
Training Quantized Nets: A Deeper Understanding
Hao Li1*, Soham De1*, Zheng Xu1, Christoph Studer2, Hanan Samet1, Tom Goldstein1

Experiments

[1] M. Courbariaux, Y. Bengio, J. P. David. BinaryConnect: Training deep neural networks 
with binary weights during propagations. NIPS 2015
[2] S. Gupta, A. Agrawal, K. Gopalakrishnan, P. Narayanan. Deep learning with limited 
numerical precision. ICML 2015

Motivation

How to train quantized models on low-power devices?
• Floating-point arithmetic may not be available.
• Training without floating-point weights can greatly save power and reduce 

the hardware requirement (Google TPU).

Goal
• Study quantized training methods from a theoretical perspective.
• Understanding the differences in behavior, and reasons for success or 

failure, of various methods.

Training Quantized Neural Networks

• Full-quantized : Stochastic Rounding (SR)

• Full-quantized: Deterministic Rounding (R)

• Semi-quantized: BinaryConnect (BC)

ü We proved that both BinaryConnect (BC) [1] and Stochastic Rounding 
(SR) [2] are capable of solving convex discrete problems up to a level of 
accuracy that depends on the quantization level.

ü We address the issue of why algorithms that maintain floating-point 
representations, like BC, work so well, while fully quantized training 
methods like SR stall before training is complete 

ü BC, like SGD, can efficiently concentrate on minimizers

ü SR cannot concentrate on minimizers on decreasing step size

Main Results

Convergence under Convexity Assumptions

Non-Convex Problems: Asymptotic Analysis

As gets smaller, the distribution of the perturbation gets “squished”, 
making the algorithm less likely to move. The “squishing” effect does not 
effect the relative probability of moving left or right.

Training Inference only?

• BC-ADAM has comparable performance to the full-precision model trained by ADAM. 

• SR-ADAM outperforms R-ADAM, which verifies the effectiveness of SR. 

• Keeping track of the real-valued weights to quantize the binary weights in BC-ADAM 
seems to really help empirically.

Convergence of BinaryConect
• Theorem 4  Assume that   is    -strongly convex and the learning 

rates are given by

BC converges until it reaches an “accuracy floor”, which is determined 
by the quantization error     and       (0 if is quadratic).

• Corollary 1 
• Accumulating the real-valued weights in BC allows it to converge to the true minimizer of quadratic losses.
• When the function behaves like a quadratic on the distance scale , one would expect BC to effectively concentrate on minimizers.

Convergence of Stochastic Rounding
• Theorem 1 Assume that   is    -strongly convex and the learning rates 

are given by

SR converges until it reaches an “accuracy floor”, which is determined by 
the quantization error .
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Quantization

Stochastic Rounding as a Markov Chain
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Effect of shrinking the learning rate in SR vs BC on a toy problem. Histograms plot the distribution of the quantized weights over 10^6 iterations. As the 
learning rate shrinks, the BC distribution concentrates on a minimizer, while the SR distribution stagnates.

BC

SR

α = 1.0 α = 0.1 α = 0.001α = 0.01

Big Batch Training

Exploration vs Exploitation Tradeoffs

R-ADAM BC-ADAM SR-ADAM

• SR-ADAM explores aggressively; it changes more weights in the conv layers than 
both R-ADAM and BC-ADAM, and keeps changing weights until nearly 40% of the 
weights differ from their starting values.

• The BC method never changes more than 20% of the weights, indicating that it 
stays near a local minimizer and explores less.

Reference

• Our theory predicts that we can improve the performance of SR by increasing the 
batch size, which shrinks the variance of the gradient distribution without changing 
the mean and concentrates more of the gradient distribution towards downhill 
directions, making the algorithm more greedy.

BC-Adam vs SR-Adam Weight changes since beginning Weight changes every 5 epochs
Theorem 5 Let          denote the distribution function of the th entry in the 
stochastic gradient         .  Assume                        for all    ,    ,    and both                       

and for constants      and      . Define matrix

k

Exploration-Exploitation Tradeoff
Ø Stochastic Rounding lacks this important tradeoff
• As the step-size gets small and the algorithm slows down, the quality 

of the iterates does not improve.

ØContinuous-valued SGD & BC
• When the learning rate is large, the algorithm explores by moving 

quickly between states. 
• When the learning rate is small, exploitation happens.

SR starts at some state , and moves to a new state with some transition 
probability that depends only on and the learning rate . For 
fixed , this is a Markov process with transition matrix
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: binary weights
: real weights
: quantization fn
: quantization error

: Bounded variance;       : Dimension;      : Diameter of domain;         : Lipschitz bound on Hessian

and the associated Markov chain transition matrix

where      is the largest constant that makes       non-negative. Suppose       has a 
stationary distribution    . Then, for sufficiently small    ,       has stationary 
distribution       , and

This satisfies                for any state    and is not concentrated on minimizers of    .x

x


