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ABSTRACT

In barter exchanges agents enter seeking to swap their items for
other items on their wishlist. We consider a centralized barter ex-
change with a set of agents and items where each item has a positive
value. The goal is to compute a (re)allocation of items maximizing
the agents’ collective utility subject to each agent’s total received
value being comparable to their total given value. Many such cen-
tralized barter exchanges exist and serve crucial roles; e.g., kidney
exchange programs, which are often formulated as variants of di-
rected cycle packing. We show finding a reallocation where each
agent’s total given and total received values are equal is NP-hard. On
the other hand, we develop a randomized algorithm that achieves
optimal utility in expectation and where, i) for any agent, with prob-
ability 1 their received value is at least their given value minus 𝑣∗
where 𝑣∗ is said agent’s most valuable owned and wished-for item,
and ii) each agent’s given and received values are equal in expecta-
tion. Our algorithm builds on the dependent rounding techniques
from Gandhi et al. [16].

CCS CONCEPTS

• Theory of computation→ Rounding techniques; • Applied
computing→ Electronic commerce.
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1 INTRODUCTION

Social media platforms have recently emerged into small scale busi-
ness websites. For example, platforms like Facebook, Instagram, etc.
allow its users to buy and sell goods via verified business accounts.
With the proliferation of such community marketplaces, there are
growing communities for buying, selling and exchanging (swap-
ping) goods amongst its users. We consider applications, viewed as
Barter Exchanges, which allow users to exchange board games, dig-
ital goods, or any physical items amongst themselves. For instance,
the subreddit GameSwap1 (61,000 members) and Facebook group
BoardgameExchange2 (51,000 members) are communities where
users enter with a list of owned video games and board games. The
existence of this community is testament to the fact that although
users could simply liquidate their goods and subsequently purchase
the desired goods, it is often preferable to directly swap for de-
sired items. Additionally, some online video games have fleshed
out economies allowing for the trade of in-game items between
players while selling items for real-world money is explicitly ille-
gal e.g., Runescape3. In these applications, a centralized exchange
would achieve greater utility, in collective exchanged value and
convenience, as well as overcome legality obstacles.

A centralized barter exchange market provides a platform where
agents can exchange items directly, without money/payments. Be-
yond the aforementioned applications, there exist a myriad of other
markets facilitating the exchange of a wide variety of items, includ-
ing books, children’s items, cryptocurrency, and human organs such
as kidneys. There are both centralized and decentralized exchange
markets for various items. HomeExchange4 and ReadItSwapIt5
are decentralized marketplaces that facilitate pairwise exchanges
by mutual agreement of vacation homes and books, respectively.
Atomic cross chain swaps allow users to exchange currencies within
or across various cryptocurrencies [e.g., 18, 24]. Kidney exchange
markets [see, e.g., 2, 4] and children’s items markets (e.g., Swap6)
are examples of centralized exchanges facilitating swaps amongst
incompatible patient-donor pairs and children items or services
amongst parents. Finding optimal allocations is often NP-hard. As
a result heuristic solutions have been explored extensively [17, 23].

1www.reddit.com/r/Gameswap
2https://www.facebook.com/groups/boardgameexchange
3www.jagex.com/en-GB/terms/rules-of-runescape
4www.homeexchange.com
5www.readitswapit.co.uk
6www.swap.com
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Currently, the aforementioned communities GameSwap and
BoardGameExchange make swaps in a decentralized manner be-
tween pairs of agents, but finding such pairwise swaps is often
inefficient and ineffective due to demanding a “double coincidence
of wants” [19]. However, centralized multi-agent exchanges can
help overcome such challenges by allowing each user to give and
receive items from possibly different users. Moreover, the user’s
goal is to swap a subset of their owned games for a subset of their
desired games with comparable (or greater) value. Although an
item’s value is subjective, a natural proxy is its re-sale price, which
is easily obtained from marketplaces such as Ebay.

We consider a centralized exchange problem where each agent
has a have-list and a wishlist of distinct (indivisible) items (e.g.,
physical games) and, more generally, each item has a value agreed
upon by the participating agents (e.g., members of the GameSwap
community). The goal is to find an allocation/exchange that (i)
maximizes the collective utility of the allocation such that (ii) the
total value of each agent’s items before and after the exchange is
equal.7 We call this problem barter with shared valuations, BarterSV,
and it is our subject of study. Notice that bipartite perfect matching
is a special case of BarterSV where each agent has a single item in
both its have-list and wishlist each and where all the items are have
the same value. On the other hand, we show BarterSV is NP-Hard
(Theorem 2).

In the following sections we formulate BarterSV as bipartite
graph-matching problem with additional barter constraints. Our
algorithm BarterDR is based on rounding the fractional allocation
of the natural LP relaxation to get a feasible integral allocation.
A direct application of existing rounding algorithms (like [15]) to
BarterSV results in a worst-case where some agents give away all
their items and receive none in exchange. This is wholly unaccept-
able for any deployed centralized exchange. In contrast, our main
result ensures BarterDR allocations have reasonable net value for
all agents; more precisely each agent gives and receives the same
value in expectation and the absolute difference between given and
received values is at most the value of their most valuable item
(Theorem 1).

1.1 Problem formulation: BarterSV
Suppose we are given a ground set of items I to be swapped, item
values {𝑣 𝑗 ∈ R+ : 𝑗 ∈ I} where R+ denotes the non-negative real
numbers, and a community of agents 𝑖 ∈ [𝑛] where [𝑛] denotes
{1, 2, . . . , 𝑛}. Each agent 𝑖 possesses items 𝐻𝑖 ⊆ I and has wishlist
𝑊𝑖 ⊆ I. Further, each agent 𝑖 also has a “capacity” function 𝜂𝑖 :
𝐻𝑖 → N denoting the number of copies agent 𝑖 has of each item;
similarly, 𝜔𝑖 : 𝑊𝑖 → N denotes a cap on the number of copies
agent 𝑖 desires of each item. We allow agents to swap an arbitrary
number of copies of the same item as a natural generalization of
the original problem.

A valid allocation of these items involves agents swapping their
items with other agents that desire said item while ensuring no
agent neither gives more copies of an item than they own nor
receives more copies than desired. The goal of BarterSV is to find a
valid allocation of maximum utility subject to no agent giving away

7Equivalently, the total value of the items given is equal to the total value of the items
received.

more value than they received. The following lemmas in this section
greatly simplify the problem’s presentation; their full justification is
deferred to the appendix. Let 𝜂 = max𝑖∈[𝑛], 𝑗∈𝐻𝑖

𝜂𝑖 ( 𝑗) and similarly
𝜔 = max𝑖∈[𝑛], 𝑗∈𝐻𝑖

𝜔𝑖 ( 𝑗).
Lemma 1. Any instance of BarterSV with arbitrary item capacity

functions 𝜂𝑖 and 𝜔𝑖 , for each agent 𝑖 ∈ [𝑛], has a corresponding

equivalent BarterSV instance with unit capacities.

Definition 1. Value-balanced Matching (VBM) Suppose there is
bipartite graph 𝐺 = (𝐿, 𝑅, 𝐸) with vertex values 𝑣𝑎 > 0 ∀𝑎 ∈ 𝐿 ∪ 𝑅.
Let each edge 𝑒 ∈ 𝐸 have weight𝑤𝑒 ∈ R, 𝐿 = ¤⋃𝑖𝐿𝑖 , and 𝑅 = ¤⋃𝑖𝑅𝑖 .
For a given matching 𝑀 ⊆ 𝐸, let 𝑉𝑖 (𝐿) =

∑
ℓ :(ℓ,𝑟 ) ∈𝑀,ℓ∈𝐿𝑖 𝑣ℓ and

𝑉𝑖
(𝑅) =

∑
𝑟 :(ℓ,𝑟 ) ∈𝑀,𝑟 ∈𝑅𝑖 𝑣𝑟 , where ¤

⋃
denotes disjoint union. The

goal of VBM is to find𝑀 of maximum weight subject to, for each 𝑖 ,
the value of items matched in 𝐿𝑖 and 𝑅𝑖 are equal i.e.,𝑉𝑖 (𝑅) = 𝑉𝑖 (𝐿) .

Lemma 2. BarterSV is equivalent to VBM.

Given a BarterSV instance we reduce it to a corresponding in-
stance BarterSV with unit capacities (as Lemma 1 would suggest),
and then reduce once more to a corresponding VBM instance via
the construction of an appropriate bipartite graph and valuation
function. Thus VBM is the technical lens through which we view
BarterSV in the remainder of the paper. The construction is as fol-
lows. For each agent 𝑖 ∈ [𝑛], build the vertex sets𝐿𝑖 := {ℓ𝑖 𝑗 : 𝑗 ∈ 𝐻𝑖 }
and 𝑅𝑖 := {𝑟𝑖 𝑗 : 𝑗 ∈𝑊𝑖 }. Then the bipartite graph of interest has
vertex sets 𝑈 = ¤⋃𝑖∈[𝑛]𝐿𝑖 and 𝑉 = ¤⋃𝑖∈[𝑛]𝑅𝑖 , as well as edge set
𝐸 := {(ℓ𝑖 𝑗 , 𝑟𝑖′ 𝑗 ) : 𝑗 ∈ 𝐻𝑖 ∩𝑊𝑖′ }, Thus, for each item 𝑗 ∈ I, we
draw an edge between all left and right vertices corresponding to
𝑗 . Each vertex ℓ𝑖 𝑗 and 𝑟𝑖 𝑗 has value 𝑣 𝑗 ; so 𝑣 (ℓ𝑖 𝑗 ) = 𝑣 𝑗 and so on.
Crucially, 𝐸 has edges only between vertices of equal value. Then a
valid allocation corresponds to a VBM𝑀 in (𝑈 ,𝑉 , 𝐸) such that for
each 𝑒 ∈ 𝐸, 𝑦𝑒 = 1 if 𝑒 ∈ 𝑀 and 𝑦𝑒 = 0 otherwise is feasible in the
following Integer Program (IP);

max
∑︁
𝑒∈𝐸

𝑤𝑒𝑦𝑒 (1a)

subj. to 𝑦 (ℓ𝑖 𝑗 ) ≤ 1, 𝑖 ∈ [𝑛], ℓ𝑖 𝑗 ∈ 𝐿𝑖 (1b)
𝑦 (𝑟𝑖 𝑗 ) ≤ 1, 𝑖 ∈ [𝑛], 𝑟𝑖 𝑗 ∈ 𝑅𝑖 (1c)∑︁
𝑎∈𝐿𝑖

𝑦 (𝑎)𝑣𝑎 =
∑︁
𝑏∈𝑅𝑖

𝑦 (𝑏)𝑣𝑏 , 𝑖 ∈ [𝑛] (1d)

𝑦𝑒 ∈ {0, 1}, 𝑒 = (ℓ𝑖 𝑗 , 𝑟𝑖′ 𝑗 ) ∈ 𝐸. (1e)

The weights𝑤𝑒 ∈ R can be set arbitrarily; this detail will be elabo-
rated upon shortly. For 𝑎 ∈ 𝐿 ∪ 𝑅, we denote 𝑦 (𝑎) := ∑

𝑒∈𝑁 (𝑎) 𝑦𝑒
where 𝑁 (𝑎) denotes the open neighborhood of 𝑎 i.e., 𝑁 (𝑎) :=
{(𝑎, 𝑏) ∈ 𝐸 : 𝑏 ∈ 𝐿 ∪ 𝑅}, and Z+ denotes the non-negative in-
tegers. Thus 𝑒 = (ℓ𝑖 𝑗 , 𝑟𝑖′ 𝑗 ) ∈ 𝑀 says agent 𝑖 gives item 𝑗 to agent
𝑖′. With this in mind, (1b) ensures each agent 𝑖 gives item 𝑗 away
at most once, (1c) ensures each agent 𝑖 receives at most one copy
of item 𝑗 , and (1d) ensures, for each agent 𝑖 , the value received∑
𝑏∈𝑅𝑖 𝑦 (𝑏)𝑣𝑏 equals the value given

∑
𝑎∈𝐿𝑖 𝑦 (𝑎)𝑣𝑎 (i.e.,𝑀 is a VBM

with𝑉 (𝐿)
𝑖

= 𝑉
(𝑅)
𝑖

). It follows that an allocation is a valid allocation
if and only if the corresponding {𝑦𝑒 } is a feasible point of (1); i.e.,
Lemma 2. For each 𝑒 ∈ 𝐸 we may set 𝑤𝑒 = 𝑣 𝑗 and recover the
objective of maximizing the collective value received by all agents.
Nevertheless, our results hold even if𝑤𝑒 is set arbitrarily. For ex-
ample, the algorithm designer could place greater value on certain
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item allocations, or they may maximize the sheer number of items
received by uniformly setting 𝑤𝑒 = 1. Henceforth

∑
𝑒∈𝐸 𝑤𝑒𝑦𝑒 is

the allocation’s utility. By relaxing (1e) to 𝑦𝑒 ≥ 0 for 𝑒 ∈ 𝐸 we ar-
rive at the natural LP relaxation of BarterSV, namely BarterSV-LP.
The following lemma means BarterSV guarantees will follow from
carefully rounding the related BarterSV-LP solution.

Lemma 3. IP (1) is equivalent to BarterSV. Moreover, the objective

of BarterSV-LP is an upper bound on the objective of IP (1).

2 PRELIMINARIES: GKPS DEPENDENT

ROUNDING

Our results build on the dependent rounding algorithm due to
[15], henceforth referred to as GKPS-DR. GKPS-DR is an algo-
rithm that takes {𝑥𝑒 } ∈ [0, 1] |𝐸 | defined over the edge set 𝐸 of
a biparite graph (𝐿, 𝑅, 𝐸) and outputs {𝑋𝑒 } ∈ {0, 1} |𝐸 | . In each
iteration GKPS-DR considers the graph of floating edges (those
edges 𝑒 with 0 < 𝑥𝑒 < 1) and selects a maximal path or cycle
𝑃 ⊆ 𝐸 on floating edges. The edges of 𝑃 are decomposed into alter-
nate matchings𝑀1 and𝑀2 and rounded in the following way. Fix
𝛼GKPS = min

{
𝛾 > 0 :

(∨
𝑒∈𝑀1 𝑥𝑒 + 𝛾 = 1

)
∨
(∨

𝑒∈𝑀2 𝑥𝑒 − 𝛾 = 0
)}
,

and 𝛽GKPS = min
{
𝛾 > 0 :

(∨
𝑒∈𝑀2 𝑥𝑒 + 𝛾 = 1

)
∨
(∨

𝑒∈𝑀1 𝑥𝑒 − 𝛾 = 0
)}
.

Thus, each 𝑥𝑒 is updated to 𝑥 ′𝑒 according to one of the following
disjoint events: with probability 𝛽GKPS

𝛼GKPS+𝛽GKPS

𝑥 ′𝑒 =

{
𝑥𝑒 + 𝛼, 𝑒 ∈ 𝑀1
𝑥𝑒 − 𝛼, 𝑒 ∈ 𝑀2

; else, 𝑥 ′𝑒 =

{
𝑥𝑒 − 𝛽, 𝑒 ∈ 𝑀1
𝑥𝑒 + 𝛽, 𝑒 ∈ 𝑀2 .

The selection of 𝛼 and 𝛽 ensures at least one edge is rounded to 0
or 1 in every iteration. GKPS-DR guarantees (P1) marginal, (P2)
degree preservation, and (P3) negative correlation properties:
(P1) ∀𝑒 ∈ 𝐸, Pr(𝑋𝑒 = 1) = 𝑥𝑒 .
(P2) ∀𝑎 ∈ 𝐿 ∪𝑅 and with probability 1, 𝑋 (𝑎) ∈ {⌊𝑥 (𝑎)⌋, ⌈𝑥 (𝑎)⌉}.
(P3) ∀𝑎 ∈ 𝐿 ∪ 𝑅, ∀𝑆 ⊆ 𝑁 (𝑎), ∀𝑐 ∈ {0, 1}, Pr (∧𝑠∈𝑆 𝑋𝑠 = 𝑐) ≤∏

𝑠∈𝑆 Pr (𝑋𝑠 = 𝑐).

Remark 1. When GKPS-DR rounds a path between vertices 𝑎 and
𝑏, the signs of the changes to 𝑥 (𝑎) and 𝑥 (𝑏) are equal if and only if
𝑎 and 𝑏 belong to different graph sides.

3 RELATED WORK

Centralized barter exchanges have been studied by several others
in the context of kidney-exchanges [2–4]. BarterSV generalizes a
well-studied kidney-exchange problem in the following way. The
Kidney Exchange Problem (KEP) is often formulated as directed
cycle packing in compatibility patient-donor graphs [2] where each
node in the graph corresponds to a patient-donor pair and directed
edges between nodes indicate compatibility. Abraham et al. [2], Biró
et al. [5] observed this problem reduces to bipartite perfect match-
ing, which is solvable in polynomial-time. We show BarterSV is
NP-Hard and thus resort to providing a randomized algorithm with
approximate guarantees on the agents’ net values via LP relaxation
followed by dependent rounding.

There has been extensive work on developing dependent round-
ing techniques, that round the fractional solution in some correlated
way to satisfy both the hard constraints and ensure some negative

dependence amongst rounded variables that can result in concen-
tration inequalities. For instance, the hard constraints might arise
from an underlying combinatorial object such as a packing [6],
spanning tree [8], or matching [15] that needs to be produced. In
our case, the rounded variables must satisfy both matching (1b),
(1c), and barter constraints (1d) (i.e., each agent gives the items
of same total value as it received). Gandhi et al. [15] developed a
rounding scheme where the rounded variables satisfy the matching
constraints along with other useful properties. Therefore, we adapt
their rounding scheme (to satisfy matching constraints) followed
by a careful rounding scheme that results in rounded variables
satisfying the barter constraints.

Centralized barter exchanges are well-studied under various
barter settings. For instance, Abraham et al. [2] showed that the
bounded length edge-weighted directed cycle packing is NP-Hard
which led to several heuristic based methods to solve these hard
problems, e.g., by using techniques of operations research [7, 9,
17, 23], AI/ML modeling [21, 22]. Recently several works focused
on the fairness in barter exchange problems [1, 13, 14, 20]. Our
work adds to the growing body of research in theory and heuristics
surrounding ubiquitous barter exchange markets.

4 OUTLINE OF OUR CONTRIBUTIONS AND

THE PAPER

Firstly, we introduce the BarterSV problem, a natural generalization
of edge-weighted directed cycle packing and show that it is NP-Hard
to solve the problem exactly. Our main contribution is a randomized
dependent rounding algorithm BarterDR with provable guaran-
tees on the quality of the allocation. The following definitions help
present our results. Suppose we are given an integral allocation
{𝑋𝑒 } ∈ {0, 1} |𝐸 | , we define the net value loss of each agent 𝑖 (i.e.,
the violation in the barter constraint (1d)):

𝐷𝑖 :=
∑︁
𝑏∈𝐿𝑖

𝑣𝑏𝑋 (𝑏) −
∑︁
𝑎∈𝑅𝑖

𝑣𝑎𝑋 (𝑎) . (2)

Our main contribution is a rounding algorithm BarterDR that
satisfies both matching (1b), (1c) and barter constraints (1d) as de-
sired in multi-agent exchanges. Recollect that existing rounding
algorithm such as GKPS-DR (indeed a pre-processing step of our
BarterDR) rounds the fractional matching to an integral solution
enjoying the properties mentioned in Section 2. The main chal-
lenge in our problem is satisfying the barter constraint. Here, a
direct application of GKPS-DR alone can result in a worst case
violation of

∑
𝑎∈𝐿𝑖 𝑣𝑎 on 𝐷𝑖 , corresponding to the agent losing all

their items and gaining none (see the example in the Appendix).
However, our algorithm BarterDR rounds much more carefully to
ensure, for each agent 𝑖 , 𝐷𝑖 is at most 𝑣∗

𝑖
:= max𝑎∈𝐿𝑖∪𝑅𝑖 𝑣𝑎 , i.e., the

most valuable item in𝐻𝑖 ∪𝑊𝑖 . The two following theorems provide
lower and upper bounds on tractable 𝐷𝑖 (i.e., (2)) guarantees for
BarterSV. BarterDR on a bipartite graph (𝐿, 𝑅, 𝐸) is worst-case
time O((|𝐿 | + |𝑅 |) ( |𝐿 | + |𝑅 | + |𝐸 |)) where 𝐿, 𝑅 = O(|I|𝑛). We view
Theorem 1 as our main result.

Theorem 1. Given a BarterSV instance, BarterDR is an efficient

randomized algorithm achieving an allocation with optimal utility

in expectation and where, for all agents 𝑖 , 𝐷𝑖 < 𝑣
∗
𝑖
with probability 1

and E[𝐷𝑖 ] = 0.
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Theorem 2. Deciding whether a BarterSV instance has a non-

empty valid allocation with 𝐷𝑖 = 0 for all agents 𝑖 is NP-hard, even if

all item values are integers.

Owing to its similarities to GKPS-DR, BarterDR enjoys similar
useful properties:

Theorem 3. BarterDR rounds {𝑥𝑒 } ∈ [0, 1] |𝐸 | in the feasible

region of BarterSV-LP into {𝑋𝑒 } ∈ {0, 1} |𝐸 | while satisfying (P1),
(P2), and (P3).

Outline of the paper. In Section 5 we describe BarterDR (Algo-
rithm 1), our randomized algorithm for BarterSV, and its subrou-
tines FindCCC and CCWalk in detail. Next, we give proofs and
proof sketches for Theorems 1 and 3.

5 BARTERDR: DEPENDENT ROUNDING

ALGORITHM FOR BarterSV
Notation. BarterDR is a rounding algorithm that proceeds in

multiple iterations, therefore we use a superscript 𝑟 to denote the
value of a variable at the beginning of iteration 𝑟 . An edge 𝑒 ∈ 𝐸
is said to be floating if 𝑥𝑟𝑒 ∈ (0, 1). Analogously, let 𝐸𝑟 := {𝑒 ∈ 𝐸 :
𝑥𝑟𝑒 ∈ (0, 1)}, a vertex 𝑎 ∈ 𝐿 ∪ 𝑅 is said to be floating if 𝑥𝑟 (𝑎) :=∑
𝑒∈𝑁 (𝑎) 𝑥

𝑟
𝑒 ∉ Z and the sets of floating vertices are 𝐿𝑟 := {𝑎 ∈ 𝐿 :

𝑥𝑟 (𝑎) ∉ Z} and 𝑅𝑟 := {𝑎 ∈ 𝑅 : 𝑥𝑟 (𝑎) ∉ Z}. Define 𝐶 (𝑖) := {𝑎 : 𝑎 ∈
𝐿𝑖 ∪ 𝑅𝑖 }, for each 𝑖 ∈ [𝑛], to be the set of participating vertices in
each barter constraint. We say two vertices 𝑎, 𝑏 ∈ 𝐿∪𝑅 are partners
if there exists 𝑖 ∈ [𝑛] such that 𝑎, 𝑏 ∈ 𝐶 (𝑖) and 𝑎 ≠ 𝑏. Note if 𝑎
and 𝑏 are partners, then they are distinct vertices corresponding
to items (owned or desired) by the same agent 𝑖 . In iteration 𝑟 , a
vertex 𝑎 ∈ 𝐶 (𝑖) is said to be partnerless if 𝐶 (𝑖) ∩ (𝐿𝑟 ∪ 𝑅𝑟 ) = {𝑎};
i.e., 𝑎 is the only floating vertex in𝐶 (𝑖). We use the shorthand 𝑎 ∼ 𝑏
to denote 𝑎 and 𝑏 are partners. Edges and vertices not floating are
said to be settled. For vertices 𝑎 and 𝑏, 𝑎 { 𝑏 denotes a simple path
from 𝑎 to 𝑏. Define 𝐷𝑟

𝑖
to be 𝐷𝑖 , as defined in (2), but with variables

{𝑥𝑟𝑒 } instead of {𝑋𝑒 }. The fractional degree of 𝑎 ∈ 𝐿 ∪ 𝑅 refers to
𝑥𝑟 (𝑎).

Once an edge is settled, its value does not change. In the each
iteration BarterDR looks exclusively at the floating edges 𝐸𝑟 and
the graph induced by them. Namely,𝐺𝑟 := (𝐿(𝐸𝑟 ), 𝑅(𝐸𝑟 ), 𝐸𝑟 ) where
𝐿(𝐸𝑟 ) := {𝑎 ∈ 𝐿 : ∃𝑒 ∈ 𝐸𝑟 , 𝑒 ∈ 𝑁 (𝑎)} and 𝑅(𝐸𝑟 ) is defined
analogously. In each iteration, at least one edge or vertex becomes
settled, i.e., |𝐸𝑟 | + |𝐿𝑟 | + |𝑅𝑟 | > |𝐸𝑟+1 | + |𝐿𝑟+1 | + |𝑅𝑟+1 |. Therefore
BarterDR terminates in iteration 𝑇 where |𝐸𝑇 | = 0 and 𝑇 ≤
|𝐿 | + |𝑅 | + |𝐸 |.

Algorithm and analysis outline. BarterDR begins by making 𝐺
acyclic via the pre-processing step in Section 5.1. Next, BarterDR
proceeds as follows. While there are floating edges find an appro-
priate sequence of paths P constituting a CCC or CCW (defined in
Section 5.2). The strategy for judiciously rounding P is fleshed out
in Section 5.3. Finally, Section 5.4 concludes with proof sketches
for Theorems 1 and 3.

5.1 Pre-processing: remove cycles in 𝐺

The pre-processing step consists of finding a cycle𝐶 via depth-first
search in the graph of floating edges and rounding 𝐶 via GKPS-DR
until there are no more cycles. Let {𝑥0𝑒 }𝑒∈𝐸 denote the LP solution

and {𝑥1𝑒 }𝑒∈𝐸 denote the output of the pre-processing step. Bar-
terDR begins on {𝑥1𝑒 }𝑒∈𝐸 .

GKPS-DR on cycles never changes fractional degrees, i.e., ∀𝑎 ∈
𝐿 ∪ 𝑅, 𝑥0 (𝑎) = 𝑥1 (𝑎). Lemma 5 is used to construct CCC’s and
CCW’s, and it is the raison d’être for the pre-processing step.

Lemma 4. The pre-processing step is efficient and gives 𝐷1
𝑖
= 0 for

all agents 𝑖 with probability 1.

Lemma 5. Each connected component of 𝐺1
has at least 2 floating

vertices.

5.2 Construction of CCC’s and CCW’s via

FindCCC

This section introduces CCC’s and CCW’s. The definition of these
structures facilitates rounding edges while respecting the barter
constraints each iteration. The subroutines for constructing CCC’s
and CCW’s, FindCCC and CCWalk, are described in Algorithms 2
and 3. The correctness of these subroutines, and thus the existence
of CCC’s and CCW’s, follows from Lemma 6.

Definition 2. A connected component cycle (CCC) is a sequence
of 𝑞 ≥ 1 paths P = ⟨𝑠1 { 𝑡1, . . . , 𝑠𝑞 { 𝑡𝑞⟩ such that, letting
𝑉 (P) = ⋃

𝑖∈[𝑞 ] {𝑠𝑖 , 𝑡𝑖 } be the paths’ endpoint vertices,
(1) ∀𝑖 ∈ [𝑞], 𝑡𝑖 ∼ 𝑠𝑖+1 (taking 𝑠𝑞+1 ≡ 𝑠1),
(2) ∀𝑎 ∈ 𝑉 (P), |𝑉 (P) ∩𝐶 (𝑎) | = 2,
(3) ∀𝑖 ∈ [𝑞], 𝑠𝑖 { 𝑡𝑖 belong to distinct connected components,

and
(4) ∀𝑖 ∈ [𝑞], 𝑠𝑖 and 𝑡𝑖 are floating vertices.

Instead, we have a connected component walk (CCW) if criteria 3)
and 4) are met but 1) and 2) are relaxed to: 1) ∀𝑖 ∈ [𝑞 − 1], 𝑡𝑖 ∼ 𝑠𝑖+1
and 𝑠1 and 𝑡𝑞 are partnerless; and 2) ∀𝑎 ∈ 𝑉 (P) − {𝑠1, 𝑡𝑞}, |𝑉 (P) ∩
𝐶 (𝑎) | = 2.

Recall that a rounding iteration 𝑟 is fixed so whether a vertex
is floating or partnerless is well-defined. When P is rounded the
set of vertices whose fractional degrees change is precisely 𝑉 (P).
Requirements 1 and 2 of a CCC say 𝑡𝑖 and 𝑠𝑖+1 are partners and they
do not have any other partner vertices in 𝑉 (P). Comparably, for
CCW’s these requirements imply the same for all vertices but the
“first” and “last,” which are partnerless. Therefore, for CCC’s and
CCW’s the vertices in 𝑉 (P) respectively appear in 𝑞 and 𝑞 + 1 dis-
tinct barter constraints. The requirements in the definitions of CCC
and CCW come in handy during the analysis because: each path
belongs to a different connected component hence they are vertex
and edge disjoint; if a barter constraint has exactly two vertices in
𝑉 (P) then these vertices’ fractional degree changes can be made to
cancel each other out in the barter constraint; and floating vertices
ensure paths can be rounded in a manner analogous to GKPS-DR.
For comparison, GKPS-DR also needed paths with floating end-
points, but maximal paths always have such endpoints whereas the
paths of P need not be maximal. Consequently, the requirement
that paths of P have floating endpoints must be imposed.

Uncrossing the half-CCWs. We show how to resolve "crossing"
half-CCW’s as mentioned in FindCCC Line 9. Using 𝑂1 and 𝑂2

build 𝑉 :=
〈
𝑠′𝑞, 𝑡
′
𝑞−1, . . . , 𝑠

′
2, 𝑡
′
1, 𝑡1, 𝑠2, . . . , 𝑠𝑞

〉
. 𝑉 can be seen as the

sequence of path endpoints (i.e., 𝑉 in CCWalk) resulting from a
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Algorithm 1: BarterDR

Input: {𝑥1𝑒 } ∈ {0, 1} |𝐸 | , corresponding to
𝐺1 = (𝐿(𝐸1), 𝑅(𝐸1), 𝐸1); i.e., the output of the
pre-processing described in Section 5.1

1 𝑟 ← 1
2 while 𝐸𝑟 ≠ ∅ do
3 P ← CCC or CCW returned by FindCCC in 𝐺𝑟

4 Round P as described in Section 5.3 yielding 𝐺𝑟+1 and
{𝑥𝑟+1𝑒 }; 𝑟 ← 𝑟 + 1

5 end

6 return {𝑥𝑟𝑒 } ∈ {0, 1} |𝐸 |

Algorithm 2: FindCCC
Input: 𝐺𝑟 = (𝑈 (𝐸𝑟 ),𝑉 (𝐸𝑟 ), 𝐸𝑟 )
Output: CCC or CCW ⟨𝑠𝑖 { 𝑡𝑖 ⟩𝑖∈[𝑞 ]

1 𝑠1, 𝑡1 ← distinct floating vertices in some connected
component 𝐶 of 𝐺𝑟

2 (𝑂1, 𝜎1) ← CCWalk(𝑡1)
3 if 𝜎1 = "CCC" then

4 return 𝑂1
5 (𝑂2, 𝜎2) ← CCWalk(𝑠1)
6 if 𝜎2 = "CCC" then

7 return 𝑂2
8 Let 𝑂1 = (𝑡1, 𝑠2, 𝑡2, . . . , 𝑠𝑞, 𝑡𝑞) and 𝑂2 = (𝑡 ′1, 𝑠

′
2, 𝑡
′
2, . . . , 𝑠

′
𝑞′ , 𝑡
′
𝑞′ )

9 If 𝑂1 and 𝑂2 “cross,” resolve 𝑂1 and 𝑂2 into a CCC and
return it; see Section 5.2

10 return〈
𝑡 ′
𝑞′ { 𝑠′

𝑞′ , 𝑡
′
𝑞′−1, 𝑠

′
𝑞′−1, . . . , 𝑠

′
2 { 𝑡 ′2, 𝑡

′
1 { 𝑡1, 𝑠2 { 𝑡2, . . . , 𝑠𝑞 { 𝑡𝑞

〉
run of CCWalk(𝑠′𝑞). By the half-CCW’s "crossing" we mean that
in some iteration of the while-loop of CCWalk either a connected
component is revisited or 𝑡𝑖 was partners with a vertex previously
visited. But these cases are precisely Lines 9 and 14 from CCWalk
where it is known a CCC can be resolved.

Lemma 6. If 𝐺𝑟
has no cycles, FindCCC efficiently returns a CCC

or CCW.

5.3 Rounding CCC’s and CCW’s

Now we shed light on what we mean by carefully rounding the
paths of the CCC/CCW P. But first we build some intuition. Focus
on 𝑡𝑝 and 𝑠𝑝+1 for some fixed 1 ≤ 𝑝 ≤ 𝑞 in case of a CCC (or
𝑝 < 𝑞 in the case of a CCW). Since 𝑡𝑝 ∼ 𝑠𝑝+1, whatever rounding
procedure we use, we want the relative signs of the changes to
𝑥𝑟 (𝑡𝑝 ) and 𝑥𝑟 (𝑠𝑝+1) to depend on whether 𝑡𝑝 and 𝑠𝑝+1 fall on the
same or different sides of 𝐺 (these sides being “left” and “right”
corresponding to vertex sets 𝐿 and 𝑅; equivalently, left and right
of “=” in (1d)). This way (1d) is preserved after rounding. Likewise,
the magnitudes of fractional degree changes to 𝑡𝑝 and 𝑠𝑝+1 must
be balanced depending on 𝑣𝑝 and 𝑣𝑝+1 so that (1d) is preserved
for 𝑖 corresponding to 𝑡𝑝 , 𝑠𝑝+1 ∈ 𝐶 (𝑖). Intuitively, these two points
are necessary to successfully round P. To this end, we now define

Algorithm 3: CCWalk(𝑎)
Input: 𝐺𝑟 = (𝑈 (𝐸𝑟 ),𝑉 (𝐸𝑟 ), 𝐸𝑟 ), the walk’s starting vertex 𝑎
Output: A CCC or half of a CCW; a string indicating

whether a CCC was returned
1 𝑉 ← (𝑡1), letting 𝑡1 := 𝑎 // ordered list of path

endpoints

2 𝑆 ← {𝐶1} where 𝐶1 is the connected component containing
𝑎 // seen CC’s

3 𝑖 ← 2
4 while True do

5 if 𝑡𝑖−1 is partnerless then
6 return (𝑉 , "CCW")
7 𝑠𝑖 ← partner of 𝑡𝑖−1
8 𝐶𝑖 ← connected component containing 𝑠𝑖
9 if 𝐶𝑖 ∈ 𝑆 then

10 𝐶𝑖 = 𝐶𝑘 for some 𝑘 < 𝑖 so let 𝑠′
𝑘
:= 𝑠𝑖

11 return (
〈
𝑠′
𝑘
{ 𝑡𝑘 , . . . , 𝑠𝑖−1 { 𝑡𝑖−1

〉
, "CCC")

12 𝑡𝑖 ← floating vertex in 𝐶𝑖 distinct from 𝑠𝑖

13 𝑉 ← 𝑉 ⊕ (𝑠𝑖 ), where ⊕ denotes sequence concatenation
14 if ∃𝑏 ∈ 𝑉 , 𝑏 ∼ 𝑡𝑖 then // 𝑡𝑖 already has a

partner in 𝑉

15 It must be that 𝑏 already had a partner 𝑐 ∈ 𝑉 .
WLOG, 𝑏 = 𝑡𝑘−1 and 𝑐 = 𝑠𝑘 , some 𝑘 ≤ 𝑖

16 return (⟨𝑠𝑘 { 𝑡𝑘 , . . . , 𝑠𝑖 { 𝑡𝑖 ⟩ , "CCC")
17 𝑉 ← 𝑉 ⊕ (𝑡𝑖 )
18 𝑖 ← 𝑖 + 1, 𝑆 ← 𝑆 ∪ {𝐶𝑖 }
19 end

roundable colorings. If 𝑎 and 𝑏 are vertices belonging to different
sides of the graph, we say 𝑎 ⊥ 𝑏; otherwise we say 𝑎 ̸⊥ 𝑏.

Definition 3 (Roundable coloring). The CCC P =⟨𝑠𝑖 { 𝑡𝑖 ⟩𝑖∈[𝑞 ]
has a roundable coloring if there exists C : 𝑉 (P) → {−1, 1} such
that i) for all 𝑖 ∈ [𝑞], C(𝑠𝑖 ) = C(𝑡𝑖 ) if and only if 𝑠𝑖 ⊥ 𝑡𝑖 ; and ii)
for all 𝑖 ∈ [𝑞], C(𝑡𝑖 ) = C(𝑠𝑖+1) if and only if 𝑡𝑖 ⊥ 𝑠𝑖+1. A roundable
coloring for a CCW is defined the same way except ii) becomes
∀𝑖 ∈ [𝑞 − 1], C(𝑡𝑖 ) = C(𝑠𝑖+1) if and only if 𝑡𝑖 ⊥ 𝑠𝑖+1.

Lemma 7. Every CCC and CCW admits an efficiently computable

roundable coloring C.

Property i) will ensure 𝑎, 𝑏 ∈ 𝑉 (P) see same-sign fractional
degree change if and only if C(𝑎) = C(𝑏). Property ii) is equivalent
to Remark 1 and verifies each 𝑠𝑖 { 𝑡𝑖 is roundable in GKPS-DR
manner.

Although the notation used next is cumbersome, the intuition is
to fix 𝛼, 𝛽 > 0 “small enough” that all edge variables stay in [0, 1]
and vertex fractional degrees stay within their current ceilings
and floors but “large enough” that at least one edge or vertex is
settled. First, fix the roundable coloring C, which is possible per
Lemma 7. Next, decompose each path 𝑠𝑖 { 𝑡𝑖 into alternating
matchings 𝑀𝑖

−1 and 𝑀
𝑖
1 such that ∀𝑎 ∈ {𝑠𝑖 , 𝑡𝑖 }, ∃𝑒 ∈ 𝑀𝑖

C(𝑎) such
that 𝑒 ∈ 𝑁 (𝑎); property ii) of C guarantees this is possible. In other
words, vertex 𝑎 ∈ {𝑠𝑖 , 𝑡𝑖 } is present in𝑀𝑖

C(𝑎) . For readability drop
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the 𝑟 superscripts briefly and let

Γ𝑖−1 (𝛾) ≡
∨

𝑒∈𝑀𝑖
−1

(𝑥𝑒 + 𝛾 = 1) ∨
∨
𝑒∈𝑀𝑖

1

(𝑥𝑒 − 𝛾 = 0)

∨
∨

𝑎∈{𝑠𝑖 ,𝑡𝑖 }
(C(𝑎) = −1 =⇒ 𝑥 (𝑎) + 𝛾 = ⌈𝑥 (𝑎)⌉)

∨
∨

𝑎∈{𝑠𝑖 ,𝑡𝑖 }
(C(𝑎) = 1 =⇒ 𝑥 (𝑎) − 𝛾 = ⌊𝑥 (𝑎)⌋), (3)

and, symmetrically,

Γ𝑖1 (𝛾) ≡
∨
𝑒∈𝑀𝑖

1

(𝑥𝑒 + 𝛾 = 1) ∨
∨

𝑒∈𝑀𝑖
−1

(𝑥𝑒 − 𝛾 = 0)

∨
∨

𝑎∈{𝑠𝑖 ,𝑡𝑖 }
(C(𝑎) = 1 =⇒ 𝑥 (𝑎) + 𝛾 = ⌈𝑥 (𝑎)⌉)

∨
∨

𝑎∈{𝑠𝑖 ,𝑡𝑖 }
(C(𝑎) = −1 =⇒ 𝑥 (𝑎) − 𝛾 = ⌊𝑥 (𝑎)⌋) . (4)

Finally, the magnitudes fixed (in analogy to Section 2) are

𝛼 := min
𝛾 > 0 :

∨
𝑖∈[𝑞 ]

Γ𝑖−1

(
1
𝑣𝑖
𝛾

) , 𝛽 := min
𝛾 > 0 :

∨
𝑖∈[𝑞 ]

Γ𝑖1

(
1
𝑣𝑖
𝛾

) .
(5)

Both 𝛼 and 𝛽 are well defined as they are the minima of non-empty
finite sets. The update proceeds probabilistically as follows: ∀𝑖 ∈
[𝑞],∀𝑒 ∈ 𝑠𝑖 { 𝑡𝑖 ,

w.p.
𝛽

𝛼 + 𝛽 , 𝑥
𝑟+1
𝑒 =

{
𝑥𝑟𝑒 + 1

𝑣𝑖
𝛼, 𝑒 ∈ 𝑀𝑖

−1
𝑥𝑟𝑒 − 1

𝑣𝑖
𝛼, 𝑒 ∈ 𝑀𝑖

1
; (6)

else, w.p.
𝛼

𝛼 + 𝛽 , 𝑥
𝑟+1
𝑒 =

{
𝑥𝑟𝑒 − 1

𝑣𝑖
𝛽, 𝑒 ∈ 𝑀𝑖

−1
𝑥𝑟𝑒 + 1

𝑣𝑖
𝛽, 𝑒 ∈ 𝑀𝑖

1
. (7)

5.4 Algorithm analysis

Proof sketch of Theorem 3. The proof proceeds via the following
invariants maintained at each iteration 𝑟 of BarterDR. Except for
(J2), the proofs for the invariants are almost identical to those in
[15]. This is because BarterDR is crafted so as to be similar to
GKPS-DR in the ways necessary for this analysis to carry over.
(J1) ∀𝑒 ∈ 𝐸, E[𝑥𝑟𝑒 ] = 𝑥0𝑒 .
(J2) ∀𝑎 ∈ 𝐿 ∪ 𝑅 and with probability 1, ⌊𝑥0 (𝑎)⌋ ≤ 𝑥𝑟 (𝑎) ≤

⌈𝑥0 (𝑎)⌉.
(J3) ∀𝑎 ∈ 𝐿 ∪ 𝑅, ∀𝑆 ⊆ 𝑁 (𝑎), ∀𝑐 ∈ {0, 1}, E[∏𝑒∈𝑆 𝑥

𝑟+1
𝑒 ] ≤

E[∏𝑒∈𝑆 𝑥
𝑟
𝑒 ].

Though BarterDR chooses 𝛼 and 𝛽 differently, the main difference
is there may not be a rounded edge in every path of the CCC/CCW,
which is okay.

Lemma 8. BarterDR achieves optimal objective in expectation

and ∀𝑖 ∈ [𝑛], E[𝐷𝑖 ] = 0.

Proof of Lemma 8. Given a BarterSV instance, let OPTIP and
OPTLP be the optimal objectives of the corresponding IP (1) and the
corresponding BarterSV-LP. Let {𝑋 ∗𝑒 }𝑒∈𝐸 and {𝑥∗𝑒 }𝑒∈𝐸 be optimal
solutions to the IP and LP, respectively. ThenOPTIP =

∑
𝑒∈𝐸 𝑤𝑒𝑋

∗
𝑒 ≤∑

𝑒∈𝐸 𝑤𝑒𝑥
∗
𝑒 = OPTLP. Per Theorem 3, BarterDR satisfies (P1)

when rounding {𝑥∗𝑒 }𝑒∈𝐸 to {𝑋𝑒 } ∈ {0, 1} |𝐸 | . Therefore,E[
∑
𝑒∈𝐸 𝑤𝑒𝑋𝑒 ] =∑

𝑒∈𝐸 𝑤𝑒E[𝑋𝑒 ] =
∑
𝑒∈𝐸 𝑤𝑒𝑥

∗
𝑒 = OPTLP.

By the linearity of expectation and (P1),

E[𝐷𝑖 ] = E[
∑︁
𝑎∈𝐿𝑖

𝑋 (𝑎)𝑣𝑎 −
∑︁
𝑏∈𝑅𝑖

𝑋 (𝑏)𝑣𝑏 ]

=
∑︁
𝑏∈𝐿𝑖
E[𝑋 (𝑏)]𝑣𝑏 −

∑︁
𝑎∈𝑅𝑖
E[𝑋 (𝑎)]𝑣𝑎

=
∑︁
𝑏∈𝐿𝑖

𝑥∗ (𝑏)𝑣𝑏 −
∑︁
𝑎∈𝑅𝑖

𝑥∗ (𝑎)𝑣𝑎 = 𝐷0
𝑖 = 0.

The last equation follows because {𝑥∗𝑒 }𝑒∈𝐸 satisfies (1d) as argued
in the proof of Theorem 3. □

Lemma 9. If 𝐷𝑟
𝑖
= 0 and there exists distinct floating 𝑎, 𝑏 ∈ C(𝑖),

then 𝐷𝑟+1
𝑖

= 0.

Proof of Lemma 9. If no vertex from 𝐿𝑖 ∪ 𝑅𝑖 appears in the
CCC/CCW’s endpoints𝑉 (P) := ⋃

𝑖∈[𝑞 ] {𝑠𝑖 , 𝑡𝑖 } thenwe are done. So
suppose 𝑎 ∈ 𝐿𝑖∪𝑅𝑖 and 𝑎 ∈ 𝑉 (P) in this 𝑟 -th rounding iteration. By
assumption there exists another floating vertex, namely 𝑏 ∈ 𝐿𝑖 ∪𝑅𝑖
in iteration 𝑟 when ⟨𝑠𝑖 { 𝑡𝑖 ⟩𝑖∈[𝑞 ] was constructed. Therefore, 𝑎
is not partnerless hence it cannot be the endpoint of a CCW so
there exists 𝑏 ∈ 𝑉 (P) such that 𝑎 ∼ 𝑏. Moreover, by property 2 of
the definition of a CCC/CCW, said 𝑏 is unique. Therefore, 𝑎 and
𝑏 are the only vertices in 𝑉 (P) affecting 𝐷𝑖 this iteration 𝑟 ; i.e.,
∀𝑑 ∈ (𝐿𝑖 ∪ 𝑅𝑖 ) − {𝑎, 𝑏}, 𝑥𝑟 (𝑑) = 𝑥𝑟+1 (𝑑). Since 𝑎 ∼ 𝑏, we may
assume without loss of generality that 𝑎 = 𝑡𝑘 and 𝑏 = 𝑠𝑘+1 for some
𝑘 ∈ [𝑞] (or 𝑘 ∈ [𝑞 − 1] for a CCW); recall 𝑠𝑞+1 ≡ 𝑠1. We know
C(𝑎) = C(𝑏) if and only if 𝑎 and 𝑏 belong to opposite graph sides
where C is the valid coloring function corresponding to P, which
can be fixed efficiently per Lemma 7.

Consider the two possible rounding events, described in (6). Call
these events 𝜃1 and 𝜃2. Suppose 𝑎 and 𝑏 are opposite-side vertices,
hence C(𝑎) = C(𝑏). Focus on event 𝜃1 (the proof for 𝜃2 is exactly
the same but replacing 𝛼 with −𝛽). Under event 𝜃1 we have

𝑥𝑟+1 (𝑎) = 𝑥𝑟 (𝑎) − C(𝑎) 1
𝑣𝑎
𝛼 and 𝑥𝑟+1 (𝑏) = 𝑥𝑟 (𝑏) − C(𝑏) 1

𝑣𝑏
𝛼.

Note the factor of “−C(𝑎)” appears because 𝑎 belongs to𝑀𝑖
C(𝑎) for

some 𝑖 . Conveniently, this leaves us with

𝑥𝑟+1 (𝑎)𝑣𝑎 − C(𝑎)C(𝑏)𝑥𝑟+1 (𝑏)𝑣𝑏
= 𝑥𝑟 (𝑎)𝑣𝑎 − C(𝑎)C(𝑏)𝑥𝑟 (𝑏)𝑣𝑏 − C(𝑎)𝛼 + C(𝑎)𝛼 (8)
= 𝑥𝑟 (𝑎)𝑣𝑎 − C(𝑎)C(𝑏)𝑥𝑟 (𝑏)𝑣𝑏 , (9)

using the fact C(𝑏) · C(𝑏) = 1. Without loss of generality let 𝑎 ∈ 𝐿𝑖 .
Therefore, expanding 𝐷𝑟+1

𝑖
:

𝐷𝑟+1
𝑖 =

∑︁
𝑠∈𝐿𝑖

𝑥𝑟+1 (𝑠)𝑣𝑡 −
∑︁
𝑡 ∈𝑅𝑖

𝑥𝑟+1 (𝑡)𝑣𝑡 . (10)

Having fixed 𝑎 ∈ 𝐿𝑖 , we know C(𝑎)C(𝑏) = 1 if and only if 𝑏 ∈ 𝑅𝑖 .
Thus, take out 𝑥𝑟+1 (𝑎) and 𝑥𝑟+1 (𝑏) from the sums and substitute
(9) to have∑︁
𝑠∈𝐿𝑖−{𝑎,𝑏}

𝑥𝑟+1 (𝑠)𝑣𝑡−
∑︁

𝑡 ∈𝑅𝑖−{𝑏}
𝑥𝑟+1 (𝑡)𝑣𝑡+𝑥𝑟 (𝑎)𝑣𝑎−C(𝑎)C(𝑏)𝑥𝑟 (𝑏)𝑣𝑏 .

(11)
Now observe that 𝑥𝑟+1 (𝑝) = 𝑥𝑟 (𝑝) for all 𝑝 ∈ (𝐿𝑖 ∪ 𝑅𝑖 ) − {𝑎, 𝑏}.
Moreover, 𝑏 ∈ 𝑅𝑖 if and only if C(𝑎)C(𝑏) = 1, so we can reabsorb
the terms “𝑥𝑟 (𝑎)𝑣𝑎” and “𝑥𝑟 (𝑏)𝑣𝑏” into their respective summations;
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thus yielding
∑
𝑠∈𝐿𝑖 𝑥

𝑟 (𝑠)𝑣𝑡 −
∑
𝑡 ∈𝑅𝑖 𝑥

𝑟 (𝑡)𝑣𝑡 . But this is precisely
𝐷𝑟
𝑖
, which we’ve assumed to be 0. □

Proof of Theorem 1. It is straightforward to check that after
solving BarterSV-LP-Caps there are at most |𝐸 | floating edges. Each
iteration of the pre-processing step finds a cycle, say using depth-
first-search, and rounds said cycle in time O(|𝐿 | + |𝑅 |) with at least
one edge being settled every time a cycle is rounded. Therefore, the
pre-processing step takes time at most O(|𝐸 | · ( |𝐿 | + |𝑅 |)). Similarly,
FindCCC takes time O(|𝐿 | + |𝑅 |) to find and round a CCC or CCW.
Each iteration a CCC/CCW is rounded either one edge or vertex
becomes settled. Therefore BarterDR runs in time O((|𝐿 | + |𝑅 |) ·
( |𝐿 | + |𝑅 | + |𝐸 |)).

Let 𝐷𝑟
𝑖
be 𝐷𝑖 like in (2) but with variables 𝑥𝑟𝑒 instead of 𝑋𝑒 . Then

Lemma 9 guarantees that for each agent 𝑖 , 𝐷𝑟
𝑖
= 0 implies 𝐷𝑟+1

𝑖
= 0

until 𝐿𝑖 ∪ 𝑅𝑖 has exactly one floating vertex (if this happens at all).
This means if in some iteration the number of floating vertices
in 𝐿𝑖 ∪ 𝑅𝑖 went from at least 2 to 0, then 𝐷𝑖 = 0 by the degree
preservation invariant (J2), proved in the proof of Theorem 3, and
we are done. Therefore, the only case we must consider is when
there is a solitary floating vertex 𝑑 ∈ 𝐿𝑖 ∪ 𝑅𝑖 . Let 𝑡 ′ be the first
iteration that startedwith𝐿𝑖∪𝑅𝑖 having a sole vertex𝑑 with𝑥𝑡

′ (𝑑) ∉
Z. Then by expanding

𝐷𝑖 ≤

������∑︁𝑎∈𝐿𝑖 𝑣𝑎𝑋 (𝑎) −
∑︁
𝑏∈𝑅𝑖

𝑣𝑏𝑋 (𝑏)

������ (12)

=

������∑︁𝑎∈𝐿𝑖 𝑣𝑎𝑋 (𝑎) −
∑︁
𝑎∈𝐿𝑖

𝑣𝑎𝑥
𝑡 ′ (𝑎) +

∑︁
𝑏∈𝑅𝑖

𝑣𝑏𝑥
𝑡 ′ (𝑏) −

∑︁
𝑏∈𝑅𝑖

𝑣𝑏𝑋 (𝑏)

������
(13)

=

������∑︁𝑎∈𝐿𝑖 𝑣𝑎 (𝑋 (𝑎) − 𝑥𝑡 ′ (𝑎)) +
∑︁
𝑏∈𝑅𝑖

𝑣𝑏 (𝑥𝑡
′
(𝑏) − 𝑋 (𝑏))

������ (14)

≤
∑︁

𝑎∈ (𝐿𝑖∪𝑅𝑖 )−{𝑑 }
𝑣𝑎

���𝑋 (𝑎) − 𝑥𝑡 ′ (𝑎)��� + 𝑣𝑑 ���𝑥𝑡 ′ (𝑑) − 𝑋 (𝑑)��� (15)

< 𝑣𝑑 ≤ 𝑣∗𝑖 , (16)

which is our desired 𝐷𝑖 bound for Theorem 1. Equation (13) follows
because we assume 𝐷1

𝑖
= 0 (as 𝐷0

𝑖
corresponds to the LP solution

and the pre-processing step thus guarantees 𝐷1
𝑖
= 0) and 𝑡 ′ is the

first iteration where 𝐿𝑖 ∪ 𝑅𝑖 contains exactly one floating vertex;
therefore, by induction and Lemma 9, 𝐷𝑡 ′

𝑖
= 0. Inequality (15)

follows from the triangle inequality. The strict inequality in (16)
follows because 𝑑 was the sole floating vertex of 𝐿𝑖 ∪𝑅𝑖 in iteration
𝑡 ′; hence by Lemma E.2, ∀𝑎 ∈ (𝐿𝑖 ∪ 𝑅𝑖 ) − {𝑑}, 𝑋 (𝑎) − 𝑥𝑡

′ (𝑎) = 0
and |𝑥𝑡 ′ (𝑑) − 𝑋 (𝑑) | < 1.

By assumption, 𝐷1
𝑖
= 0 for all 𝑖 since {𝑥0𝑒 }𝑒∈𝐸 is an optimal

solution to the corresponding BarterSV-LP and the pre-processing
step ensures 𝐷0

𝑖
= 0 =⇒ 𝐷1

𝑖
= 0. Then, by Lemma 9, the only 𝐷𝑖 ’s

that are not necessarily preserved are those where 𝐿𝑖 ∪ 𝑅𝑖 ends up
with exactly one floating vertex in some algorithm iteration 𝑡 ′. As
argued above, this case leads to 𝐷𝑖 < 𝑣

∗
𝑖
. Together with Lemma 8

this completes the proof. □

Consequently from Theorems 1 and 3:

Corollary 1. BarterSV-LP with all items having equal values is

integral.

6 FAIRNESS

Fairness is an important consideration when resource allocation
algorithms are deployed in the real-world. Theorem 3 allows for
adding fairness constraints to BarterSV-LP. Previous works such
as [10–12] studied various group fairness notions, and formulated
the fair variants of problems like Clustering, Set Packing, etc., by
adding fairness constraints to the Linear Programs of the respective
optimization problems.

Consider a toy example of such an approachwhere we are given ℓ
communities𝐺1, . . . ,𝐺ℓ ⊆ [𝑛] of agents coming together to thicken
the market. In order to incentivize said communities to join the
centralized exchange, the algorithm designer may promise that each
community𝐺𝑝 will receive at least 𝜇𝑝 units of value on average. By
adding the constraints∑︁

𝑖∈𝐺𝑝

𝑥 (𝑟𝑖 𝑗 )𝑣 𝑗 ≥ 𝜇𝑝 , 𝑝 ∈ [ℓ] (17)

to the BarterSV-LP, the algorithm designer ensures that the ex-
pected utility of each group 𝐺𝑝 is at least 𝜇𝑝 . More precisely, (P1)
and the linearity of expectation ensures

E[
∑︁
𝑖∈𝐺𝑝

𝑋 (𝑟𝑖 𝑗 )𝑣 𝑗 ] =
∑︁
𝑖∈𝐺𝑝

E[𝑋 (𝑟𝑖 𝑗 )]𝑣 𝑗

=
∑︁
𝑖∈𝐺𝑝

𝑥 (𝑟𝑖 𝑗 )𝑣 𝑗 ≥ 𝜇𝑝 .

The same rationale can be extended to provide individual guaran-
tees (in expectation) by adding analogous constraints for each agent.
We conclude this brief discussion by highlighting the versatility of
LPs and subsequently of BarterDR.

7 HARDNESS OF BarterSV
We first prove Theorem 2: it is NP-Hard to find any non-empty
allocation satisfying𝐷𝑘 = 0 for all agents𝑘 . By non-empty wemean
the corresponding LP solution 𝑥 ≠ 0, i.e., at least one agent gives
away an item. The proof proceeds by reducing from the NP-hard
problem of Partition.

Definition 4 (Partition). A Partition instance takes a set 𝑆 =

{𝑎1, 𝑎2, . . . , 𝑎𝑛} of 𝑛 positive integers summing to an integer 2𝑇 .
The goal of Partition is to determine if 𝑆 can be partitioned into
disjoint subsets 𝑆1 and 𝑆2 such that each subset sums exactly to an
integer 𝑇 .

Lemma 10. Given a Partition instance, it can be reduced in poly-

nomial time to a corresponding BarterSV instance with two agents.

Proof. Consider an instance 𝐼 = (𝑆, 2𝑇 ) of partition problem
where 𝑆 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} such that

∑
𝑖∈[𝑛] 𝑎𝑖 = 2𝑇 and 𝑎𝑖 is an

integer, for all 𝑖 ∈ [𝑛]. Given an instance 𝐼 of Partition, the
BarterSV instance constructed is as follows.

Let the set of items I = {𝑖1, 𝑖2, . . . , 𝑖𝑛, 𝑖𝑛+1} with item values
𝑣 𝑗 := 𝑎 𝑗 for each item 𝑖 𝑗 , 𝑗 ∈ [𝑛] and 𝑣𝑛+1 := 𝑇 for item 𝑖𝑛+1.
There are two agents 𝐴 = {1, 2}, where agent 1 has item lists
𝐻1 := {𝑖1, . . . , 𝑖𝑛} and𝑊1 := {𝑖𝑛+1}. Symmetrically, agent 2 has
item lists𝑊2 := {𝑖 𝑗 : 𝑗 ∈ [𝑛]} and 𝐻2 := {𝑖𝑛+1}. The particular
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weights of allocating items (i.e.,𝑤𝑒 in the bipartite graph) do not
matter as we only care about whether some non-empty allocation
exists. □

Recall the goal is to show there exists a non-empty allocation such
that for each agent 𝑘 ∈ [2], 𝐷𝑘 = 0 if and only if the corresponding
Partition instance has a solution.

Lemma 11. There exists a polynomial time algorithm to find a

non-empty allocation of items with 𝐷𝑘 = 0 for each agent 𝑘 in

the BarterSV instance if and only if there exists a polynomial time

algorithm to the corresponding Partition instance.

Proof. Forward direction (Partition =⇒ BarterSV). Given
a solution (𝑆1, 𝑆2) to the Partition instance, the corresponding
BarterSV instance has a solution in the following manner. Allocate
the items {𝑖 𝑗 : 𝑗 ∈ 𝑆1} in the have-list of agent 1 to agent 2 and allo-
cate the item 𝑖𝑛+1 to agent 1. Thus, the value of the items received
and given by both the agents is exactly 𝑇 resulting in a non-empty
allocation with 𝐷1 = 𝐷2 = 0.

Backward Direction (BarterSV =⇒ Partition). Take a non-
empty allocation of itemsI to each agent 𝑘 ∈ [2] with𝐷𝑘 = 0. Such
a non-empty allocation must have agent 1 giving away their only
item, which has value𝑇 . Therefore 𝐷1 = 0 implies agent 1 received
𝑇 units of value. Let the items agent 1 received be 𝑖 𝑗1 , 𝑖 𝑗2 , . . . , 𝑖 𝑗ℓ ,
letting 𝐽 = { 𝑗1, . . . , 𝑗ℓ }. Thus,

∑
𝑝∈ 𝐽 𝑣𝑝 = 𝑇 . Therefore, the corre-

sponding partition instance has solution 𝑆1 = {𝑎𝑝 : 𝑝 ∈ 𝐽 } and
𝑆2 = {𝑎𝑝 : 𝑝 ∉ 𝐽 }. □

Thus, Lemmas 10 and 11 show that it is NP-hard to find a non-
empty allocation of items with 𝐷𝑘 = 0 for any agent 𝑘 . That is,
Theorem 2.

8 CONCLUSION

We introduce and study BarterSV, a centralized barter exchange
problem where each item has a value agreed upon by the partic-
ipating agents. The goal is to find an allocation/exchange that (i)
maximizes the collective utility of the allocation such that (ii) the
total value of each agent’s items before and after the exchange
is equal. Though it is NP-hard to solve BarterSV exactly, we can
efficiently compute allocations with optimal expected utility where
each agent’s net value loss is at most a single item’s value. Our prob-
lem is motivated by the proliferation of large scale web markets on
social media websites with 50,000-60,000 active users eager to swap
items with one another. We formulate and study this novel problem
with several real-world exchanges of video games, board games,
digital goods and more. These exchanges have large communities,
but their decentralized nature leaves much to be desired in terms
of efficiency. Future directions of this work include accounting
for arbitrary item valuations i.e., different agents may value items
differently.
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A DIRECT APPLICATION OF GKPS-DR FAILS

Example 1 is a worst case instance where a direct application of
GKPS-DR to the fractional optimal solution of BarterSV results in
a net loss of

∑
𝑗∈𝐿𝑖 𝑣 𝑗 for some agent 𝑖; i.e., agent 𝑖 gives away all

their items and does not receive any item from its wishlist.

Example 1. Consider an instance of BarterSV with two agents
where𝑊1 = {1, 2},𝑊2 = {3, 4} and 𝐻1 = {3, 4}, 𝐻2 = {1, 2}. Let the
values of the items be 𝑣 (1) = 𝑣 (2) = 10 and 𝑣 (3) = 𝑣 (4) = 20.

Figure 1 shows the bipartite graph of the BarterSV instance from
Example 1. The edges are unweighted and the optimal LP solution
is 𝑥 = [0.5, 0.5, 1, 1]. The first two coordinates of 𝑥 correspond
to items given by agent 1. GKPS-DR will round both of these co-
ordinates to 0 with positive probability thus resulting in agent 2
incurring a net loss of

∑
𝑎∈𝐿2 𝑣𝑎 = 20 units of value.

Figure 1: The bipartite graph corresponding to the BarterSV
instance in Example 1. Blue and orange vertices correspond

to agents 1 and 2, respectively. The optimal LP solution is

𝑥 = [0.5, 0.5, 1, 1].

Observation 1. GKPS-DR rounding 𝑥 results in the vector 𝑋 =

[0, 0, 1, 1] with positive probability; this is the worst case for agent
2 where their net loss is

∑
𝑎∈𝐿2 𝑣𝑎 = 20 units of value.

The above example can be easily generalized to instances with
larger item-lists and more agents where some agent 𝑖 achieves net
value loss

∑
𝑎∈𝐿𝑖 𝑣𝑎 with positive probability.

B EQUIVALENCE OF BarterSV WITH SINGLE

ITEM COPIES

BarterSV with arbitrary item capacities can be modeled with the
following integer program. Parallel edges (values of 𝑦𝑒 > 1) model
the fact that 𝑖 may give 𝑖′ up tomin{𝜂𝑖 ( 𝑗), 𝜔𝑖′ ( 𝑗)} copies of 𝑗 . Each
vertex ℓ𝑖 𝑗 and 𝑟𝑖 𝑗 has value 𝑣 𝑗 ; so 𝑣ℓ𝑖 𝑗 = 𝑣 𝑗 and so on. Crucially,
𝐸 has edges only between vertices of equal value. Let Z+ denote
the non-negative integers. Then a valid allocation corresponds to
a vector 𝑦 such that for 𝑒 ∈ 𝐸, 𝑦𝑒 ∈ Z+ is feasible in the following

Integer Program (IP);

max
∑︁
𝑒∈𝐸

𝑤𝑒𝑦𝑒 (18a)

subj. to 𝑦 (ℓ𝑖 𝑗 ) ≤ 𝜂𝑖 ( 𝑗), 𝑖 ∈ [𝑛], ℓ𝑖 𝑗 ∈ 𝐿𝑖 (18b)
𝑦 (𝑟𝑖 𝑗 ) ≤ 𝜔𝑖 ( 𝑗), 𝑖 ∈ [𝑛], 𝑟𝑖 𝑗 ∈ 𝑅𝑖 (18c)∑︁
𝑎∈𝐿𝑖

𝑦 (𝑎)𝑣𝑎 =
∑︁
𝑏∈𝑅𝑖

𝑦 (𝑏)𝑣𝑏 , 𝑖 ∈ [𝑛] (18d)

𝑦𝑒 ∈ Z+, 𝑒 = (ℓ𝑖 𝑗 , 𝑟𝑖′ 𝑗 ) ∈ 𝐸. (18e)

The weights𝑤𝑒 ∈ R can be set arbitrarily; we will come back to this.
For 𝑎 ∈ 𝐿 ∪ 𝑅, we denote 𝑦 (𝑎) := ∑

𝑒∈𝑁 (𝑎) 𝑦𝑒 where 𝑁 (𝑎) denotes
the open neighborhood of 𝑎 i.e., 𝑁 (𝑎) := {(𝑎, 𝑏) ∈ 𝐸 : 𝑏 ∈ 𝐿 ∪ 𝑅}.
Thus for 𝑒 = (ℓ𝑖 𝑗 , 𝑟𝑖′ 𝑗 ) ∈ 𝐸, 𝑦𝑒 = 𝑘 says agent 𝑖 gives 𝑘 copies of 𝑗
to agent 𝑖′. With this in mind, (1b) ensures each agent 𝑖 gives away
at most 𝜂𝑖 ( 𝑗) copies of item 𝑗 , (1c) ensures each agent 𝑖 receives at
most 𝜔𝑖 ( 𝑗) copies of item 𝑗 , and (1d) ensures, for each agent 𝑖 , the
value received

∑
𝑏∈𝑅𝑖 𝑦 (𝑏)𝑣𝑏 equals the value given

∑
𝑎∈𝐿𝑖 𝑦 (𝑎)𝑣𝑎 .

It follows that an allocation is valid allocation if and only if the
corresponding {𝑦𝑒 }𝑒∈𝐸 is a feasible point of (1). For each 𝑒 ∈ 𝐸
we may set 𝑤𝑒 = 𝑣 𝑗 and recover the objective of maximizing the
collective value received by all agents. Nevertheless, our results hold
even if 𝑤𝑒 is set arbitrarily. For example, the algorithm designer
could place greater value on certain item transactions, or they may
maximize the sheer number of items received by uniformly setting
𝑤𝑒 = 1. Henceforth

∑
𝑒∈𝐸 𝑤𝑒𝑦𝑒 is the allocation’s utility. Therefore,

IP (1) is equivalent to BarterSV.
By relaxing (1e) to 𝑦𝑒 ≥ 0 for 𝑒 ∈ 𝐸 we arrive at the natural

LP relaxation of BarterSV, namely BarterSV-LP-Caps. This can be
reduced to an instance of BarterSV-LP (that is, with unit capacities)
as follows.

Proof of Lemma 1. The instance with unit copies of each item
proceeds as follows. Note that this instancewill be large but it is only
a thought experiment; we do not directly solve the corresponding
LP, write the full graph down, etc.. Fix an agent 𝑖 and an item 𝑗 in
𝐻𝑖 . Make 𝜂𝑖 ( 𝑗) copies of this vertex each with unit capacity, say
ℓ𝑖 𝑗1, ℓ𝑖 𝑗2, . . . , ℓ𝑖 𝑗𝜂𝑖 ( 𝑗 ) . Similarly, for an item 𝑗 ′ ∈ 𝑊𝑖 , make 𝜔𝑖 ( 𝑗 ′)
copies 𝑟𝑖 𝑗 ′1, 𝑟𝑖 𝑗 ′2, . . . , 𝑟𝑖 𝑗 ′𝜔𝑖 ( 𝑗 ′ ) . Like before add edges between all
vertices corresponding to the same items. Keep all edge weights the
same and use the same corresponding weights for edges between
copies i.e., if 𝑒 = (ℓ𝑖 𝑗𝑘1 , 𝑟𝑖′ 𝑗𝑘2 ) and 𝑓 = (ℓ𝑖 𝑗 , ℓ𝑖′ 𝑗 ) then𝑤𝑒 = 𝑤 𝑓 . Call
this new set of edges over vertex copies 𝐸′.

To see the two formulations are equivalent, we show 𝑦, ∀𝑒 ∈
𝐸,𝑦𝑒 ≥ 0 is feasible to BarterSV-LP-Caps if and only if 𝑧, ∀𝑒 ∈
𝐸′, 𝑧𝑒 ∈ [0, 1] is feasible to BarterSV-LP. Moreover, 𝑦 and 𝑧 have
the same objective value. Let 𝑒 = (ℓ𝑖 𝑗 , 𝑟𝑖′ 𝑗 ) then 𝑦𝑒 = 𝑘 + 𝑟 for
𝑘 ∈ Z+ and 0 ≤ 𝑟 < 1. Correspondingly let 𝑒𝑝 = (ℓ𝑖 𝑗𝑝 , 𝑟𝑖′ 𝑗𝑝 ) ∈
𝐸′ and set 𝑧𝑒1 , 𝑧𝑒2 , . . . , 𝑧𝑒𝑘 all equal to 1 and 𝑧𝑒𝑘+1 = 𝑟 . 𝑘 + 𝑟 ≤
min{𝜂𝑖 ( 𝑗), 𝜔𝑖 ( 𝑗)} if and only if 𝑦 and 𝑧 are feasible. Moreover, both
𝑦𝑒 and (𝑧𝑒1 , . . . , 𝑧𝑒𝑘+1 ) each contribute (𝑘 + 𝑟 )𝑤𝑒 to the objective
and (𝑘 + 𝑟 )𝑣 𝑗 value given by agent 𝑖 and received by agent 𝑖′.

Therefore we always write and solve BarterSV-LP-Caps and
use BarterSV-LP only as a thought experiment to facilitate the
presentation of the problem. It is easy to check that the size of
BarterSV-LP-Caps is polynomial in |I |, 𝑛, log𝜂, and log𝜔 . □
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Following from the proof above we also have (where 𝐸′ corre-
sponds to the graph with vertex copies as outlined in the proof of
Lemma 1)

Lemma B.1. A solution {𝑥𝑒 }𝑒∈𝐸′ to BarterSV-LP has at most |𝐸 |
floating variables.

Proof of Lemma B.1. Like in the proof of Lemma 1, correspond-
ing to each group of 𝑧𝑒1 , 𝑧𝑒2 , . . . there is at most one 𝑧𝑒𝑝 = 𝑟 for
0 ≤ 𝑟 < 1. Therefore, the number of floating edges is at most
|𝐸 |. □

Proof of Lemma 2. The reduction in the proof of Lemma 1 is
an instance of VBM shown to be equivalent to BarterSV. □

Proof of Lemma 3. The IP is equivalent as argued above. Since
the feasible region BarterSV-LP is larger than that of the corre-
sponding IP, it follows the objective of BarterSV-LP is an upper
bound on the objective of (1). □

C PRE-PROCESSING

Proof of Lemma 9. When rounding a cycle each vertex appear-
ing in the cycle has two edges with changes equal-in-magnitude
and opposite-in-sign. Therefore, all vertex fractional degrees, and
thus 𝐷𝑖 values, are preserved. □

Lemma C.1. Let {𝑥𝑒 } ∈ (0, 1) |𝐸 | be a vector of floating edges over
a connected bipartite graph (𝑈 ,𝑉 , 𝐸). Then the number of floating

vertices in (𝑈 ,𝑉 , 𝐸) is not 1.

Proof of Lemma C.1. Let𝑢 be the sole floating vertex, i.e.,𝑥 (𝑢) ∉
Z, and, without loss of generality, let 𝑢 ∈ 𝑈 . For 𝑆 ⊆ 𝑈 ∪ 𝑉 , let
𝑑 (𝑆) := ∑

𝑠∈𝑆 𝑥𝑠 . Then 𝑑 (𝑈 − {𝑢}) + 𝑥𝑢 = 𝑑 (𝑈 ) = ∑
𝑒∈𝐸 𝑥𝑒 = 𝑑 (𝑉 ).

But 𝑢 being the only floating vertex implies 𝑑 (𝑈 − {𝑢}) + 𝑥 (𝑢) ∉ Z
and 𝑑 (𝑉 ) ∈ Z. □

Proof of Lemma 5. If there are 0 floating vertices in a connected
component, then each vertex has degree at least two because ∀𝑒 ∈
𝐸𝑟 , 𝑥𝑟𝑒 ∈ (0, 1). Hence theremust be a cycle. Since the pre-processing
step has eliminated all cycles then no connected component has 0
floating vertices. The result then follows from applying Lemma C.1
to each connected component of 𝐺1. □

D CORRECTNESS OF FINDCCC

Proof of Lemma 7. Consider P = ⟨𝑠𝑖 { 𝑡𝑖 ⟩𝑖∈[𝑞 ] . Assign an
arbitrary color to 𝑠1, say C(𝑠1) = 1. Note here 𝑠1 and 𝑡𝑞 are the
two partnerless vertices. Because C only has two colors, this im-
mediately determines the color of 𝑡1, which depends on whether 𝑠1
and 𝑡1 are same-side vertices. Again, this immediately determines
the color of 𝑠2, which in turn determines the color of 𝑡2, and so on.
Since 𝑠1 and 𝑡𝑞 are partnerless, their colors can be whatever they
need to be to satisfy the first property. The vertices are colored
in the order 𝑠1, 𝑡1, 𝑠2, 𝑡2, . . . , 𝑠𝑞, 𝑡𝑞 . Thus, if P is a CCW this greedy
scheme efficiently finds a roundable coloring in time O(|𝐿 | + |𝑅 |).

Instead suppose P is a CCC. Once more, the same greedy scheme
starting by coloring 𝑠1 will satisfy all roundable coloring properties,
except maybe for C(𝑡𝑞) = C(𝑠1). We now verify this. Observe that
the greedy algorithm ensures

∀𝑖 ∈ [𝑞], C(𝑡𝑖 ) = C(𝑠𝑖 ) · (−1)1(𝑡𝑖⊥𝑠𝑖 )

and
∀𝑖 ∈ [𝑞 − 1], C(𝑠𝑖+1) = C(𝑡𝑖 ) · (−1)1(𝑡𝑖 ̸⊥𝑠𝑖+1 )

where 1(·) equals 1 if “·” is true and 0 otherwise; this is a slight
abuse of notation since ⊥ is a relation but we are treating it as a
boolean function. Expanding by repeated application of the above
observations, we have

C(𝑡𝑞) = C(𝑠1) · (−1)
∑

𝑖∈ [𝑞 ] 1(𝑡1 ̸⊥𝑠𝑖 )+
∑

𝑖∈ [𝑞−1] 1(𝑡𝑖 ̸⊥𝑠𝑖+1 )

= C(𝑠1) · (−1)𝑝+𝑠𝑞−1

where 𝑝 is the number of same-side paths and 𝑠𝑞−1 is the number of
same-side partners not counting the pair 𝑡𝑞 and 𝑠1. Then ensuring
we have a roundable coloring reduces to ensuring that 𝑡𝑞 ⊥ 𝑠1 =⇒
𝑝 + 𝑠𝑞−1 is even and 𝑡𝑞 ̸⊥ 𝑠1 =⇒ 𝑝 + 𝑠𝑞−1 is odd. Letting 𝑠 be
the total number of same-side partners, the above is equivalent to
asking 𝑝 + 𝑠 be even, which we now prove.

Let 𝑑 be the number of different-side paths, and let 𝑐𝐿 , 𝑐𝑅 , 𝑐𝐿𝑅
respectively be the number of left-left, right-right, and left-right
partner pairs. So,

𝑝 + 𝑑 = 𝑞 = 𝑠 + 𝑐𝐿𝑅 . (19)
Let 𝑛𝐿 be the number of left vertices in the CCC. Clearly, 𝑛𝐿 =

2𝑐𝐿+𝑐𝐿𝑅 . Look at𝑛𝐿−𝑑 , this is the number of left vertices remaining
after removing the different-side paths in ⟨𝑠𝑖 { 𝑡𝑖 ⟩𝑖∈[𝑞 ] . Since these
vertices must be covered by same side paths we must have 𝑛𝐿 − 𝑑
even. Then, with all congruences taken modulo 2,

0 ≡ 𝑛𝐿 − 𝑑 ≡ 2𝑐𝐿 + 𝑐𝐿𝑅 − 𝑑 ≡ 𝑐𝐿𝑅 − 𝑑.
Plugging the above into (19) gives 𝑝 = 𝑠 + 𝑐𝐿𝑅 − 𝑑 ≡ 𝑠 . Therefore,
𝑠 + 𝑝 ≡ 𝑠 + 𝑠 ≡ 0. □

Proof of Lemma 6. For a vertex 𝑏 ∈ 𝐿(𝐸𝑟 ) ∪ 𝑅(𝐸𝑟 ), let 𝐾 (𝑏) be
the set of vertices in the connected component of 𝐺𝑟 containing 𝑏.
Let 𝑉𝑟 be the sequence of vertices 𝑉 at the beginning of iteration 𝑟
(i.e., corresponding to Ψ in CCWalk). For a vertex 𝑏We use𝑉𝑟 −𝑏 to
denote𝑉𝑟 without vertex 𝑏. Like in CCWalk, “⊕” denotes sequence
concatenation. Let 𝑎𝑟 and 𝑧𝑟 be the first and last vertices of𝑉𝑟 ; note
𝑎𝑟 does not change over iterations. We prove the correctness of
CCWalk with the aid of the following loop invariants maintained
at the beginning of each iteration 𝑟 of the while-loop.
(I1) 𝑧𝑟 has no partners in 𝑉𝑟 .
(I2) ∀𝑏 ∈ 𝑉𝑟 − 𝑧𝑟 , 𝑏 has exactly one partner in 𝑉𝑟 .
(I3) 𝑎𝑟 is the only vertex from 𝑉𝑟 in 𝐾 (𝑎𝑟 ).
(I4) ∀𝑏 ∈ 𝑉𝑟 −𝑎𝑟 , there are exactly two vertices from𝑉𝑟 contained

in 𝐾 (𝑏).
Proceed by induction. When 𝑟 = 1, 𝑉𝑟 = ⟨𝑎⟩ so 𝑎𝑟 = 𝑎 = 𝑧𝑟 so all
invariants are (vacuously) true. Let 𝑃 (𝑘) be the predicate saying
all invariants hold at the beginning of iteration 𝑘 ≥ 1. We assume
𝑃 (𝑘) and show 𝑃 (𝑘 + 1).

If there is an iteration𝑘+1, thenCCWalk did not return during it-
eration𝑘 andmust have added ⟨𝑠𝑘 , 𝑡𝑘 ⟩ to𝑉𝑘 = ⟨𝑡1, 𝑠2, 𝑡2, . . . , 𝑠𝑘−1, 𝑡𝑘−1⟩.
If 𝑧𝑘+1 = 𝑡𝑘 had a partner in 𝑉𝑘 ⊕ ⟨𝑠𝑘 ⟩ then iteration 𝑘 would have
been the last as a CCC would have been returned. Therefore (I1)
holds at the beginning of iteration 𝑘 + 1.

By 𝑃 (𝑘), ∀𝑏 ∈ 𝑉𝑘 − 𝑡𝑘−1, 𝑏 has exactly one partner in 𝑉𝑘 and
𝑡𝑘−1 has zero partners in𝑉𝑘 . By construction 𝑠𝑘 is selected to be the
partner of 𝑡𝑘−1 so now 𝑡𝑘−1 and 𝑠𝑘 have exactly one partner each
in 𝑉𝑘+1. Therefore (I2) holds at the beginning of iteration 𝑘 + 1.
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If 𝑉𝑘+1 were to not meet (I3) then it must mean that either
𝑠𝑘 ∈ 𝐾 (𝑎𝑘 ) or 𝑡𝑘 ∈ 𝐾 (𝑎𝑘 ). But in this case the connected component
𝐾 (𝑎𝑘 ) was revisited during iteration 𝑘 and a CCC was returned.

By construction 𝐾 (𝑠𝑘 ) = 𝐾 (𝑡𝑘 ). Moreover, ∀𝑏 ∈ 𝑉𝑘 , 𝐾 (𝑠𝑘 ) ≠
𝐾 (𝑏) otherwise 𝐾 (𝑏) was revisited and iteration 𝑘 would have been
the last. Therefore, (I4) continues to hold.

Moreover note the while-loop runs at most O(|𝐿 | + |𝑅 |) many
times since revisiting a connected component of 𝐺𝑟 causes the
function to return.

Next we leverage the loop invariants to prove CCWalk returns
valid CCC’s. First observe that by construction of 𝑉 , Properties 1)
and 4) of a CCC are always immediate. CCWalk returns CCC’s
when a connected component is revisited or when the added 𝑡𝑖
already has partners present in 𝑉 . Fix some iteration 𝑟 ≥ 1.

Suppose a connected component 𝐶𝑘 , 𝑘 < 𝑟 is revisited. Then〈
𝑠′
𝑘
{ 𝑡𝑘 , . . . , 𝑠𝑟−1 { 𝑡𝑟−1

〉
is returned. By (I1), 𝑡𝑟−1 and 𝑠′

𝑘
are

each others only partners. Recall by construction 𝑡𝑘 ∼ 𝑠𝑘+1, 𝑡𝑘+1 ∼
𝑠𝑘+1, . . . , 𝑠𝑟−1 ∼ 𝑡𝑟−1, so by (I2) it follows that each of
𝑡𝑘 , 𝑠𝑘+1, 𝑡𝑘+1, . . . , 𝑠𝑟−1, 𝑡𝑟−1 has at exactly one partner amongst them-
selves. Therefore, Property 2) of CCC’s holds. It remains to check
Property 3). By (I4) and the fact that there are paths 𝑠𝑝 { 𝑡𝑝 , for
𝑘 < 𝑝 < 𝑟 , each 𝑠𝑝 { 𝑡𝑝 belongs to a distinct connected com-
ponent. 𝑠′

𝑘
{ 𝑡𝑘 must belong to a unique connected component

different from each 𝑠𝑝 { 𝑡𝑝 ; otherwise there was a connected
component containing 𝑠𝑝 , 𝑡𝑝 , and 𝑠𝑘 contradicting one of (I3) and
(I4) (depending on whether 𝑘 = 1 or 𝑘 > 1).

Instead suppose a CCC is returned because 𝑡𝑟 had a partner
𝑏 ∈ 𝑉𝑟 ⊕ (𝑠𝑟 ). Let 𝑏 be the last vertex in𝑉𝑟 ⊕ (𝑠𝑟 ) such that 𝑏 ∼ 𝑡𝑟 . If
𝑏 = 𝑠𝑟 then ⟨𝑠𝑟 { 𝑡𝑟 ⟩ is clearly a CCC. So suppose 𝑏 ∈ 𝑉𝑟 . It must
be that 𝑏 = 𝑠𝑝 for some 𝑝 < 𝑟 ; otherwise 𝑏 is not the last such vertex.
So focus on proving

〈
𝑠𝑝 { 𝑡𝑝 , . . . , 𝑠𝑟 { 𝑡𝑟

〉
is a CCC. Property 2)

follows because 𝑡𝑟−1 and 𝑠𝑟 are each other’s only partners by (I1); 𝑡𝑟
and 𝑠𝑝 are each other’s only partners because by (I2) 𝑠𝑝 previously
had only partner 𝑡𝑝−1 but we have cut it out from the CCC; and the
rest of the pairs have unique partners by (I2). Lastly, Property 3)
holds because 𝐾 (𝑠𝑟 ) was not a revisited CC so 𝑠𝑟 and 𝑡𝑟 belong to a
distinct CC, and the rest of the path endpoints belong to distinct
CC’s by (I4).

The last remaining case is that where the two half-CCW’s over-
lap. This can be resolved into a CCC in themanner already described
in the main text under the paragraph Uncrossing the half-CCW’s of
Section 5.2.

Runtime of FindCCC.. We conclude with comments about the
runtime of FindCCC. We can build a hash-map mapping vertices to
a set of all their floating partners. This hash-map can be constructed
in time O(|𝐿 | + |𝑅 |). Similarly, we can build a set to keep track of
visited connected components. Finding the partner 𝑠𝑖 of 𝑡𝑖−1 can
be done in O(1) time by checking the hash-map, and finding the
vertex 𝑡𝑖 in 𝐾 (𝑠𝑖 ) can be done by starting a depth first search from
𝑡𝑖 until a floating vertex is reached. After rounding a the CCC/CCW
remove vertices that became settled from their respective sets of
floating partners. The depth first searches starting from each 𝑡𝑖
altogether visit each vertex and edge at most O(1) times before
returning and each vertex is removed from the hash-map’s set of
floating partners at most once. Therefore, CCWalk runs in time
O(|𝐿 | + |𝑅 |). FindCCC calls CCWalk O(1) times and resolving the

two-half CCW’s can be thought of as another run of CCWalk, as
argued above. Therefore, FindCCC finishes in time O(|𝐿 | + |𝑅 |). □

E PROOF OF THEOREM 3

Lemma E.1. BarterDR satisfies (J1).

Proof. The property holds trivially for 𝑟 = 0. Recall 𝑟 = 1
corresponds to the output of the pre-processing step. This fact is
proved in [15]. Therefore, focus on some fixed 𝑟 > 1 and proceed by
induction. Fix 𝑒 ∈ 𝐸 and the CCC/CCW to be rounded P = ⟨𝑠𝑖 {
𝑡𝑖 ⟩𝑖∈[𝑞 ] . Proceed by considering the following two events.

Event𝐴: 𝑒 does not appear inP so 𝑒 does not change this iteration.
Thus by the induction hypothesis E[𝑥𝑟+1𝑒 | (𝑥𝑟𝑒 = 𝑧) ∧𝐴] = 𝑧.
Event 𝐵: 𝑒 appears in P, say, in path 𝑠𝑖 { 𝑡𝑖 for a fixed 𝑖 . Recall
values 𝛼 and 𝛽 from (5) are fixed and 𝑥𝑟𝑒 is modified according to
(6). Assuming 𝑒 ∈ 𝑀𝑖

−1 then

E[𝑥𝑟+1𝑒 | (𝑥𝑟𝑒 = 𝑧) ∧ 𝐵] = 𝑧 + 𝛼
𝑣𝑖

(
𝛽

𝛼 + 𝛽

)
− 𝛽

𝑣𝑖

(
𝛼

𝛼 + 𝛽

)
= 𝑧.

The same holds if instead 𝑒 ∈ 𝑀𝑖
1. Hence

E[𝑥𝑟+1𝑒 | (𝑥𝑟𝑒 = 𝑧)] = E[𝑥𝑟+1𝑒 | (𝑥𝑟𝑒 = 𝑧) ∧ 𝐵] · Pr(𝐵)
+ E[𝑥𝑟+1𝑒 | (𝑥𝑟𝑒 = 𝑧) ∧𝐴] · Pr(𝐴)

= 𝑧 (Pr(𝐴) + Pr(𝐵)) = 𝑧.

Let 𝑍 be the set of possible values for 𝑥𝑟𝑒 .

E[𝑥𝑟+1𝑒 ] =
∑︁
𝑧∈𝑍
E[𝑥𝑟+1𝑒 | (𝑥𝑟𝑒 = 𝑧)] · Pr(𝑥𝑟𝑒 = 𝑧)

=
∑︁
𝑧∈𝑍

𝑧 · Pr(𝑥𝑟𝑒 = 𝑧) = E[𝑥𝑟𝑒 ] .

By the IH, then E[𝑥𝑟+1𝑒 ] = 𝑥0𝑒 . □

Lemma E.2. BarterDR satisfies (J2).

Proof. The property holds trivially for 𝑟 = 0. Recall 𝑟 = 1
corresponds to the output of the pre-processing step. This fact is
proved in [15]. Therefore, focus on some fixed 𝑟 > 1 and proceed
by induction. Fix 𝑎 ∈ 𝐿 ∪ 𝑅 and the CCC/CCW to be rounded
P = ⟨𝑠𝑖 { 𝑡𝑖 ⟩𝑖∈[𝑞 ] . Recall 𝑉 (P) denotes the endpoints of the
paths of P. Proceed by cases.

Case 𝐴: 𝑎 ∉ 𝑉 (P). Then either 𝑎 does not appear in P or 𝑎
appears in P but with two edges incident on it. In the former case
clearly 𝑥𝑟+1𝑎 = 𝑥𝑟𝑎 . In the latter case, the change of each incident
edge is equal in magnitude and opposite in sign (since one edge
belongs to 𝑀𝑖

−1 and the other to 𝑀𝑖
1) therefore 𝑥

𝑟+1
𝑎 = 𝑥𝑟𝑎 as well.

Thus by the IH ⌊𝑥0 (𝑎)⌋ ≤ 𝑥𝑟+1 (𝑎) ≤ ⌈𝑥0 (𝑎)⌉.
Case 𝐵: 𝑎 ∈ 𝑉 (P). There is a single incident edge 𝑒 ∈ 𝑁 (𝑎).

Without loss of generality, said edge belongs path 𝑠𝑖 { 𝑡𝑖 and thus
to𝑀𝑖

−1 (the proof for𝑀
𝑖
1 is identical). Then either 𝑥

𝑟+1 (𝑎) = 𝑥𝑟 (𝑎)+
𝛼/𝑣𝑖 or 𝑥𝑟+1 (𝑎) = 𝑥𝑟 (𝑎) − 𝛽/𝑣𝑖 . In either case, by definition of 𝛼
and 𝛽 (i.e., (5)), 𝛼 and 𝛽 are small enough that ⌊𝑥𝑟 (𝑎)⌋ ≤ 𝑥𝑟+1 (𝑎) ≤
⌈𝑥𝑟 (𝑎)⌉. Observe ⌊𝑥0 (𝑎)⌋ = ⌊𝑥𝑟 (𝑎)⌋ and ⌈𝑥0 (𝑎)⌉ = ⌈𝑥𝑟 (𝑎)⌉.

Having handled exhaustive cases, the proof is complete. □

Lemma E.3. BarterDR satisfies (J3).



WWW ’24, May 13–17, 2024, Singapore, Singapore Juan Luque, Sharmila Duppala, John Dickerson, and Aravind Srinivasan

Proof. The property holds trivially for 𝑟 = 0. Recall 𝑟 = 1
corresponds to the output of the pre-processing step. This fact is
proved in [15]. Therefore, focus on some fixed 𝑟 > 1 and proceed by
induction. Fix a vertex 𝑎 and a subset of edges 𝑆 incident on 𝑎 like
in (J3). Also fix the CCC/CCW to be rounded P = ⟨𝑠𝑖 { 𝑡𝑖 ⟩𝑖∈[𝑞 ] .
Proceed based on the following events.

Event𝐴: no edge in 𝑆 has its value modified. Then E[∏𝑒∈𝑆 𝑥
𝑟+1
𝑒 |

𝐴] = E[∏𝑒∈𝑆 𝑥
𝑟
𝑒 | 𝐴].

Event 𝐵: two edges 𝑒1, 𝑒2 ∈ 𝑆 have their values modified. Said
edges must both belong to 𝑠𝑖 { 𝑡𝑖 , for some fixed 𝑖 , with one
belonging to𝑀𝑖

−1 and the other to𝑀𝑖
1; say 𝑒1 ∈ 𝑀

𝑖
1 and 𝑒2 ∈ 𝑀

𝑖
−1.

Then

(𝑥𝑟+1𝑒1 , 𝑥𝑟+1𝑒2 ) =
{
(𝑥𝑟𝑒1 + 𝛼/𝑣𝑖 , 𝑥

𝑟
𝑒2 − 𝛼/𝑣𝑖 ) with probability 𝛽/(𝛼 + 𝛽)

(𝑥𝑟𝑒1 − 𝛽/𝑣𝑖 , 𝑥
𝑟
𝑒2 + 𝛽/𝑣𝑖 ) with probability 𝛼/(𝛼 + 𝛽)

where 𝛼 and 𝛽 are fixed per (5). Let 𝑆1 = 𝑆 − {𝑒1, 𝑒2}. Then

E

[∏
𝑒∈𝑆

𝑥𝑟+1𝑒 | (∀𝑒 ∈ 𝑆, 𝑥𝑟𝑒 = 𝑧𝑒 ) ∧ 𝐵
]

= E
[
𝑥𝑟𝑒1 · 𝑥

𝑟
𝑒2 | (∀𝑒 ∈ 𝑆, 𝑥

𝑟
𝑒 = 𝑧𝑒 ) ∧ 𝐵

] ∏
𝑒∈𝑆1

𝑧𝑒 .

The above expectation can be written as (Ψ + Φ)∏𝑒∈𝑆1 𝑧𝑒 , where

Ψ = (𝛽/(𝛼 + 𝛽)) · (𝑧𝑒1 + 𝛼) · (𝑧𝑒2 − 𝛼) and
Φ = (𝛼/(𝛼 + 𝛽)) · (𝑧𝑒1 − 𝛽) · (𝑧𝑒2 + 𝛽) .

It is easy to s how Ψ + Φ ≤ 𝑧𝑒1𝑧𝑒2 . Thus, for any fixed {𝑒1, 𝑒2} ⊆ 𝑆
and for any fixed (𝛼, 𝛽), and for fixed values of 𝑧𝑒 , the following

holds:

E

[∏
𝑒∈𝑆

𝑥𝑟+1𝑒 | (∀𝑒 ∈ 𝑆, 𝑥𝑟𝑒 = 𝑧𝑒 ) ∧ 𝐵
]
≤
∏
𝑒∈𝑆

𝑧𝑒 .

Hence, E[∏𝑒∈𝑆 𝑥
𝑟+1
𝑒 | 𝐵] ≤ E[∏𝑒∈𝑆 𝑥

𝑟
𝑒 | 𝐵].

Event 𝐶 : exactly one edge in the set 𝑆 has its value modified. Let
𝐶 denote the event that edge 𝑒1 ∈ 𝑆 has its value changed in the
following probabilistic way

𝑥𝑟+1𝑒1 =

{
𝑥𝑟𝑒1 + 𝛼 with probability 𝛽/(𝛼 + 𝛽)
𝑥𝑟𝑒1 − 𝛽 with probability 𝛼/(𝛼 + 𝛽) .

Thus, E[𝑥𝑟+1𝑒1 | (∀𝑒 ∈ 𝑆, 𝑥
𝑟
𝑒 = 𝑧𝑒 ) ∧𝐶] = 𝑧𝑒1 . Letting 𝑆1 = 𝑆 − {𝑒1},

we get that E[∏𝑒∈𝑆 𝑥
𝑟+1
𝑒 | (∀𝑒 ∈ 𝑆, 𝑥𝑟𝑒 = 𝑧𝑓 ) ∧𝐶] equals

𝐸 [𝑥𝑟+1𝑒1 | (∀𝑒 ∈ 𝑆, 𝑥
𝑟
𝑒 = 𝑧𝑓 ) ∧𝐶]

∏
𝑒∈𝑆1

𝑧𝑒 =
∏
𝑒∈𝑆

𝑧𝑒 .

Since the equation holds for any 𝑒1 ∈ 𝑆 , for any values of 𝑧𝑒 , and
for any (𝛼, 𝛽), we have E[∏𝑒∈𝑆 𝑥

𝑟+1
𝑒 | 𝐶] = E[∏𝑒∈𝑆 𝑥

𝑟
𝑒 ]. □

Proof of Theorem 3. By Lemmas E.1 and E.2 BarterDR satis-
fies (P1) and (P2). Let 𝑇 be the last iteration of BarterDR. From
Lemma E.3 we have

Pr(
∧
𝑒∈𝑆
(𝑋𝑒 = 1)) = E[

∏
𝑒∈𝑆

𝑥𝑇+1𝑒 ] ≤ E[
∏
𝑒∈𝑆

𝑥1𝑒 ] =
∏
𝑒∈𝑆

𝑥0𝑒 =
∏
𝑒∈𝑆

Pr(𝑋𝑒 = 1) .

The proof for 𝑐 = 0 (i.e., Pr(𝑋𝑒 = 0)) is identical. Therefore, Bar-
terDR satisfies (P3). □
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