greedy is 1-competitive Algorithm 2 is optimal
N ∼ Pois(λ)

(Observation 1, Section 1.1) (Theorem 4, Section 4)

density function of the random number of total arrivals. (3)
Theorem 4 establishes the existence of a policy that is opti-
mal among all possible online policies for Internal Equity
Promotion (IEP) under the ex-ante metric. However, we
have not yet assessed its competitiveness by comparing it
against the clairvoyant optimal policy, which is a promising
avenue for future research.

1.3. Other Related Work

For external equity promotion, to the best of our knowl-
edge, the closest work to this paper is due to (Manshadi
et al., 2021), which has focused on external equity pro-
motion under ex-post. The key differences from here
are that they assume demands can be arbitrarily corre-
lated, and they choose the worst-case performance, i.e., the
least ex-post equity possibly achieved over all possible de-
mand distributions. They then compare the performance of
each policy against a distribution-free benchmark, which is
min(1, 1/E[

∑
i∈[n]Di]). In contrast, we focus on the exter-

nal equity promotion under ex-ante and choose as a bench-
mark the performance of a clairvoyant optimal. Roughly

speaking, the study of (Manshadi et al., 2021) aims to devise
a policy to maximize its worst-case performance (defined
over all possible demand distributions), while we try to find
a policy whose gap to a clairvoyant optimal over all possible
instances is minimized.

As for internal equity promotion, there are several works that
have considered a more general setting than ours. Generally,
they assume that there are multiple supplying agents and use
a bipartite graph to model the network of static supplying
agents and dynamic demanding agents (S. Sankar et al.,
2021; Ma et al., 2022; Nanda et al., 2020). They examine
equity under the concept of group-level fairness. However,
none of them has established an optimal policy as we do
here.

There is a substantial body of research on the fair alloca-
tion of online resources (Banerjee et al., 2023; Zhou et al.,
2023; Hosseini et al., 2023; Freeman et al., 2020; Aziz,
2020; Gkatzelis et al., 2021), which have explored settings
quite distinct from ours. In these studies, they assume the
existence of sets of agents and items (whether divisible or
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indivisible), with each agent having a particular valuation
over the items. Their primary goal is to develop alloca-
tion policies that optimize objectives like envy-freeness and
proportionality, which differ significantly from our focus.
Another line of studies has considered resource allocation
in an online setting like ours. However, they either consider
adversarial arrival setting, or they focus on regret bounds
compared against the optimal (Gkatzelis et al., 2021; Sinha
et al., 2024; Cayci et al., 2020; Balseiro et al., 2021).

2. Benchmark Linear Program (LP)
For EEP under ex-ante, recall that we assume (1) we have a
unit normalized supply and (2) the demands of the n arriving
agents {Di|i ∈ [n]} are independent of each other. For ease
of exposition, we consider a discrete case, where there is a
joint support {dj |1 ≤ j ≤ m} with 0 ≤ d1 < d2 < · · · <
dm such that Pr[Di = dj ] = pij for all i ∈ [n], j ∈ [m].
We use i to index both the arriving time and the arriving
agent. Consider a given clairvoyant optimal OPT. Let Zij
be the (random) amount of resources committed to agent
i conditioning on Di = dj for i ∈ [n], j ∈ [m]. Thus,
zij := E[Zij/dj |Di = dj ] is the expected Filling Rate
(FR) for agent i when Di = dj . By definition, we assume
Zij = 0 and zij = 1 if dj = 0. Consider the LP below.

max min
i∈[n]

( ∑
j∈[m]

pij · zij
)

(1)

∑
i∈[n]

∑
j∈[m]

pij · zij · dj ≤ 1 (2)

zij · dj ≤ 1 ∀i ∈ [n], j ∈ [m] (3)
0 ≤ zij ≤ 1 ∀i ∈ [n], j ∈ [m] (4)

Throughout this paper, we refer to the LP above as LP (1)
(with Constraints (2)-(4)).

Lemma 1. The optimal value of LP (1) is a valid upper
bound of a clairvoyant optimal for EEP under ex-ante.

Proof. By definitions of {Zij} and {zij}, we see that
the ex-ante equity on agent i in OPT should be∑
j∈[m] pijE[Zij/dj ] =

∑
j∈[m] pij · zij . Thus, the objec-

tive of LP (1) encodes the exact ex-ante equity achieved in
OPT. To prove Lemma 1, it suffices to show that the feasi-
bility of all constraints for {zij}. As for Constraint (2): Ob-
serve that

∑
i∈[n]

∑
j∈[m] pij · zij · dj denotes the expected

total resources committed to all arriving agents, which
should be no larger than the total supply of 1; Constraint (3)
follows from Zij ≤ 1, and thus, zij · dj = E[Zij ] ≤ 1; the
last constraint holds since zij represents the expected filling
rate for agent i when Di = dj .

Remarks on LP (1). First, LP (1) is a valid benchmark for
External Equity Promotion (EEP) under ex-ante, regardless

of whether the distributions of demands {Di|i ∈ [n]} are
independent or correlated. This can be seen from the above
proof of Lemma 1. Based on the current definition of zij ,
which represents the expected filling rate when Di = dj ,
we can verify that z = (zij) continue to satisfy all the
constraints in LP (1) even when demands are correlated.
This leads to the fact that LP (1) remains a valid benchmark
for EEP under ex-ante for correlate demands. Second, the
equivalence between LP (1) and LP (6) (in Appendix B.1)
holds for both independent and correlated demands. Thus,
both LPs are valid benchmarks for EEP under ex-ante even
for correlate demands.

3. An LP-Based Policy with Attenuations
In the following, we present a policy with simulation-based
attenuations. The simulation-based attenuation has been
used previously in several stochastic optimization problems,
e.g., stochastic knapsack (Ma, 2018), stochastic matching
(Adamczyk et al., 2015; Brubach et al., 2020), and matching
policy design in ride-hailing platforms (Feng et al., 2019;
Dickerson et al., 2020). The main idea is as follows. We
have a random event A and a target value γ ∈ (0, 1). Sup-
pose we can show that Pr[A] ≥ γ, although we are unaware
of the exact value of Pr[A]. By applying Monte-Carlo sim-
ulation, we can first get a sharp estimate of Pr[A], and
then apply attenuations to make A occur with a probability
almost equal to γ.

Let {zij} be an optimal solution to LP (1). The overall
picture of our algorithm is as follows. Let Ri ∈ [0, 1]
be the remaining supply at (the beginning of) time i with
R1 = 1. We aim to achieve an expected filling rate equal
to zij/2 when Di = dj for all i, j. This will lead to a
1/2-competitive policy by linearity of expectation.5 We
will show that before attenuation, the expected filling rate
E[min(dj , Ri)]/dj ≥ zij/2, and that we can make this an
equality by adding proper attenuations. The full details of
our algorithm (ATT) are as follows.

Lemma 2. ATT is valid with βij as specified in Step 6.

Proof. We prove by induction over time i ∈ [n]. Consider
the base case when i = 1 with Ri = 1. For a given j with
dj ≥ 1, we have E[min(1, R1/dj)] = 1/dj ≤ 1. Thus,

βij = (zij/2)/E[min(1, Ri/dj)] = zij · dj/2 ≤ 1/2,

which is due to the feasibility of {zij} in Constraint (3) of
LP-(1). For a given j′ with dj′ < 1, we see that βi,j′ ≤ 1/2
by definition.

5We technically achieve a competitive ratio of 1/2− 1/nc for
any desired constant c > 0, since the Monte-Carlo simulation has
some (controllable) error. For convenience, we omit the lower-
order term for clarity.
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Algorithm 1 An LP-based policy for external equity promotion under ex-ante (ATT).
1: Offline Phase:

� The offline phase takes as input the distributions of {Di|i ∈ [n]}, and output {βij}, where βij ∈ [0, 1] denotes the
attenuation factor applied to agent i when Di = dj .�

2: Solve LP (1) and let {zij} be an optimal solution.
3: Initialization: When i = 1, set βij = (zij/2)/E[min(1, Ri/dj)] for all j ∈ [m] with Ri = 1.
4: for i = 2, · · · , n do
5: Applying Monte-Carlo method to simulate Step 10 to Step 13 for all the rounds i′ = 1, 2, · · · , i− 1 of Online Phase,

we can get a sharp estimate of E[min(1, Ri/dj)] for all j ∈ [m], where Ri ∈ [0, 1] denotes the (random) remaining
supply at the beginning of time i.

6: Set βij = (zij/2)/E[min(1, Ri/dj)] for all j ∈ [m]. � It is valid due to Lemma 2.�
7: end for
8: Online Phase:
9: for i = 1, . . . , n do

10: Let Ri ∈ [0, 1] be the remaining supply at i.
11: end for
12: if Agent i arrives with Di = dj then
13: With probability βij , we commit an amount of min(dj , Ri) resources to i; with probability 1− βij , commit none.
14: end if

Now, consider a given i > 1 and assume that 0 ≤ βi′,j ≤ 1
for all 1 ≤ i′ < i and j ∈ [m]. For each agent 1 ≤ i′ < i,
let Xi′ be the expected amount of resources committed to i′

in ATT. By the nature of ATT, we see that

E[Xi′ ] =
∑
j∈[m]

pi′,j · βi′,j · E[min(Ri′ , dj)]

=
∑
j∈[m]

pi′,j ·
zi′,j/2

E[min(1, Ri′/dj)]
· E[min(Ri′ , dj)]

=
∑
j∈[m]

pi′,j · (zi′,j/2) · dj .

Thus, the expected value of the remaining supply at the
beginning of i should satisfy

E[Ri] = 1−
∑
i′<i

E[Xi′ ]

= 1−
∑
i′<i

∑
j∈[m]

pi′,j · (zi′,j/2) · dj ≥ 1/2.

Consider a given j with dj ≥ 1. We see that βij =
(zij/2)/E[min(1, Ri/dj)] = zij/(2E[Ri]) ≤ zij ≤ 1.
Similarly, for a given j′ with dj′ < 1, we have βi,j′ ≤
βij ≤ 1.

Now we have all the ingredients to prove Theorem 1.

Proof. For each agent i ∈ [n], let Xij be the amount of
resources committed to i conditioning on Di = dj in ATT.

By the nature of ATT, we have

E
[
Xij

∣∣ Di = dj

]
= βij · E[min(dj , Ri)]

=
zij/2

E[min(1, Ri/dj)]
· E[min(dj , Ri)] = zij/2 · dj .

Therefore, the expected filling rate of agent i in ATT, de-
noted by FRi, should be

FRi =
∑
j∈[m]

pij ·E
[
Xij/dj

∣∣ Di = dj
]

=
∑
j∈[m]

pij · zij/2.

Thus, the ex-ante equity achieved by ATT should have

σA(ATT) = min
i∈[n]

FRi = min
i∈[n]

( ∑
j∈[m]

pij · zij/2
)

=
1

2

(
min
i∈[n]

∑
j∈[m]

pij · zij
)
≥ OPT

2
,

where the last inequality is due to Lemma 1 and where OPT
denotes the ex-ante equity achieved by a clairvoyant optimal
policy.

3.1. Upper Bound of 1/2 Relative to LP (1)

We now show that without any assumptions, it is not possi-
ble to be more than 1/2-competitive relative to LP (1), as
demonstrated by the following example.

Example 3. Consider an instance of EEP with IID demands
for agents i = 1, . . . , n that satisfy

Di =

{
1, w.p. 1/n;

∞, w.p. 1− 1/n.
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We can verify that the LP can achieve an ex-ante equity of
1/n. However, now consider any online algorithm with ex-
ante equity σA(ALG) ∈ [0, 1/n]. This means E[Xi/Di] ≥
σA(ALG) for all i. Since E[Xi/Di] = 1

n · E[Xi|Di =
1] + (1 − 1

n ) · 0 for all i, this implies that E[Xi|Di =
1] ≥ nσA(ALG) for all i < n. Hence,

∑
i<n E[Xi] ≥

(n−1) 1
nnσA(ALG) = (n−1)σA(ALG) and we have that

E[Rn] ≤ 1− (n− 1)σA(ALG). Now, we have

σA(ALG) ≤ E[Xn/Dn] =
1

n
· E[Xn|Dn = 1]

≤ 1

n
· E[Rn] ≤ 1

n
(1− (n− 1)σA(ALG))

which implies that nσA(ALG) ≤ 1− (n−1)σA(ALG). In
other words, σA(ALG) ≤ 1

2n−1 . Therefore,

σA(ALG)

σA(LP)
≤ 1/(2n− 1)

1/n
=

n

2n− 1
.

Remarks. As a byproduct, Example 3 suggests an uncondi-
tional upper bound of 1/(2− 2/e) ≈ 0.791 for EEP under
ex-ante. Note that for Example 3, the performance of any
clairvoyant optimal (OPT) is no more than (1/n)(1−1/e).
This can be seen as follows: By symmetry, we assert that
OPT would distribute the demand 1 among all arriving de-
mands with realizations of 1. Consider a specific i with
Di = 1, which occurs with probability 1/n. The expected
allocation given Di = 1 should be E[Xi | Di = 1] =
E[1/(1 + Z)] = 1 − 1/e, where Z ∼ Pois(1 − 1/n) de-
notes the number of realizations of 1 among the remaining
agents. Thus, no online policy can achieve a CR better than
(1/(2n − 1))/((1 − 1/e) · (1/n)) = 1/(2 − 2/e) when
n→∞.

4. Internal Equity Promotion under Ex-Ante
We start with the case when the probability density function
of the random number of total arrivals (N ) has a single peak,
which is known as a unimodal distribution.6 Examples
include Poisson and binomial distributions. Consider a
given (online) policy π. Recall that (1) π has access to the
distribution of N but has no idea when the arrival process
stops and (2) upon the arrival of one agent, π should decide
immediately and irrevocably if to serve her in case there is at
least one serving capacity. These two properties suggest that
π just needs to non-adaptively select a sequence of values
pN = {pN,k|k = 1, 2, 3, . . .}, where pN,k ∈ [0, 1] denotes
the probability that π should accept the kth arriving agent in
case capacity remains. In the following, we try to figure out
how to compute an optimal sequence pN to maximize the

6More precisely, we assume there is one single set S consisting
of either one single or multiple consecutive integer values on which
the probability density function gets locally maximized.

resulting ex-ante equity. Throughout this section, we refer
to the kth arriving agent as k for simplicity.

Assume that π is parameterized by an integer M � 1 such
that π will ignore all arrivals of k with k > M . For each
k ∈ [M ] = {1, 2, . . . ,M}, let ck = Pr[N = k] and αk be
the probability that k (i.e., the kth agent) will be accepted in
π unconditionally: Note that αk includes the probability that
π accepts k and that π has at least one remaining capacity
for the kth arrival, while αk excludes the probability that k
arrives. Let c0 = Pr[N = 0]. By definition of the ex-ante
equity, we have

σA(π) = EN
[

min
i∈[N ]

Eπ[Xi]
]

= c0 +

M∑
k=1

ck · min
1≤i≤k

αi.

Recall that b ∈ Z+ denotes the total serving capacity. Con-
sider the below program:

max
α

F (α) := c0 +

M∑
k=1

ck · min
1≤i≤k

αi, (5)

subject to
M∑
k=1

αk ≤ b;αk ∈ [0, 1],∀k ∈ [M ].

Lemma 3. There exists an optimal solution α = (αk) to
Program (5) in which α1 ≥ α2 ≥ · · · ≥ αM .

Proof. Suppose there exists an optimal solution α = (αk)
in which there exist two indices ` > m such that α` < αm.
Observe that we can always update the current solution α
to another α′ by decreasing αm to α`. We can verify that
α′ is feasible and the objective value remains the same. By
applying this argument repeatedly, we get the claim.

For each given positive integer `, let g(`) := Pr[1 ≤ N ≤
`]/`. Let `∗ = argmax`=1,2,...g(`). Under the current
unimodal assumption, the probability density function of
N has a single peak, and so does the function g. Since the
function g gets maximized at ` = `∗, we claim that g(`) will
first increase when 1 ≤ ` ≤ `∗ and then decrease afterwards
at ` > `∗.

Lemma 4. Consider a given integer b and M � 1. There
exists an optimal solution α = (αk) to Program (5) such
that (1) If b ≤ `∗, then αi = b/`∗ for all 1 ≤ i ≤ `∗ and
αi = 0 for all i > `∗; (2) If b > `∗, then αi = 1 for all
1 ≤ i ≤ b and αi = 0 for all i > b.

Proof. From Lemma 3, we can assume WLOG that there
is an optimal solution α = {αi} to Program (5) with αi ≥
αi+1 for all i ≥ 1.

Focus on the first case b ≤ `∗. Suppose there exists a
k < `∗ such that α1 = α2 = · · · = αk > αk+1. We can

8
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Algorithm 2 An optimal Randomized-Rounding-based policy for IEP under ex-ante (RD).
1: Offline Phase:

� The offline phase takes as input α∗(N, b) ∈ [0, 1]B , and output a random binary vector A = {0, 1}B , where
B = max(b, `∗), `∗ = argmax`=1,2,... Pr[1 ≤ N ≤ `]/`, and α∗(N, b) is the truncated vector specified in Lemma 4
with only non-zero entries retained.�

2: Apply dependent rounding (Gandhi et al., 2006) to α∗(N, b) ∈ [0, 1]B ; let A = {0, 1}B be the random vector output.
3: Online Phase:
4: For each k = 1, 2, . . ., accept the kth arrival if A[k] = 1 and k ≤ B; reject it otherwise.

twist the current solution α to α′ as follows: decrease every
αi with i ≤ k by ε/k and increase αk+1 by ε, where ε =
(αk−αk+1)/(1+1/k). We can verify that after the twisting,
(1) the resulting solution α′ keeps being feasible with α1 =
· · · = αk = αk+1 and the total sum remains invariant;
(2) the change in the objective value due to the twisting
should be F (α′)− F (α) = ε

(
ck+1 −

∑
1≤i≤k ci/k

)
≥ 0.

This is due to the fact that g(`) increases when 1 ≤ ` ≤
`∗, which implies that ck+1 ≥

∑
1≤i≤k ci/k for all 1 ≤

k < `∗. Apply this argument repeatedly, we end up with
another optimal solution satisfying α1 = · · · = α`∗ . Now
assume K is the largest integer with `∗ < K ≤ M such
that αK > 0. Now we can apply the following twisting:
decrease αK to 0 and increase each αi with 1 ≤ i ≤ `∗

by αK/`∗. Note that we can always make it since b ≤ `∗.
We can verify that (1) the solution after the twist keeps
being feasible and (2) the change in the objective value (the
objective value after the twisting minus before) should be
∆ = αK(

∑
1≤i≤`∗ ci/`

∗ − cK) ≥ 0. This is due to the
fact that g(`) decreases when ` > `∗, which implies that∑

1≤i≤`∗ ci/`
∗ ≥ cK for all K > `∗. Repeating these

procedures, we end up with an optimal solution such that
α` = 0 for all ` > `∗. Thus, we claim that there exists
an optimal solution that satisfies αi = b/`∗ ≤ 1 for all
1 ≤ i ≤ `∗ and all the rest are zeros. We can apply a similar
analysis to prove the second case when b > `∗.

Lemma 4 offers an exact characterization of an optimal
solution to Program (5). For a given random variable N
and b, let α∗(N, b) be the solution as specified in Lemma 4.
For the second case when b > `∗, there is a trivial policy
π whose performance matches α∗(N, b): π simply accepts
all the first b arrivals and ignores all the rest. As for the first
case when b ≤ `∗, it is slightly tricky to design a policy such
that its performance matches that specified in α∗(N, b), i.e.,
the first `∗ arrivals each will be accepted with a probability
equal to b/`∗. Let B = max(b, `∗). Observe that for both
cases, α∗(N, b) will have its first B entries being non-zero
and all the rest being zero.

We present a randomized policy (RD) in Algorithm 2, whose
performance matches exactly α∗(N, b) via the dependent-
rounding technique (Gandhi et al., 2006). For notation con-
venience, we use α∗(N, b) to denote the truncated version

as well, which includes only the first B non-zero entries.

Lemma 5. The performance of RD matches exactly that
specified in α∗(N, b).

Proof. Consider the case when b > `∗. We see that both
A and α∗(N, b) will have all B entries equal to 1. This
suggests that RD will accept the first b arrivals, each with
probability one. As for the case b ≤ `∗, by the property of
dependent rounding, we see that Pr[A[k] = 1] = b/`∗ for
each 1 ≤ k ≤ `∗, which suggests that kth arriving agent
will be accepted with a probability equal to b/`∗.

5. Conclusions and Future work
In this paper, we considered EEP and IEP under two differ-
ent equity metrics, namely ex-post and ex-ante. For EEP
under ex-ante with independent demands, we presented two
LP-based policies, each achieving a competitive ratio of at
least 1/2, which is optimal against the current benchmark
LP. For IEP under ex-ante and ex-post, we presented an
optimal policy for each case. Our work opens a few re-
search directions. The first one is EEP under ex-post with
independent demands. Can we get a constant-competitive
policy similar to that under ex-ante? One direct challenge
is to design an appropriate convex program such that (1) it
is polynomial-time computable and (2) it can offer a valid
upper bound on the performance of a clairvoyant optimal
policy. Another question is whether we can beat 1/2 un-
der the natural setting when each demand takes value in
[0, 1]. Perhaps we need to tighten the current competitive-
ratio analyses and/or design a stronger benchmark LP with
additional constraints.
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A. Challenges in Generalizing from Individual to Group-Level for Internal Equity Promotion
Focus on the Internal Equity Promotion (IEP). Let us first discuss how to generalize the current ex-post equity metric from
individual to group-level. Surprisingly, there seem to be numerous ways to define group-level equity for IEP.

Suppose we have a collection G = {g} of groups, where each group g represents a specific protected class of people
(e.g., female Latino). For each g ∈ G, we assume the total number of arrivals from it, denoted by Ng, follows a Poisson
distribution of mean λg > 0, i.e., Ng ∼ Pois(λg), and {Ng|g ∈ G} are independent from each other. For any online policy
π, we assume it has access to G and λ := {λg|g ∈ G}. For each group g, let Xg denote the total number of agents that
belong to g and get served by π. Set N = (Ng)g, which denotes the vector of the numbers of arrivals among all groups.
Below are a few sample definitions for the group-level equity metric:

σ1(π) = EN ,π

[
min
g∈G

Xg

Ng

]
, σ2(π) = EN ,π

[
min
g∈G

Xg

λg

]
σ3(π) = EN

[
min
g∈G

Eπ
[Xg

Ng

]]
, σ4(π) = EN

[
min
g∈G

Eπ[Xg]

Ng

]
, σ5(π) = EN

[
min
g∈G

Eπ
[Xg

λg

]]
,

σ6(π) = min
g∈G

EN ,π

[Xg

Ng

]
, σ7(π) = min

g∈G
EN ,π

[Xg

λg

]
.

Remarks on the above definitions. (1) There are no concerns for the cases where Ng appears in the denominator (e.g., σ1,
σ3, σ4, and σ6): we are sure that Xg = 0 when Ng = 0, and we can simply ignore this by assuming 0/0 = 1. We list the
above equity metrics in descending order of robustness, from high to low. (2) When each arriving agent represents a specific
distinct group, we see that σ1 is reduced to the ex-post equity metric defined in the paper (since we can simply ignore all
those groups with Ng = 0).

In the following, we take σ1 for example and use it to demonstrate that our result in Observation 1 does not hold for IEP
under the group-level equity metric as defined in σ1. Specifically, we prove that Greedy, which is to serve whatever arriving
agent until capacity is exhausted, is not one-competitive any more. Consider an input instance with b = 2 (serving capacity),
and G = {g1, g2} with λ1 = λ2 = 1. Recall that an online policy is one-competitive iff its performance matches that of
OPT (a clairvoyant optimal policy). Thus, to show Greedy is not one-competitive, it suffices to identify an arriving sequence
of online agents, on which Greedy achieves an equity strictly worse (lower) than OPT.

Recall that N1 and N2 denote the numbers of arrivals of agents from g1 and g2, respectively. Consider the scenario when
N1 = 2 and N2 = 1. For this case, we see that: (1) OPT can achieve an equity of 1/2 by serving one agent each from g1
and g2, respectively. (2) Since Greedy is an online policy, the corresponding equity is determined by the arrival sequence of
the three agents. We can verify that Greedy achieves an equity of 1/2 if the unique agent of g1, denoted by a, arrives either
first or second among the three, which occurs with probability 2/3; and Greedy achieves an equity of 0 if a arrives last. As a
result, conditioning on N1 = 2 and N2 = 1, we see Greedy accomplishes an equity of 1/2 · 2/3 + 0 · 1/3 = 1/3. Thus, we
claim that Greedy is surely not one-competitive.

B. A Double-Thresholding LP-Based Policy for EEP under Ex-Ante
B.1. An Alternative LP Equivalent to LP (1)

We note the following alternate formulation of the LP relaxation. Let Fi denote the CDF of the random demand Di. Then
LP (1) can be equivalently written as

max γ (6)

s.t.
n∑
i=1

∫ pi

0

min{F−1i (q), 1}dq ≤ 1 (7)

∫ pi

0

min{F−1i (q), 1}
F−1i (q)

dq = γ,∀i = 1, . . . , n (8)

γ, p1, . . . , pn ∈ [0, 1] (9)
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The equivalence to LP (1) can be explained as follows. In the original LP, to make
∑
j pijzij equal to a target γ for an agent i,

it is optimal sorting in increasing order of dj , and sequentially raise each zij to the maximum level, i.e., zij = min{1/dj , 1},
before proceeding to raise the next zij . In Appendix C, we present a toy example demonstrating the equivalence of two
benchmark LPs (1) and (6).

B.2. A Double-Thresholding Policy: Statement and Analysis

Let p1, . . . , pn refer to a fixed optimal LP solution, which defines our algorithm.
Definition 1. Define D̃i = min{Di, 1}1(Fi(Di) ≤ pi), which should be interpreted as the effective demand of agent i that
is served by the LP. By LP constraint (7), note that we have

∑n
i=1 E[D̃i] ≤ 1.

Our algorithm is based on the following observation. It suffices to focus on the effective demand of each agent i, i.e., set an
upper threshold of F−1i (pi) which Di must fall below in order for agent i to be served at all (with tie-breaking defined for
discrete distributions by having the agent draw a uniform quantile in [0,1]). To achieve a competitive ratio of β, we claim
that it suffices to show E[Xi

D̃i
|Fi(Di) ≤ pi] ≥ β for all i, recalling that Xi is the random variable for the amount of resource

rationed to agent i. Moreover, if E[Xi

D̃i
|Fi(Di) ≤ pi] = β, i.e., we don’t overserve agent i, then we show that the expected

resource consumed by agent i is at most β · E[D̃i] (which will be useful for leaving enough for future agents). These two
facts are formalized in the following proposition, whose proof boils down to showing that two different correlations both
work in our favor.
Proposition 1. Suppose E

[
Xi

D̃i
| Fi(Di) ≤ pi

]
= β for an agent i. Then, we have (1) E[Xi

Di
] ≥ βγ, and (2) E[Xi] ≤

β · E[D̃i].

Proof. We prove both statements conditioned on a particular value of Ri. By independence, this does not affect the
realization of Di.

To prove the first statement, we write

E
[
Xi

Di

]
= pi · E

[Xi

D̃i

· D̃i

Di

∣∣∣Fi(Di) ≤ pi
]

= pi · E
[min{Ri, D̃i, βi}

min{Di, 1}
·min{1, 1

Di
}
∣∣∣Fi(Di) ≤ pi

]
≥ pi · E

[min{Ri, D̃i, βi}
min{Di, 1}

∣∣∣Fi(Di) ≤ pi
]
E
[

min{1, 1

Di
}
∣∣∣Fi(Di) ≤ pi

]
= β · γ.

Note that min{Ri,D̃i,βi}
min{Di,1} is a decreasing function of Di, because it equals 1 if Di ≤ min{Ri, βi}, equals min{Ri, βi}/Di if

Di ≥ min{Ri, βi} but Di ≤ 1, and equals constant min{Ri, βi} if Di ≥ 1. min{1, 1
Di
} is also a decreasing function of

Di, which is why we get the inequality above. Finally, the last equality holds because pi · E[min{1, 1
Di
}|Fi(Di) ≤ pi] =

E[ D̃i

Di
] = γ by LP constraint (8).

To prove the second statement, we write

E[Xi] = pi · E
[Xi

D̃i

· D̃i

∣∣∣Fi(Di) ≤ pi
]

= pi · E
[

min{Ri
D̃i

, 1,
βi

D̃i

} · D̃i

∣∣∣Fi(Di) ≤ pi
]

≤ pi · E
[

min{Ri
D̃i

, 1,
βi

D̃i

}
∣∣∣Fi(Di) ≤ pi

]
· E
[
D̃i

∣∣∣Fi(Di) ≤ pi
]

= β · E[D̃i].

The inequality uses the fact that conditional on Fi(Di) ≤ pi, we have Xi

D̃i
= min{Ri

D̃i
, 1, βi

D̃i
} which is decreasing in D̃i.

The final equality uses the fact that E[D̃i] = pi · E[D̃i|Fi(Di) ≤ pi].

Note that since γ is an upper bound on the fairness achievable by any clairvoyant (see Lemma 1), the first statement
in Proposition 1 suggests the following method for defining a β-competitive algorithm. We first set an upper threshold
β1 ∈ [0, 1] so that E[X1

D̃1
|F1(D1) ≤ p1] = β, where β is the fixed competitive ratio we are targeting and X1 = min{D̃1, β1}

is the amount serviced to agent 1 (recall that D̃i = 0 if Fi(Di) > pi). Next, with R2 denoting the remaining resource for
agent 2, we show that E[X2

D̃2
|F2(D2) ≤ p2] ≥ β if X2 = min{R2, D̃2, β2} with β2 = 1. Therefore, it is possible to reduce

β2 so that E[X2

D̃2
|F2(D2) ≤ p2] = β. We repeat this process for i = 1, . . . , n, which is formalized in Algorithm 3.
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Algorithm 3 A double-thresholding LP-based policy for EEP under ex-ante (DTH).
1: Offline Phase:

� The offline phase takes as input the distributions of D1, . . . , Dn and output upper thresholds β1, . . . , βn. �
2: Initialization: Set β1 = · · · = βn = 1.
3: for i = 1, · · · , n do
4: Apply the Monte-Carlo method to simulate Online Phase up to the end of round i.
5: Update βi to be a value in [0,1] so that E

[
Xi

D̃i

∣∣∣Fi(Di) ≤ pi
]

= β, where D̃i = min{Di, 1}1(Fi(Di) ≤ pi).
� We prove this is always possible in Theorem 5. �

6: end for
7: Online Phase:
8: for i = 1, . . . , n do
9: Commit Xi = min(Ri, D̃i, βi) of the resource to agent i.

10: end for

Theorem 5. DTH (Algorithm 3) is valid when β = 1/2, i.e., it is possible to set β1, . . . , βn ∈ [0, 1] so that (5) holds for all
i. By Proposition 1, DTH is 1/2-competitive.

Proof. We prove Theorem 5 by induction. Consider the arrival of an agent i and suppose that E[Xi′

D̃i′
|Fi′(Di′) ≤ pi′ ] = β,

which implies E[Xi′ ] ≤ β · E[D̃i′ ] for all previous agents i′ < i, by the second statement of Proposition 1. We show that

E
[min{Ri, D̃i}

D̃i

∣∣∣Fi(Di) ≤ pi
]
≥ β, (10)

i.e., agent i can be satisfactorily served as long as we are willing to devote the maximum resource to i whenever Fi(Di) ≤ pi.
If this is true, then it will be possible to reduce the service so that E[Xi

D̃i
|Fi(Di) ≤ pi] = β, completing the induction and

implying that mini E[Xi

Di
] ≥ βγ via the first statement of Proposition 1.

To prove (10), note that Ri is independent of D̃i, and the function is decreasing in Ri. Moreover, it is also concave in Ri;
hence, by Jensen’s inequality, its expectation is minimized when all mass is placed on 0 or 1. The expectation of Ri is

1−
∑
i′<i

E[Xi′ ] ≥ 1− β
∑
i′<i

E[D̃i′ ] ≥ 1− β,

hence, the LHS of (10) is lower-bounded by its value when Ri is a random variable that equals 1 w.p. 1− β and 0 otherwise.
Since D̃i ≤ 1 by definition, we get

E
[min{Ri, D̃i}

D̃i

∣∣∣ Fi(Di) ≤ pi
]
≥ 1(1− β) + 0(β) = 1− β.

Therefore, setting β = 1/2 guarantees that (10) is satisfied for any agent i, completing the proof.

C. Equivalence of the Two Benchmark LPs (1) and (6)

Lemma 6. The two benchmark linear programs, LPs (1) and (6), are equivalent to each other.

Proof. Let us start with LP (1), and suppose z∗ = {zij |i ∈ [n], j ∈ [m]} be an optimal solution to LP (1) with an optimal
value of γ∗. For each agent i ∈ [n], let Ri(z∗) denote the expected total amount of resources committed to i and γi(z∗) the
resulting expected filling ratio with respect to the strategy of z∗. Thus, we have

γi(z
∗) =

∑
j∈[m]

pij · z∗ij , Ri(z∗) =
∑
j∈[m]

pij · z∗ij · dj .

By the nature of LP (1), we can assume WLOG that γi(z∗) = γ∗ for all i ∈ I . Moreover, we can safely assume that any
clairvoyant optimal policy (OPT) achieves the expected filling ratio of γi(z∗) for agent i always by using up all the budget
of Ri(z∗) filling demands in an increasing order of their sizes. Specifically, that means for each agent i, there exists a unique
index ji(z∗) such that z∗ij = min(1, 1/dj) for all j ≤ ji(z∗) and z∗ij = 0 for all j > ji(z

∗).
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For each agent i, set pi(z∗) :=
∑

1≤j≤ji(z∗) pij . In the following, we show the feasibility of {pi(z∗)|i ∈ [n]} and γ∗ to LP
(5).

∫ pi(z
∗)

0

min
(
F−1i (q), 1

)
dq =

ji(z
∗)∑

j=1

pij ·min(dj , 1) =

ji(z
∗)∑

j=1

pij · dj ·min(1, 1/dj)

=

ji(z
∗)∑

j=1

pij · dj · z∗ij =

m∑
j=1

pij · dj · z∗ij = Ri(z
∗).

Thus,

∑
i∈[n]

∫ pi(z
∗)

0

min
(
F−1i (q), 1

)
dq =

∑
i∈[n]

Ri(z
∗) ≤ 1, (11)

where the inequality above is due to the feasibility of z∗ to LP (1). Meanwhile, for each agent i ∈ [n],

∫ pi(z
∗)

0

min
(
F−1i (q), 1

)
F−1i (q)

dq =

ji(z
∗)∑

j=1

pij ·
min(dj , 1)

dj
=

ji(z
∗)∑

j=1

pij ·min(1, 1/dj)

=

ji(z
∗)∑

j=1

pij · z∗ij =

m∑
j=1

pij · z∗ij = γi(z
∗) = γ∗.

Note that pi(z∗) :=
∑

1≤j≤ji(z∗) pij ∈ [0, 1] and γ∗ ∈ [0, 1]. As a result, we establish the feasibility of {pi(z∗)|i ∈ [n]}
and γ∗ to LP (5), which implies that LP (5) has an optimal value as least as large as LP (1).

Now, we show the opposite direction. Let p∗ = (p∗i ) be an optimal solution to LP (5) with an optimal value of γ∗.
For each i ∈ [n], let j̃i(p∗) be the index of demand such that F−1i (p∗i ) = dj̃i(p∗). For each i ∈ [n] and j ∈ [m], set
zij(p

∗) = min(1, 1/dj) if j ≤ j̃i(p
∗) and zij(p∗) = 0 if j > j̃i(p

∗). Thus, zij(p∗) ∈ [0, 1] and zij(p∗) · dj ∈ [0, 1] for
any i and j. Moreover,∑

i∈[n]

∑
j∈[m]

pij · zij(p∗) · dj =
∑
i∈[n]

∑
1≤j≤j̃i(p∗)

pij ·min(1, 1/dj) · dj =
∑
i∈[n]

∑
1≤j≤j̃i(p∗)

pij ·min(1, dj)

=
∑
i∈[n]

∫ p∗i

0

min
(
F−1i (q), 1

)
dq ≤ 1,

where the last inequality follows from the feasibility of p∗ to LP (5). Therefore, we establish the feasibility of z(p∗) :=
{zij(p∗)|i ∈ [n], j ∈ [m]} to LP (1). Note that for each given i ∈ [n],∑

j∈[m]

pij · zij(p∗) =
∑

j≤j̃i(p∗)

pij ·min(1, 1/dj) =
∑

j≤j̃i(p∗)

pij ·
min(1, dj)

dj

=

∫ p∗i

0

min
(
F−1i (q), 1

)
F−1i (q)

dq = γ∗.

This means that the objective of LP (1) is equal to γ∗ on the feasible solution of z(p∗). As a result, we claim that LP (1) has
an optimal value as least as large as LP (5).

D. An Optimal Policy for EEP with Ex-Ante under the Large-Demand Assumption
Consider a special case when every Di with 1 ≤ i ≤ n takes values either 0 or at least 1. WLOG assume that we have
a joint support 0 = d1 < d2 = 1 < · · · < dm. Recall that pij = Pr[Di = dj ] for all i ∈ [n], j ∈ [m], and {Di} are all
independent of each other. We aim to construct a strengthened LP exclusively for an optimal (online) policy (π∗) instead of
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a clairvoyant optimal (OPT). For each given i ∈ [n], j ∈ [m], let Zij be the (random) amount of resources committed by
π∗ to agent i when Di = dj , and zij = E[Zij/dj |Di = dj ] be the expected filling rate for agent i with Di = dj .

max min
i∈[n]

( ∑
j∈[m]

pij · zij
)

(12)

1−
∑
i′<i

∑
j∈[m]

pi′,j · zi′,j · dj ≥ zij · dj ∀i ∈ [n], j ∈ [m] (13)

0 ≤ zij ≤ 1 i ∈ [n], j ∈ [m] (14)

Remarks on LP (12). Though LP (12) shares similar structures with LP (1), the two serve fundamentally different purposes.
As shown in Lemma 7, LP (12) is proposed to upper bound the performance of an online optimal policy, which is subject to
the real-time decision-making requirement. This contrasts with that LP (1) is designed to upper bound the performance of a
clairvoyant optimal, which has the privilege to access full realizations of random demands before actions.

Lemma 7. The optimal value of LP (12) is a valid upper bound of an (online) optimal policy for EEP under ex-ante.

Proof. Similar to the proof of Lemma 1, we can verify that the objective of LP-(12) encodes the ex-ante equity achieved by
an optimal policy π∗. It will suffice to show the validity of Constraint (13). Consider a given time i ∈ [n] and let Ri be the
remaining supply at (the beginning of) time i. Observe that

E[Ri] = E
[
1−

∑
1≤i′<i

∑
j∈[m]

pi′,j · Zi′,j
]

= 1−
∑

1≤i′<i

∑
j∈[m]

pi′,j · E[Zi′,j ] = 1−
∑

1≤i′<i

∑
j∈[m]

pi′,j · zi′,j · dj .

Observe that Ri ≥ Zij for all i ∈ [n] and j ∈ [m], which leads to the fact that

E[Ri] ≥ E[Zij ]⇒ 1−
∑

1≤i′<i

∑
j∈[m]

pi′,j · zi′,j · dj ≥ zij · dj , ∀i ∈ [n], j ∈ [m].

This establishes Constraint (13).

Let {zij} be an optimal solution to LP (12). In the following, we present an LP-based algorithm with simulation-based
attenuations (ATT-L) such that it achieves an expected filling rate exactly equal to zij for each agent i ∈ [n] when Di = dj
for each j ∈ [m].

Algorithm 4 An optimal LP-based policy for EEP under ex-ante with the large-demand assumption (ATT-L).
1: Offline Phase:

� The offline phase will take as input the distributions of {Di|i ∈ [n]}, and output {βij}, where βij ∈ [0, 1] denotes
the attenuation factor applied to agent i when Di = dj . �

2: Solve LP (12) and let {zij} be an optimal solution.
3: Initialization: When i = 1, set βij = zij · dj for all j ∈ [m].
4: for i = 2, · · · , n do
5: Applying Monte-Carlo method to simulate Step 10 to Step 13 for all the rounds i′ = 1, 2, · · · , i− 1 of Online Phase,

we can get a sharp estimate of E[Ri], where Ri ∈ [0, 1] denotes the (random) remaining supply at the beginning of
time i.

6: Set βij = (zij · dj)/E[Ri] for all j ∈ [m].
7: end for
8: Online Phase:
9: for i = 1, . . . , n do

10: Let Ri ∈ [0, 1] be the remaining supply at (the beginning of) i.
11: if Agent i arrives with Di = dj then
12: With probability βij , we commit an amount of Ri resources to i; with probability 1− βij , commit none.
13: end if
14: end for
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Remarks. The last line (13) in ATT-L is always valid since (1) If dj = 0, then we have βij = 0 and we will commit none
with probability 1− βij = 1; If dj > 0, we have dj ≥ 1 ≥ Ri that suggests the feasibility of the commitment of Ri for
Di = dj .

Now we prove the main Theorem 2 by showing ATT-L is a feasible and optimal policy.

Proof. Let Xij be the amount of resources committed to agent i in ATT-L conditioning on Di = dj with i ∈ [n], j ∈ [m].
We show by induction over i ∈ [n] that for each i ∈ [n], j ∈ [m] (1) βij ≤ 1; (2) the expected filling rate FRij :=
E[Xij/dj ] = zij .

Consider the base case when i = 1. We have βij = zij · dj ≤ 1 due to Constraint (13) for i = 1. In this case, we have
Ri = 1 and thus, FRij = E[Xij/dj ] = βij ·Ri/dj = zij .

Now consider a given i > 1 and assume that βi′,j ≤ 1 and FRi′,j = E[Xi′,j/dj ] = zi′,j for all i′ < i and j ∈ [m]. Let Ri
be the remaining supply at the beginning of i. We have that

E[Ri] = E
[
1−

∑
1≤i′<i

∑
j∈[m]

pi′,j ·Xi′,j

]
= 1−

∑
1≤i′<i

∑
j∈[m]

pi′,j · E[Xi′,j ] (15)

= 1−
∑

1≤i′<i

∑
j∈[m]

pi′,j · zi′,j · dj (By assumption over all i′ < i.)

≥ zij · dj . (Due to Constraint (13).) (16)

Therefore, we claim that βij ≤ 1 for the case of i and all j ∈ [m]. In this case,

FRij = E[Xij/dj ] = βij · E[Ri/dj ] =
zij · dj
E[Ri]

· E[Ri/dj ] = zij .

We complete the induction part. Observe the ex-ante equity achieved by ATT-L should be

σA(ATT-L) = min
i∈[n]

( ∑
j∈[m]

pij · FRij
)

= min
i∈[n]

( ∑
j∈[m]

pij · zij
)
≥ σA(π∗),

where the last inequality is due to Lemma 7 and where π∗ denotes an optimal policy.

E. An Almost-Optimal Policy for EEP with Ex-Post under the Small-Demand Assumption
Consider EEP and the ex-post setting. We now present a simple condition under which there is an efficient online algorithm
π̃ whose competitive ratio is at least (1− ε) times that of any online algorithm, where ε > 0 is a given (small) parameter
that is bounded away from (and smaller than) 1. This sufficient condition is, for a certain absolute constant K > 0, that with
probability one, every Di is at most Kε2/ ln(1/ε) for all 1 ≤ i ≤ n. We will not try to optimize K or the other constants in
our proof; the proof below follows by taking K sufficiently small, but positive.

Denote S =
∑
iDi, and let M denote Kε2/ ln(1/ε). Then, the following are simple consequences of the standard

Chernoff-Hoeffding bounds:

∀λ ∈ [0, 1], Pr[S ≥ µ(1 + λ)] ≤ e−µλ
2/(3M); (17)

∀λ ≥ 1, Pr[S ≥ µ(1 + λ)] ≤ e−µλ ln(1+λ)/(4M); (18)

∀λ ∈ [0, 1], Pr[S ≤ µ(1− λ)] ≤ e−µλ
2/(2M). (19)

These three bounds easily follow by noting that each D′i := Di/M lies in [0, 1], and by applying the standard Chernoff-
Hoeffding bounds to

∑
iD
′
i. The key parameter to note is the small value M in the denominators of the exponents in all

three of these bounds, which leads to strong tail bounds.

Let µ =
∑
i E[Di] denote the total expected arrival of demand and let δ := ε/10. We next present our algorithm π̃ and show

its near-optimality; we consider two cases based on the value of µ.
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Case I: µ ≤ 1− δ. Here, π̃ simply keeps setting Xi = di in response to the ith demand di if the remaining budget Ri is at
least di, and sets Xi = 0 otherwise. Note that if the total demand S is at most 1, we achieve a competitive ratio of 1. Thus,

σP (π̃) ≥ 1 · Pr[S ≤ 1] = 1− Pr[S > 1] ≥ 1− ε,

where the final inequality follows from (17) and (18), using our assumption that µ ≤ 1 − δ and by taking the constant
K > 0 small enough. Since the competitive ratio of any other algorithm is trivially at most 1, we are done in this case.

Case II: µ > 1− δ. Here, π̃ keeps setting Xi = (1−δ)
µ · di in response to the ith demand di if the remaining budget Ri is at

least (1−δ)
µ · di, and sets Xi = 0 otherwise. Note that if the total demand S is at most µ/(1− δ), we achieve a competitive

ratio of (1−δ)
µ . Thus, we obtain, in our Case II:

σP (π̃) ≥ (1− δ)
µ

· Pr[S ≤ µ/(1− δ)] =
(1− δ)
µ

· (1− Pr[S > µ/(1− δ)]) ≥ (1− δ)
µ

· (1− δ) , (20)

where (20) follows from (17), using our assumption that µ > 1− δ and again by taking K > 0 small enough.

We now show that no other online algorithm π′ can do much better. Splitting based on the value of S, and specifically letting
A denote the event “S > µ(1− δ/2),” we get

σP (π′) ≤ Pr[A] · 1 + Pr[A] · E
[
min
i

(Xi/Di)
∣∣ A] ≤ Pr[A] + E

[
min
i

(Xi/Di)
∣∣ A]

≤ δ

2µ
+ E

[
min
i

(Xi/Di)
∣∣ A] , (21)

where the upper-bound on Pr[A] used in (21) follows from (19) by taking K small enough again, and via our assumption
that µ > 1− δ.

We now upper-bound E
[
mini(Xi/Di)

∣∣ A]. Since

min
i

(Xi/Di) ≤
∑
iXi∑
iDi

=

∑
iXi

S
≤ 1

S
,

we get

E
[
min
i

(Xi/Di)
∣∣ A] ≤ E

[
(1/S)

∣∣ A] ≤ 1

µ(1− δ/2)
. (22)

Substituting (22) into (21) and comparing with (20), we see that σP (π̃) ≥ (1− ε) · σP (π′) for any other π′, in Case II as
well.
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