
DMesh: A Differentiable Mesh Representation

Sanghyun Son1 Matheus Gadelha2 Yang Zhou2 Zexiang Xu2 Ming C. Lin1 Yi Zhou2

1University of Maryland, College Park, {shh1295,lin}@umd.edu
2Adobe Research, {gadelha,yazhou,zexu,yizho}@adobe.com

Figure 1: (→) Optimization process. We can optimize our mesh starting from either (a) random
state or (b) initialization based on sample points for faster convergence. Mesh connectivity changes
dynamically during the optimization. To make this topology change possible, we compute existence
probability for an arbitrary set of faces in a differentiable manner.

Figure 2: Versatility of DMesh. DMesh can represent diverse geometry in differentiable manner,
including (a) non-convex polyhedra of different Euler characteristics, (b) non-orientable geometries
(Mobius strip, Klein bottle), and (c) complex protein structure (colored for aesthetic purpose).

Abstract

We present a differentiable representation, DMesh, for general 3D triangular
meshes. DMesh considers both the geometry and connectivity information of
a mesh. In our design, we first get a set of convex tetrahedra that compactly
tessellates the domain based on Weighted Delaunay Triangulation (WDT), and
select triangular faces on the tetrahedra to define the final mesh. We formulate
probability of faces to exist on the actual surface in a differentiable manner based
on the WDT. This enables DMesh to represent meshes of various topology in a
differentiable way, and allows us to reconstruct the mesh under various observations,
such as point cloud and multi-view images using gradient-based optimization.

Preprint. Under review.

1 Introduction

Polygonal meshes are widely used in modeling and animation due to their diverse, compact and ex-
plicit configuration. Recent AI progress has spurred efforts to integrate mesh generation into machine
learning, but challenges like varying topology hinder suitable differentiable mesh representations.
This limitation leads to reliance on differentiable intermediates like implicit functions, and subsequent
iso-surface extraction for mesh creation (Liao u. a., 2018; Guillard u. a., 2021; Munkberg u. a., 2022;
Shen u. a., 2023, 2021; Liu u. a., 2023b). However, meshes generated by such approaches can be
misaligned at sharp regions and unnecessarily dense (Shen u. a., 2023), not suitable for down-stream
applications that require light-weight meshes. This limitation necessitates us to develop a truly
differentiable mesh representation, not the intermediate forms.

The fundamental challenge in creating a differentiable mesh representation lies in formulating both
the vertices’ geometric features and their connectivity, defined as edges and faces, in a differentiable
way. Given a vertex set, predicting their connectivity in a free-form way using existing machine
learning data-structures can cost significant amount of computation and be difficult to avoid irregular
and intersecting faces. Consequently, most studies on differentiable meshes simplify the task by
using a mesh with a pre-determined topology and modifying it through various operations (Zhou
u. a., 2020; Hanocka u. a., 2019; Palfinger, 2022; Nicolet u. a., 2021). This work, on the contrary,
ambitiously aims to establish a general 3D mesh representation, named as DMesh, where both mesh
topology and geometric features (e.g. encoded in vertex location) can be simultaneously optimized
through gradient-based techniques.

Our core insight is to use differentiable Weighted Delaunay Triangulation (WDT) to divide a convex
domain, akin to amber encapsulating a surface mesh, into tetrahedra to form a mesh. To create a
mesh with arbitrary topology, we select only a subset of triangular faces from the tetrahedra, termed
the “real part", as our final mesh. The other faces, the “imaginary part", support the real part but
are not part of the final mesh (Figure 4). We introduce a method to assess the probability of a face
being part of the mesh based on weighted points that carry positional and inclusiveness information.
Optimization is then focused on the points’ features to generate the triangular mesh. The probability
determination allows us to compute geometric losses and rendering losses during gradient-based
optimization that optimizes connectivity and positioning.

The key contributions of our work can be summarized as follows.

• We present a novel differentiable mesh representation, DMesh, which is versatile to accom-
modate various types of mesh (Figure 2). The generated meshes can represent shapes more
effectively, with much less number of vertices and faces (Table 2).

• We propose a computationally efficient approach to differentiable WDT, which produces
robust probability estimations. While exhaustive approach (Rakotosaona u. a., 2021) requires
exponential computational cost, our method runs in approximately linear time.

• We provide efficient algorithms for reconstructing surfaces from both point clouds and
multi-view images using DMesh as an intermediate representation.

• We finally propose an effective regularization term which can be used for mesh simplification
and enhancing triangle quality.

Additionally, to further accelerate the algorithm, we implemented our main algorithm and differen-
tiable renderer in CUDA, which is made available for further research.

2 Related Work

2.1 Shape Representations for Optimization

Recently, using neural implicit functions for shape representation gained popularity in graphics and
vision applications (Mildenhall u. a., 2021; Zhang u. a., 2020; Liu u. a., 2020; Chen u. a., 2022a, 2023;
Wang u. a., 2021; Yariv u. a., 2020). They mainly use volume density, inspired by (Mildenhall u. a.,
2021), to represent a shape. However, because of its limited accuracy in 3D surface representation,
neural signed distance functions (SDFs) (Yariv u. a., 2021; Wang u. a., 2021, 2023; Oechsle u. a.,
2021) or unsigned distance functions (UDFs) (Liu u. a., 2023a; Long u. a., 2023) are often preferred.

2

Figure 3: Our overall framework to optimize mesh according to the given observations. (a): Each
point is defined by a 5-dimensional feature vector: position, weight, and real value. Points with larger
real values are rendered in red. (b): Given a set of points, we gather possibly existing faces in the
mesh and evaluate their probability in differentiable manner. (c): We can compute reconstruction loss
based on given observations, such as mesh, point cloud, or multi-view images. (d): To facilitate the
optimization process and enhance the mesh quality, we can use additional regularizations.

After optimization, one can recover meshes using iso-surface extraction techniques (Lorensen und
Cline, 1998; Ju u. a., 2002).

Differing from neural representations, another class of methods directly produce meshes and optimize
them. However, they assume that the overall mesh topology is fixed (Chen u. a., 2019; Nicolet
u. a., 2021; Liu u. a., 2019; Laine u. a., 2020), only allowing local connectivity changes through
remeshing (Palfinger, 2022). Learning-based approaches like BSP-Net (Chen u. a., 2020) allow
topological variation, but their meshing process is not differentiable. Recently, differentiable iso-
surface extraction techniques have been developed, resulting in high-quality geometry reconstruction
of various topologies (Liao u. a., 2018; Shen u. a., 2021, 2023; Wei u. a., 2023; Munkberg u. a.,
2022; Liu u. a., 2023b; Mehta u. a., 2022). Unfortunately, meshes relying on iso-surface extraction
algorithms (Lorensen und Cline, 1998; Ju u. a., 2002) often result in unnecessarily dense meshes that
could contain geometric errors. In contrast, our approach addresses these issues: we explicitly
define faces and their existence probabilities, and devise regularizations that yield simplified,
but accurate meshes based on them (Table 2). See Table 3 for more detailed comparisons to these
other methods.

2.2 Delaunay Triangulation for Geometry Processing

Delaunay Triangulation (DT) (Aurenhammer u. a., 2013) has been proven to be useful for recon-
structing shapes from unorganized point sets. It’s been shown that DT of dense samples on a smooth
2D curve includes the curve within its edges (Brandt und Algazi, 1992; Amenta u. a., 1998a). This
idea of using DT to approximate shape has been successfully extended to 3D, to reconstruct three-
dimensional shapes (Amenta u. a., 1998b) for point sets that satisfy certain constraints. However,
these approaches are deterministic. Our method can be considered as a differentiable version of these
approaches, which admits gradient-based optimization.

More recently, (Rakotosaona u. a., 2021) focused on this DT’s property to connect points and tessellate
the domain, and proposed a differentiable WDT algorithm to compute smooth inclusion, namely
existence score of 2-simplexes (triangles) in 2 dimensional space. However, it is not suitable to apply
this approach to our 3D case, as there are computational challenges (Section 3.2). Other related work,
VoroMesh (Maruani u. a., 2023), also used Voronoi diagrams in point cloud reconstruction, but their
formulation cannot represent open surfaces and is only confined to handle point clouds.

3 Preliminary

3.1 Probabilistic Approach to Mesh Connectivity

To define a traditional, non-differentiable mesh, we specify the vertices and their connectivity. This
connectivity is discrete, meaning for any given triplet of vertices, we check if they form a face
in the mesh, returning 1 if they do and 0 otherwise. To overcome this discreteness, we propose a

3

(a) 2D Font (b) 3D Dragon

Figure 4: Illustration of our mesh representation for 2D and 3D cases. (a): Our representation in 2D
for a letter “A”. (b): Our representation in 3D for a dragon model. Blue faces are “real part” and
yellow ones are “imaginary part”.

probabilistic approach to create a fully differentiable mesh – given a triplet of vertices, we evaluate the
probability of a face existing. This formulation enables differentiability not only of vertex positions
but also of their connectivity.

Note that we need a procedure that tells us the existence probability of any given face to realize this
probabilistic approach. This procedure must be 1) differentiable, 2) computationally efficient, and 3)
maintain desirable mesh properties, such as avoiding non-manifoldness and self-intersections, when
determining the face probabilities.

Among many possible options, we use Weighted Delaunay Triangulation (WDT) (Figure 6(a)) and a
point-wise feature called the "real" value (ψ) to define our procedure. Each vertex in our framework
is represented as a 5-dimensional1 vector including position (3), WDT weight (1), and real value (1)
(Figure 3(a)). Given the precomputed WDT based on vertices’ positions and weights, we check the
face existence probability of each possible triplets. Specifically, 1) a face F must exist in the WDT,
and then 2) satisfy a condition on the real values of its vertices to exist on the actual surface. We
describe the probability functions for these conditions as Λwdt and Λreal:

Λwdt(F) = P (F ∈WDT), Λreal(F) = P (F ∈ Mesh |F ∈WDT). (1)

Then we get the final existence probability function, which can be used in downstream applications
(Figure 3), as follows:

Λ(F) = P (F ∈Mesh) = Λwdt(F) · Λreal(F). (2)

This formulation attains one nice property in determining the final mesh – that is, it prohibits self-
intersections between faces. When it comes to the other two criteria about oracle, Λwdt function’s
differentiability and efficiency is crucial, as we design Λreal to be a very efficient differentiable
function based on real values (Section 4.2). Thus, we first introduce how we can evaluate Λwdt in a
differentiable and efficient manner, which is one of our main contributions.

3.2 Basic Principles

Figure 5: Renderings of ∆ks
for different pairs of (d, k).
Different ∆ks are rendered in
different colors.

To begin with, we use (d, k) pair to denote a k-simplex (∆k) in
d-dimensional space. For a 3D mesh, we observe that our face F
corresponds to (d = 3, k = 2) in Figure 5(b). To compute the prob-
ability Λwdt for the face, we use power diagram (PD), which is the
dual structure of WDT (Figure 6(a)). While previously Rakotosaona
et al. (2021) proposed a differentiable 2D triangulation method for
the (d = k = 2) case (Figure 5(c)), it suffers from exponentially
increasing computational cost (e.g. it takes 4.3 seconds to process
10K points in 2D, Table 4) and unreliable estimation when (k < d).
We will discuss later how our formulation conquer these compu-
tational challenges. Our setting for 3D meshes are similar to 2D
meshes, the (d = 2, k = 1) case in Figure 5(d), where a triangular
face reduces to a line. Therefore, we will mainly use this setting to
describe and visualize basic concepts for simplicity. However, note
that it can be generalized to any (d, k) case without much problem.

1In 2D case, a vertex is a 4-dimensional vector including position (2), WDT weight (1), and real value (1).

4

Figure 6: Basic concepts to compute existence probability of given 1-simplex (∆1) when d = 2.
(a): WDT and PD of given set of weighted vertices are rendered in solid and dotted lines. The size of
a vertex represents its weight. (b): Power cell of p1 (Cp1

) is rendered in grey. Also, ∆1 is rendered in
black line, of which dual line (D∆1) is rendered in red. (c), (d): For given ∆1, reduced power cell of
p1 for the ∆1 (Rp1|∆1) is rendered in blue, with the original power cell (grey). We can evaluate the
existence of ∆1 in WDT by computing the signed distance from D∆1 to Rp1|∆1 .

We generalize the basic principles suggested by Rakotosaona u. a. (2021) to address our cases. For
formal definitions of the concepts in this section, please refer to Appendix B.

Let S be a finite set of points in Rd=2 with weights. For a given point p ∈ S, we denote its weight as
wp. We call those weighted points in S as “vertices”, to distinguish them from general unweighted
points in R2. Then, we adopt power distance π(p, q) = d(p, q)2 − wp − wq as the distance measure
between two vertices in S. As depicted in Figure 6, ∆k=1 is a 1-simplex, which is a line connecting
two vertices pi and pj in S. Its dual form D∆1 (red line) is the set of unweighted points2 in R2 that
are located at the same power distance to pi and pj . In the power diagram, the power cell Cp (gray
cell) of a vertex p is the set of unweighted points that are closer to p than to any other vertices in
S. We can use Cp and D∆1 to measure the existence of ∆1. From Figure 6, we can see that when
∆1 = {pi, pj} exists in WDT, its dual line D∆1 aligns exactly with Cpi

’s boundary, while when
∆1 = {pi, pj} doesn’t exist in WDT, D∆1 is outside Cpi

.

To make this measurement less binary when ∆1 exists, we use the expanded version of power cell
called "reduced" power cell (Rp|∆), introduced by Rakotosaona u. a. (2021). The reduced power cell
of pi ∈ S for ∆1 = {pi, pj} is computed by excluding pj from S when constructing the power cell 3.
For example, when ∆1 exists, Rpi|∆1 will expand towards pj’s direction (Figure 6(c)), and D∆1 will
"go through" Rpi|∆1 . In contrast, when ∆ doesn’t exists, even though we have removed pj , Rpi|∆1

will not expand (Figure 6(d)), and thus D∆1 stays outside of Rpi|∆1 .

Now we can define a signed distance field τpt(x,R) for a given reduced power cell R, where the
signed distance is measured as the distance from the point x ∈ Rd to the boundary of the reduced
power cell (sign is negative when inside). Then, we can induce the signed distance between a dual
form D and a reduced power cell R:

τ(D,R) = max
x∈D

τpt(x,R). (3)

As illustrate in Figure 6(c) and (d), τ(D∆1 , Rp1|∆1) is positive when ∆1 exists, while negative when
it does not exist in WDT. This observation can be generalized as follows:
Remark 3.1. ∆k exists in WDT if and only if ∀pi ∈ ∆k, τ(D∆k , Rpi|∆k) > 0.

In fact, the sign of every τ(D∆k , Rpi|∆k) is same for every pi ∈ ∆k. Therefore, we can use its
average to measure the existence probability of ∆k, along with sigmoid function σ:

Λwdt(∆
k) =

1

k + 1

∑
p∈{∆k}

σ(τ(D∆k
, Rp|∆k) · αwdt), (4)

where αwdt is a constant value used for the sigmoid function. Λwdt(∆
k) is greater than 0.5 when ∆k

exists, aligning with our probabilistic viewpoint and being differentiable.
2We treat unweighted points’ weight as 0 when computing the power distance.
3In 3D case where k = 2, ∆2 = {pi, pj , pk}, and pj andpk will be ignored for Rpi|∆2 .

5

Computational Challenges. As mentioned before, Rakotosaona et al. (2021) solved the problem
for the case where (d = k = 2) where the dual D∆k is a single point. Naïvely applying their
approach for computing Eq. 3 to our cases poses two computational challenges:

• Precision: When (d = 3, k = 2) or (d = 2, k = 1), D∆k
becomes a line, not a single point.

Finding a point on the line that maximizes Eq. 3 is not straightforward.
• Efficiency: When naïvely estimating the reduced power cell in exhaustive manner, the

computational cost increases exponentially with the number of points at a rate of O(N2),
where N is the number of points.

See Appendix B.2 for a detailed discussion of these limitations.

4 Formulation

4.1 Practical approach to compute Λwdt

We introduce a practical approach to resolve the two aforementioned challenges. Specifically, we
propose constructing the PD first and use it for computing lower bound of Eq. 3 in an efficient way.
We also propose to handle the two cases separately: whether ∆k exists in the WDT or not.

First, when the simplex ∆k does not exist, we choose to use the negative distance between the dual
form and the normal power cell, −d(D∆k , Cp). This is the lower bound of Eq. 3:

−d(D∆k , Cp) ≤ τ(D∆k , Rp|∆k) < 0, (5)

as Cp ⊂ Rp|∆k . See Figure 6(d) for this case in (d = 2, k = 1) case. We can observe that computing
this distance is computationally efficient, because the normal PD only needs to be computed once for
all in advance. Moreover, Cp is a convex polyhedron, and D∆k is a (convex) line, which allows us to
find the distance between line segments on the boundary of Cp

4 and D∆k , and choose the minimum.

Second, we analyze the case when the simplex ∆k exists in WDT. In this case, we have to construct
the reduced power cell Rp|∆k for given ∆k, which requires much additional cost. Instead of doing
it, we leverage pre-computed PD to approximate the reduced power cell. Then, we pick a point
v ∈ D∆k ∩Rp|∆k , where p ∈ {∆k}, and the following holds:

0 ≤ τpt(v,Rp|∆k) ≤ τ(D∆k , Rp|∆k), (6)

because v ∈ Rp|∆k and by the definition at Eq. 3. In our case, since D∆k ∩Rp|∆k is a line segment,
we choose its middle point as v to tighten this lower bound. See Figure 6(c) for the line segment in
(d = 2, k = 1) case. We use this bound when ∆k exists. Note that computing this lower bound is
also computationally efficient, because we can simply project v to the reduced power cell.

To sum up, we can rewrite Eq. 3 as follows.

τ(D∆k , Rp|∆k) =

{
τpt(v,Rp|∆k) if ∆k ∈WDT(S[w])
−d(D∆k , Cp) else (7)

By using this relaxation, we can get lower bound of Eq. 3, which is reliable because it always has
the same sign. Also, we can reduce the computational cost from O(N2) to nearly O(N), which is
prerequisite for representing meshes that have more than 1K vertices in general. See Appendix B.2
for the computational speed and accuracy of our method, compared to the previous one. Finally, we
implemented our algorithm for computing Eq. 7 in CUDA for further acceleration.

4.2 Definition of Λreal

Λreal evaluates the existence probability of a k-simplex ∆k in our mesh when it exists in WDT. To
define it, we leverage per-point value ψ ∈ [0, 1]. We simply use the minimum ψ of the points in ∆k:
Λreal(∆

k) = minp∈∆k Ψ(p), where Ψ is function that maps a point p to its ψ value.

Along with Λwdt that we discussed before, now we can evaluate the final existence probability of
faces in Eq. 2. We also note here, that when we extract the final mesh, we only select the faces of
which Λwdt and Λreal are larger than 0.5.

4This holds when d = 3. When d = 2, we can use vertices of of Cp.

6

4.3 Loss Functions

DMesh can be reconstructed from various inputs, such as normal meshes, point clouds, and multi-
view images. With its per-vertex features and per-face existence probabilities Λ(F), we can optimize
it with various reconstruction losses and regularization terms. Please see details in Appendix C.

4.3.1 Reconstruction Loss (Lrecon)

First, if we have a normal mesh with vertices P and faces F, and we want to represent it with DMesh,
we should compute the additional two per-vertex attributes, WDT weights and real values. We
optimize them by maximizing Λ(F) since these faces lies on the reference mesh. Conversely, for the
remaining set of faces F̄ that can be defined on P, we should minimize Λ(F̄). Together, they define
the reconstruction loss for mesh input (Appendix C.1).

For reconstruction from point clouds or multi-view images, we need to optimize for all features
including positions. For point clouds, we define our loss using Chamfer Distance (CD) and compute
the expected CD using our face probabilities (Appendix C.2). For multi-view images, we define
the loss as the L1 loss between the given images and the rendering of DMesh, interpreting face
probabilities as face opacities. We implemented efficient differentiable renderers to allow gradients
to flow across face opacities (Appendix C.3).

4.3.2 Regularizations

Figure 7: Results with different λweight.

Being fully differentiable for both vertices and
faces, DMesh allows us to develop various reg-
ularizations to improve the optimization pro-
cess and enhance the final mesh quality. The
first is weight regularization (Lweight), applied
to the dual Power Diagram of the WDT (Ap-
pendix C.4). This regularization reduces the
structural complexity of the WDT and discards
unnecessary points, controlling the final mesh complexity (Figure 7). The next is real regularization
(Lreal), which enforces nearby points to have similar real values and increases the real values of
points adjacent to high real value points (Appendix C.5). This helps remove holes or inner structures
and makes faces near the current surface more likely to be considered (Appendix D). The final regular-
ization, quality regularization (Lqual), aims to improve the quality of triangle faces by minimizing
the average expected aspect ratio of the faces, thus removing thin triangles (Appendix C.6).

To sum up, our final loss function can be written as follows:

L = Lrecon + λweight · Lweight + λreal · Lreal + λqual · Lqual,

where λ values are hyperparameters. In Appendix E, we provide values for these hyperparameters for
every experiment. Also, in Appendix E.3, we present ablation studies for these regularizations.

5 Experiments and Applications
Table 1: Mesh reconstruction results.

- Bunny Dragon Buddha

RE 99.78% 99.72% 99.64%
FP 0.00% 0.55% 0.84%

In this section, we provide experimental results
to demonstrate the efficacy of our approach.
First, we optimize vertex attributes to restore
a given ground truth mesh, directly proving the
differentiability of our design. Next, we conduct
experiments on 3D reconstruction from point
clouds and multi-view images, showcasing how our differentiable formulation can be used in down-
stream applications.

For the mesh reconstruction problem, we used three models from the Stanford 3D Scanning Reposi-
tory (Curless und Levoy, 1996). For point cloud and multi-view reconstruction tasks, we used four
closed-surface models from the Thingi32 dataset, four open-surface models from the DeepFashion3D
dataset, and three additional models with both closed and open surfaces from the Objaverse dataset

7

Figure 8: Point cloud and multi-view reconstruction results. (a): Ground truth mesh. (b), (f): Our
method restores the original shape without losing much detail. (c), (d), (g), (h): PSR (Kazhdan und
Hoppe, 2013), VoroMesh (Maruani u. a., 2023), FlexiCube (Shen u. a., 2023), and NIE (Mehta u. a.,
2022) fail for open and mixed surfaces. (e): NDC (Chen u. a., 2022b) exhibits artifacts from grids.

Table 2: Quantitative comparison for point cloud and multi-view reconstruction results. Best
results are written in bold.

Methods CD (×10−5)↓ F1↑ NC↑ ECD↓ EF1↑ # Verts↓ # Faces↓ Time (sec)↓

PC

PSR 690 0.770 0.931 0.209 0.129 159K 319K 10.6
VoroMesh >1K 0.671 0.819 >1K 0.263 121K 242K 12.2
NDC 3.611 0.874 0.936 0.022 0.421 20.7K 42.8K 3.49
Ours (w/o normal) 3.726 0.866 0.936 0.067 0.342 3.87K 10.4K 775
Ours (w/ normal) 3.364 0.886 0.952 0.141 0.438 3.56K 7.54K 743

MV
NIE 585 0.439 0.848 0.064 0.023 74.5K 149K 6696
FlexiCube 273 0.591 0.881 0.039 0.152 10.9K 21.9K 56.47
Ours 34.6 0.685 0.892 0.094 0.113 4.19K 8.80K 1434

and Adobe Stock. These models are categorized as "closed," "open," and "mixed" in this section. Ad-
ditionally, we use nonconvex polyhedra of various Euler characteristics and non-orientable geometries
to prove our method’s versatility.

We implemented our main algorithm for computing face existence probabilites and differentiable
renderer used for multi-view image reconstruction in CUDA (Nickolls u. a., 2008). Since we need to
compute WDT before running the CUDA algorithm, we used WDT implementation of CGAL (Jamin
u. a., 2023). We implemented the rest of logic with Pytorch (Paszke u. a., 2017). All of the experiments
were run on a system with AMD EPYC 7R32 CPU and Nvidia A10 GPU.

5.1 Mesh to DMesh

In this experiment, we demonstrate that we can preserve most of the faces in the original normal
triangular mesh after converting it to DMesh using the mesh reconstruction loss introduced in 4.3.

In Table 1, we show the recovery ratio (RE) and false positive ratio (FP) of faces in our reconstructed
mesh. Note that we could recover over 99% of faces in the original mesh, while only having under
1% of false faces. Please see Appendix E.1 for more details. This result successfully validates our
differentiable formulation, but also reveals its limitation in reconstructing some abnormal triangles in
the original mesh, such as long, thin triangles.

5.2 Point Cloud & Multi-View Reconstruction

In this experiment, we aim to reconstruct a mesh from partial geometric data, such as (oriented) point
clouds or multi-view images. For point cloud reconstruction, we sampled 100K points from the
ground truth mesh. We can additionally use point orientations, if they are available. For multi-view
reconstruction, we rendered diffuse and depth images of the ground truth mesh from 64 view points.

8

In Appendix E, we illustrated the example inputs for these experiments. Also, please see Appendix D
to see the initialization and densification strategy we took in these experiments.

To validate our approach, we compare our results with various approaches. When it comes to
point cloud reconstruction, we first compare our result with classical Screened Poisson Surface
Reconstruction (PSR) method (Kazhdan und Hoppe, 2013) 5. Then, to compare our method with
optimization based approach, we use recent VoroMesh (Maruani u. a., 2023) method. Note that these
two methods are not tailored for open surfaces. To compare our method also for the open surfaces, we
use Neural Dual Contouring (NDC) (Chen u. a., 2022b), even though it is learning-based approach.
Finally, for multi-view reconstruction task, we compare our results with Flexicube (Shen u. a., 2023)
and Neural Implicit Evolution (NIE) (Mehta u. a., 2022), which correspond to volumetric approaches
that can directly produce meshes of varying geometric topology for given visual inputs.

In Figure 8, we visualize the reconstruction results along with the ground truth mesh for qualitative
evaluation. For closed meshes, in general, volumetric approaches like PSR, VoroMesh, and Flexicube,
capture fine details better than our methods. This is mainly because we currently have limitation in
the mesh resolution that we can produce with our method. NIE, which is also based on volumetric
principles, generates overly smoothed reconstruction results. However, when it comes to open or
mixed mesh models, which are more ubiquitous in real applications, we can observe that these
methods fail, usually with false internal structures or self-intersecting faces (Appendix E.2). Since
NDC leverages unsigned information, it can handle these cases without much problem as ours.
However, we can observe step-like visual artifacts coming from its usage of grid in the final output,
which requires post-processing. Additionally, to show the versatility of our representation, we also
visualize various shapes reconstructed from oriented point clouds in Figure 2.

Table 2 presents quantitative comparisons with other methods. We used following metrics from Chen
u. a. (2022b) to measure reconstruction accuracy: Chamfer Distance (CD), F-Score (F1), Normal
Consistency (NC), Edge Chamfer Distance (ECD), and Edge F-Score (EF1) to the ground truth mesh.
Also, we report number of vertices and faces of the reconstructed mesh to compare mesh complexity,
along with computational time. All values are average over 11 models that we used. In general, our
method generates mesh of comparable, or better accuracy than the other methods. However, when
it comes to ECD and EF1, which evaluate the edge quality of the reconstructed mesh, our results
showed some weaknesses, because our method cannot prevent non-manifold edges yet. However,
our method showed superior results in terms of mesh complexity – this is partially due to the use of
weight regularization. Please see Appendix E.3 to see how the regularization works through ablation
studies. Likewise, our method shows promising results in producing compact and accurate mesh.
However, we also note that our method requires more computational cost than the other methods in
the current implementation.

6 Conclusion and Future Directions
Our method achieves a more effective and complete forms of differentiable meshes of various
topology than existing methods, but opens up new avenues for future research.

• Computational cost: Current DMesh resolution is constrained by computational cost. Al-
though we succeeded in decreasing computational burden through our theoretical relaxation
and CUDA implementation, it takes more than a second to process over 100K vertices in 3D
due to costly WDT construction.

• Non-manifoldness: As we have claimed so far, DMesh shows much better generalization
than the other methods as it does not have any constraints on the mesh connectivity. However,
due to this relaxation of constraint, we can observe spurious non-manifold errors in the
mesh, even though we adopted measures to minimize them (Appendix D.2.7).

To address these limitations, we can search for a method that does not heavily rely on WDT algorithm
as we do now, as it requires more computational cost when the number of points exceeds the on-chip
memory of GPU support. We may also adopt the other approaches based on (un)signed distance
fields (Shen u. a., 2023; Liu u. a., 2023b) to our method, thus generating compact mesh that is
guaranteed to be manifold. Finally, further research can extend this work to solve other challenging
problems (e.g. 3D reconstruction from real-world images) or other related applications (e.g. 3D mesh
generative model) in the future.

5We provide point orientations for PSR, which is optional for our method.

9

Acknowledgements We thank Zhiqin Chen and Matthew Fisher for helpful advice. This research
is a joint collaboration between Adobe and University of Maryland at College Park. This work has
been supported in part by Adobe, IARPA, UMD-ARL Cooperate Agreement, and Dr. Barry Mersky
and Capital One Endowed E-Nnovate Professorships.

References
[Amenta u. a. 1998a] AMENTA, Nina ; BERN, Marshall ; EPPSTEIN, David: The crust and the
β-skeleton: Combinatorial curve reconstruction. In: Graphical models and image processing 60
(1998), Nr. 2, S. 125–135

[Amenta u. a. 1998b] AMENTA, Nina ; BERN, Marshall ; KAMVYSSELIS, Manolis: A new
Voronoi-based surface reconstruction algorithm. In: Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, 1998, S. 415–421

[Aurenhammer u. a. 2013] AURENHAMMER, Franz ; KLEIN, Rolf ; LEE, Der-Tsai: Voronoi
diagrams and Delaunay triangulations. World Scientific Publishing Company, 2013

[Brandt und Algazi 1992] BRANDT, Jonathan W. ; ALGAZI, V R.: Continuous skeleton computa-
tion by Voronoi diagram. In: CVGIP: Image understanding 55 (1992), Nr. 3, S. 329–338

[Chen u. a. 2022a] CHEN, Anpei ; XU, Zexiang ; GEIGER, Andreas ; YU, Jingyi ; SU, Hao:
TensoRF: Tensorial Radiance Fields. In: European Conference on Computer Vision (ECCV), 2022

[Chen u. a. 2023] CHEN, Anpei ; XU, Zexiang ; WEI, Xinyue ; TANG, Siyu ; SU, Hao ; GEIGER,
Andreas: Dictionary Fields: Learning a Neural Basis Decomposition. In: ACM Trans. Graph.
(2023)

[Chen u. a. 2019] CHEN, Wenzheng ; LING, Huan ; GAO, Jun ; SMITH, Edward ; LEHTINEN,
Jaakko ; JACOBSON, Alec ; FIDLER, Sanja: Learning to predict 3d objects with an interpolation-
based differentiable renderer. In: Advances in neural information processing systems 32 (2019)

[Chen u. a. 2022b] CHEN, Zhiqin ; TAGLIASACCHI, Andrea ; FUNKHOUSER, Thomas ; ZHANG,
Hao: Neural dual contouring. In: ACM Transactions on Graphics (TOG) 41 (2022), Nr. 4, S. 1–13

[Chen u. a. 2020] CHEN, Zhiqin ; TAGLIASACCHI, Andrea ; ZHANG, Hao: Bsp-net: Generating
compact meshes via binary space partitioning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, S. 45–54

[Cheng u. a. 2013] CHENG, Siu-Wing ; DEY, Tamal K. ; SHEWCHUK, Jonathan ; SAHNI, Sartaj:
Delaunay mesh generation. CRC Press Boca Raton, 2013

[Cignoni u. a. 2008] CIGNONI, Paolo ; CALLIERI, Marco ; CORSINI, Massimiliano ; DELLEPIANE,
Matteo ; GANOVELLI, Fabio ; RANZUGLIA, Guido u. a.: Meshlab: an open-source mesh
processing tool. In: Eurographics Italian chapter conference Bd. 2008 Salerno, Italy (Veranst.),
2008, S. 129–136

[Curless und Levoy 1996] CURLESS, Brian ; LEVOY, Marc: A volumetric method for building
complex models from range images. In: Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, 1996, S. 303–312

[Guillard u. a. 2021] GUILLARD, Benoit ; REMELLI, Edoardo ; LUKOIANOV, Artem ; RICHTER,
Stephan R. ; BAGAUTDINOV, Timur ; BAQUE, Pierre ; FUA, Pascal: DeepMesh: Differentiable
iso-surface extraction. In: arXiv preprint arXiv:2106.11795 (2021)

[Hanocka u. a. 2019] HANOCKA, Rana ; HERTZ, Amir ; FISH, Noa ; GIRYES, Raja ; FLEISHMAN,
Shachar ; COHEN-OR, Daniel: Meshcnn: a network with an edge. In: ACM Transactions on
Graphics (ToG) 38 (2019), Nr. 4, S. 1–12

[Jamin u. a. 2023] JAMIN, Clément ; PION, Sylvain ; TEILLAUD, Monique: 3D Triangulations.
In: CGAL User and Reference Manual. 5.6. CGAL Editorial Board, 2023. – URL https:
//doc.cgal.org/5.6/Manual/packages.html#PkgTriangulation3

10

https://doc.cgal.org/5.6/Manual/packages.html#PkgTriangulation3
https://doc.cgal.org/5.6/Manual/packages.html#PkgTriangulation3

[Ju u. a. 2002] JU, Tao ; LOSASSO, Frank ; SCHAEFER, Scott ; WARREN, Joe: Dual contouring of
hermite data. In: Proceedings of the 29th annual conference on Computer graphics and interactive
techniques, 2002, S. 339–346

[Kazhdan und Hoppe 2013] KAZHDAN, Michael ; HOPPE, Hugues: Screened poisson surface
reconstruction. In: ACM Transactions on Graphics (ToG) 32 (2013), Nr. 3, S. 1–13

[Kerbl u. a. 2023] KERBL, Bernhard ; KOPANAS, Georgios ; LEIMKÜHLER, Thomas ; DRETTAKIS,
George: 3D Gaussian Splatting for Real-Time Radiance Field Rendering. In: ACM Transactions
on Graphics 42 (2023), Nr. 4

[Kingma und Ba 2014] KINGMA, Diederik P. ; BA, Jimmy: Adam: A method for stochastic
optimization. In: arXiv preprint arXiv:1412.6980 (2014)

[Laine u. a. 2020] LAINE, Samuli ; HELLSTEN, Janne ; KARRAS, Tero ; SEOL, Yeongho ;
LEHTINEN, Jaakko ; AILA, Timo: Modular primitives for high-performance differentiable
rendering. In: ACM Transactions on Graphics (TOG) 39 (2020), Nr. 6, S. 1–14

[Lee 2010] LEE, John: Introduction to topological manifolds. Bd. 202. Springer Science &
Business Media, 2010

[Liao u. a. 2018] LIAO, Yiyi ; DONNE, Simon ; GEIGER, Andreas: Deep marching cubes: Learning
explicit surface representations. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, S. 2916–2925

[Liu u. a. 2020] LIU, Lingjie ; GU, Jiatao ; LIN, Kyaw Z. ; CHUA, Tat-Seng ; THEOBALT, Christian:
Neural Sparse Voxel Fields. In: NeurIPS (2020)

[Liu u. a. 2019] LIU, Shichen ; LI, Tianye ; CHEN, Weikai ; LI, Hao: Soft rasterizer: A differ-
entiable renderer for image-based 3d reasoning. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, S. 7708–7717

[Liu u. a. 2023a] LIU, Yu-Tao ; WANG, Li ; YANG, Jie ; CHEN, Weikai ; MENG, Xiaoxu ; YANG,
Bo ; GAO, Lin: Neudf: Leaning neural unsigned distance fields with volume rendering. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023,
S. 237–247

[Liu u. a. 2023b] LIU, Zhen ; FENG, Yao ; XIU, Yuliang ; LIU, Weiyang ; PAULL, Liam ; BLACK,
Michael J. ; SCHÖLKOPF, Bernhard: Ghost on the Shell: An Expressive Representation of General
3D Shapes. In: arXiv preprint arXiv:2310.15168 (2023)

[Long u. a. 2023] LONG, Xiaoxiao ; LIN, Cheng ; LIU, Lingjie ; LIU, Yuan ; WANG, Peng ;
THEOBALT, Christian ; KOMURA, Taku ; WANG, Wenping: Neuraludf: Learning unsigned
distance fields for multi-view reconstruction of surfaces with arbitrary topologies. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, S. 20834–20843

[Lorensen und Cline 1998] LORENSEN, William E. ; CLINE, Harvey E.: Marching cubes: A high
resolution 3D surface construction algorithm. In: Seminal graphics: pioneering efforts that shaped
the field. 1998, S. 347–353

[Maruani u. a. 2023] MARUANI, Nissim ; KLOKOV, Roman ; OVSJANIKOV, Maks ; ALLIEZ,
Pierre ; DESBRUN, Mathieu: VoroMesh: Learning Watertight Surface Meshes with Voronoi
Diagrams. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023,
S. 14565–14574

[Mehta u. a. 2022] MEHTA, Ishit ; CHANDRAKER, Manmohan ; RAMAMOORTHI, Ravi: A level
set theory for neural implicit evolution under explicit flows. In: European Conference on Computer
Vision Springer (Veranst.), 2022, S. 711–729

[Mildenhall u. a. 2021] MILDENHALL, Ben ; SRINIVASAN, Pratul P. ; TANCIK, Matthew ; BARRON,
Jonathan T. ; RAMAMOORTHI, Ravi ; NG, Ren: Nerf: Representing scenes as neural radiance
fields for view synthesis. In: Communications of the ACM 65 (2021), Nr. 1, S. 99–106

11

[Munkberg u. a. 2022] MUNKBERG, Jacob ; HASSELGREN, Jon ; SHEN, Tianchang ; GAO, Jun ;
CHEN, Wenzheng ; EVANS, Alex ; MÜLLER, Thomas ; FIDLER, Sanja: Extracting triangular 3d
models, materials, and lighting from images. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, S. 8280–8290

[Nickolls u. a. 2008] NICKOLLS, John ; BUCK, Ian ; GARLAND, Michael ; SKADRON, Kevin:
Scalable parallel programming with cuda: Is cuda the parallel programming model that application
developers have been waiting for? In: Queue 6 (2008), Nr. 2, S. 40–53

[Nicolet u. a. 2021] NICOLET, Baptiste ; JACOBSON, Alec ; JAKOB, Wenzel: Large steps in inverse
rendering of geometry. In: ACM Transactions on Graphics (TOG) 40 (2021), Nr. 6, S. 1–13

[Oechsle u. a. 2021] OECHSLE, Michael ; PENG, Songyou ; GEIGER, Andreas: UNISURF: Unify-
ing Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction. In: International
Conference on Computer Vision (ICCV), 2021

[Palfinger 2022] PALFINGER, Werner: Continuous remeshing for inverse rendering. In: Computer
Animation and Virtual Worlds 33 (2022), Nr. 5, S. e2101

[Paszke u. a. 2017] PASZKE, Adam ; GROSS, Sam ; CHINTALA, Soumith ; CHANAN, Gregory ;
YANG, Edward ; DEVITO, Zachary ; LIN, Zeming ; DESMAISON, Alban ; ANTIGA, Luca ; LERER,
Adam: Automatic differentiation in pytorch. (2017)

[Rakotosaona u. a. 2021] RAKOTOSAONA, Marie-Julie ; AIGERMAN, Noam ; MITRA, Niloy J. ;
OVSJANIKOV, Maks ; GUERRERO, Paul: Differentiable surface triangulation. In: ACM Transac-
tions on Graphics (TOG) 40 (2021), Nr. 6, S. 1–13

[Shen u. a. 2021] SHEN, Tianchang ; GAO, Jun ; YIN, Kangxue ; LIU, Ming-Yu ; FIDLER, Sanja:
Deep marching tetrahedra: a hybrid representation for high-resolution 3d shape synthesis. In:
Advances in Neural Information Processing Systems 34 (2021), S. 6087–6101

[Shen u. a. 2023] SHEN, Tianchang ; MUNKBERG, Jacob ; HASSELGREN, Jon ; YIN, Kangxue ;
WANG, Zian ; CHEN, Wenzheng ; GOJCIC, Zan ; FIDLER, Sanja ; SHARP, Nicholas ; GAO, Jun:
Flexible isosurface extraction for gradient-based mesh optimization. In: ACM Transactions on
Graphics (TOG) 42 (2023), Nr. 4, S. 1–16

[Wang u. a. 2021] WANG, Peng ; LIU, Lingjie ; LIU, Yuan ; THEOBALT, Christian ; KOMURA,
Taku ; WANG, Wenping: Neus: Learning neural implicit surfaces by volume rendering for
multi-view reconstruction. In: arXiv preprint arXiv:2106.10689 (2021)

[Wang u. a. 2023] WANG, Yiming ; HAN, Qin ; HABERMANN, Marc ; DANIILIDIS, Kostas ;
THEOBALT, Christian ; LIU, Lingjie: NeuS2: Fast Learning of Neural Implicit Surfaces for Multi-
view Reconstruction. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2023

[Wei u. a. 2023] WEI, Xinyue ; XIANG, Fanbo ; BI, Sai ; CHEN, Anpei ; SUNKAVALLI, Kalyan ;
XU, Zexiang ; SU, Hao: NeuManifold: Neural Watertight Manifold Reconstruction with Efficient
and High-Quality Rendering Support. In: arXiv preprint arXiv:2305.17134 (2023)

[Yariv u. a. 2021] YARIV, Lior ; GU, Jiatao ; KASTEN, Yoni ; LIPMAN, Yaron: Volume rendering
of neural implicit surfaces. In: Thirty-Fifth Conference on Neural Information Processing Systems,
2021

[Yariv u. a. 2020] YARIV, Lior ; KASTEN, Yoni ; MORAN, Dror ; GALUN, Meirav ; ATZMON,
Matan ; RONEN, Basri ; LIPMAN, Yaron: Multiview Neural Surface Reconstruction by Disen-
tangling Geometry and Appearance. In: Advances in Neural Information Processing Systems 33
(2020)

[Zhang u. a. 2020] ZHANG, Kai ; RIEGLER, Gernot ; SNAVELY, Noah ; KOLTUN, Vladlen:
NeRF++: Analyzing and Improving Neural Radiance Fields. In: arXiv:2010.07492 (2020)

[Zhou u. a. 2020] ZHOU, Yi ; WU, Chenglei ; LI, Zimo ; CAO, Chen ; YE, Yuting ; SARAGIH,
Jason ; LI, Hao ; SHEIKH, Yaser: Fully convolutional mesh autoencoder using efficient spatially
varying kernels. In: Advances in neural information processing systems 33 (2020), S. 9251–9262

12

Table 3: Traits of different optimization-based shape reconstruction methods. We compare methods
based on template mesh (Palfinger, 2022; Nicolet u. a., 2021), neural SDF (Wang u. a., 2021, 2023),
neural UDF (Long u. a., 2023; Liu u. a., 2023a), differentiable isosurface extraction techniques (Shen
u. a., 2021; Munkberg u. a., 2022; Shen u. a., 2023; Liu u. a., 2023b) with ours.

Methods Closed Open Diff. Mesh Diff. Render. Geo. Topo. Mesh Topo. Manifold
Template Mesh O O O O X X O

Neural SDF O X X O O X O
Neural UDF O O X O O X △

Diff. Isosurface O △ O O O X O
DMesh (Ours) O O O O O O X

A Comparison to Other Shape Reconstruction Methods

Here we provide conceptual comparisons between our approach and the other optimization-based 3D
reconstruction algorithms, which use different shape representations. To be specific, we compared
our method with mesh optimization methods starting from template mesh (Palfinger, 2022; Nicolet
u. a., 2021), methods based on neural signed distance fields (SDF) (Wang u. a., 2021, 2023), methods
based on neural unsigned distance fields (UDF) (Liu u. a., 2023a; Long u. a., 2023), and methods
based on differentiable isosurface extraction (Shen u. a., 2021; Munkberg u. a., 2022; Shen u. a., 2023;
Liu u. a., 2023b). We used following criteria to compare these methods.

• Closed surface: Whether or not the given method can reconstruct, or represent closed
surfaces.

• Open surface: Whether or not the given method can reconstruct, or represent open surfaces.

• Differentiable Meshing: Whether or not the given method can produce gradients from the
loss computed on the final mesh.

• Differentiable Rendering: Whether or not the given method can produce gradients from the
loss computed on the rendering results.

• Geometric topology: Whether or not the given method can change geometric topology
of the shape. Here, geometric topology defines the continuous deformation of Euclidean
subspaces (Lee, 2010). For instance, genus of the shape is one of the traits that describe
geometric topology.

• Mesh topology: Whether or note the given method can produce gradients from the loss com-
puted on the mesh topology, which denotes the structural configuration, or edge connectivity
of a mesh.

• Manifoldness: Whether or not the given method guarantees manifold mesh.

In Table 3, we present a comparative analysis of different methods. Note that our method meets
all criteria, only except manifoldness. It is partially because our method does not assume volume,
which is the same for methods based on neural UDF. However, because our method does not leverage
smoothness prior of neural network like those methods, it could exhibit high frequency noises in the
final mesh. Because of this reason, we gave△ to the neural UDF methods, while giving X to our
approach. When it comes to methods based on differentiable isosurface extraction algorithms, we
gave△ to its ability to handle open surfaces, because of (Liu u. a., 2023b). They can represent open
surfaces as subset of closed ones, but cannot handle non-orientable open surfaces. Finally, note that
our method is currently the only method that can handle mesh topology.

Likewise, DMesh shows promise in addressing the shortcomings found in previous research. Nonethe-
less, it has its own set of limitations (Section 6). Identifying and addressing these limitations is crucial
for unlocking the full potential of our method.

13

B Details about Section 3.2

B.1 Mathematical Definitions

Here, we provide formal mathematical definitions of the terms used in Section 3.2. We mainly use
notations from Aurenhammer u. a. (2013); Cheng u. a. (2013).

Generalizing the notations in Section 3.2, let S[w] be a finite set of weighted points in Rd, where w
is a weight assignment that maps each point p ∈ S to its weight wp. We denote a weighted point as
p[wp] and define power distance to measure distance between two weighted points.
Definition B.1 (Power distance). Power distance between two weighted points p[wp] and q[wq] is
measured as:

π(p[wp], q[wq]) = d(p, q)2 − wp − wq, (8)
where d(p, q) is the Euclidean distance.

Note that an unweighted point is regarded as carrying weight of 0. Based on this power distance, we
can define the power cell Cp of a point p[wp] as the set of unweighted points in Rd that are closer to
p[wp] than to any other weighted point in S[w].
Definition B.2 (Power cell). Power cell of a point p[wp] ∈ S[w] is defined as:

Cp = {x ∈ Rd | ∀q[wq] ∈ S[w], π(x, p[wp]) ≤ π(x, q[wq])}. (9)

Note that some points may have empty power cells if their weights are relatively smaller than
neighboring points. We call them “submerged” points. As we will see later, weight regularization
aims at submerging unnecessary points in mesh definition, which leads to mesh simplification.

To construct the power cell, we can use the concept of half space. A half space Hp<q is the set of
unweighted points in Rd that are closer to p[wp] than q[wq].
Definition B.3 (Half space). Half space Hp<q is defined as:

Hp<q = {x ∈ Rd |π(x, p[wp]) ≤ π(x, q[wq])}. (10)

Note that we can construct a power cell by intersecting half spaces, which proves the convexity of
the power cell. Now we call H(p, q) as a half plane that divides Rd into two half spaces, Hp<q and
Hq<p.
Definition B.4 (Half plane). Half plane Hp,q is defined as:

Hp,q = {x ∈ Rd |π(x, p[wp]) = π(x, q[wq])}. (11)

Then, for a given k-simplex ∆k comprised of weighted points {∆k} =
{p1[wp1

], . . . , pk+1[wpk+1]} ⊂ S[w], the dual structure D∆k is the intersection of half planes
between the points in {∆k}, which is a convex set.
Definition B.5 (Dual form). Dual form D∆k of ∆k = {p1[wp1], . . . , pk+1[wpk+1

]} is defined as:

D∆k =
⋂

i,j=1,...,k+1

H(pi, pj), (12)

which is equivalent to:

D∆k = {x ∈ Rd | ∀pi[wpi
], pj [wpj

] ∈ S[w], π(x, pi[wpi
]) = π(x, pj [wpj

])}. (13)

Note than when k = d, D∆k becomes a point, while it becomes a line when k = d − 1. As
discussed in Section 3.2, we leverage the distance between this dual form D∆k and reduced power
cell (Rakotosaona u. a., 2021) of the points in D∆k to query the existence of ∆k. The reduced power
cell Rp|∆k is a power cell of p that does not concern the other points in ∆k in its construction.
Definition B.6 (Reduced power cell). Reduced power cell of a weighted point p[w] ∈ S[w] for given
∆k is defined as:

Rp|∆k = {x ∈ Rd | ∀q[wq] ∈ S[w]− {∆k}, π(x, p[wp]) ≤ π(x, q[wq])}. (14)

Using these concepts, we can measure the existence probability of a k-simplex, as provided in
Section 3.2.

14

B.2 Analysis of previous approach

B.2.1 Theoretical Aspect

As mentioned in Section 3.2, the previous approach of Rakotosaona u. a. (2021) has two computational
challenges in computational efficiency and precision. These limitations are mainly rooted in not
knowing the power diagram structure before evaluating Eq. 3. We summarize the overall procedure
of the previous approach, and point out how our method is different from it.

Collecting simplexes to evaluate First, we need to collect simplexes that we want to compute
probabilities for. Here we assume the number of simplexes increases linearly (O(N)) as the number
of points (N) increases. This is a plausible assumption, because we often search for k-nearest
neighbors for each point, and combine them to generate the query simplexes.

Sampling a point on the dual forms of the simplexes The previous method relies on point
projections to evaluate Eq. 3. This did not incur any problem for their case (d = k = 2), because the
dual form was a single point. However, when (k < d) as in our cases, the dual form contains infinite
number of points, which makes unclear how to apply this point-based approach. One possible solution
is sampling the most “representative” point on the dual form, and leveraging the point to estimate
Eq. 3. By definition, this estimation is lower bound of Eq. 3. However, the problem arises when this
sample point does not give reliable result. For instance, we can consider the case shown in Figure 6(c).
In the illustration, we can observe that ∆1 exists in WDT, and thus D∆1 goes thorugh Rp1|D∆1

. If we
sample a point on D∆1 that is included in Rp1|D∆1

, the signed distance from the sample point would
have same sign as Eq. 3. However, if the sample point is selected outside Rp1|D∆1

, the sign would be
different from the real value. In this case, even if ∆k exists, we can recognize it as not existing. Note
that this false estimation produces false gradients, which could undermine optimization process.

In contrast, we do not have to concern about this precision issue, because we construct PD, which
tells us good sample points that give reliable lower bounds of Eq. 3, when the given simplex exists in
WDT. Otherwise, we explicitly compute minimum distance between the dual form and the reduced
power cell, as discussed in Section 4.1.

Projecting sample points to reduced power cells The final step is point projection, where we
project the sample points from dual forms to the reduced power cells to estimate Eq. 3. Based on the
definitions in Appendix B, we can observe that a (reduced) power cell’s boundaries are comprised of
half planes. That is, the boundaries of Cp is comprised of multiple half planes between p and the
other weighted points. However, when we do not know which half planes comprise the boundaries,
we have to do exhaustive search to find the signed distance from the sample point to the boundaries
of the reduced power cell. As the number of half planes that are associated with a point p is N , the
computational cost to precisely compute the signed distance is O(N).

Note that it does not hold for our case, because by constructing WDT and PD, we know which half
planes form the boundaries of each power cell. Also, note that even when the number of points
increases, the average number of half planes that comprise the boundaries of power cells remains
constant. Therefore, in our case, this step requires only O(1) computational cost.

Summary To sum up, the computational cost of the previous approach amounts to O(N2), as the
number of simplexes to evaluate increases linearly, and the cost for the projection step also increases
linearly as the number of points increase. However, the cost for ours remains at O(N). Moreover,
the previous approach does not guarantee satisfactory estimations of Eq. 3.

Before moving on, we point out that the original implementation limited the number of half planes to
consider in evaluating Eq. 3 to reduce the computational cost to O(N). This relaxation is permissible
to the case where the precision is not very important. However, the precision is important in our case,
because we aim at representing mesh accurately.

B.2.2 Experimental Results

To prove the aforementioned theoretical claim, we conducted experiments to measure the computa-
tional speed and accuracy of the probability estimation for (d = 2, k = 2) and (d = 2, k = 1) cases,
for varying number of points. We randomly sampled points in a unit cube uniformly, and set the

15

Table 4: Comparison of computational speed and accuracy between the previous method (Rakotosaona
u. a., 2021) and ours. For each number of points in 2D, we report the triplet of (computational speed
(ms) / false positive ratio (%) / false negative ratio (%)), along with the number of query simplexes
that we give to the algorithm.

Pts. 100 300 1K 3K 10K 30K

(d=2, k=2)
Prev. 6.38 / 0 / 0 19.7 / 0 / 0 139 / 0 / 0 739 / 0 / 0.16 4376 / 0 / 0.12 -
Ours. 105 / 0 / 0 107 / 0 / 0 108 / 0 / 0 111 / 0 / 0 116 / 0 / 0.12 125 / 0 / 0.25
Simp. 342 992 2274 3672 4974 6332

(d=2, k=1)
Prev. 5.95 / 0 / 49.9 16.9 / 0 / 49.8 116 / 0 / 49.9 609 / 0 / 49.9 3681 / 0 / 49.9 -
Ours. 99.4 / 0 / 0 100 / 0 / 0 103 / 0 / 0 105 / 0.03 / 0 111 / 0 / 0.08 123 / 0 / 0.29
Simp. 526 1504 3428 5522 7482 9524

weights by random sampling from a normal distribution: N (0, 10−3). For fair comparison, we did
not use CUDA implementation that we mainly use in the paper. We implemented both algorithms in
PyTorch, and ran 10 times for each setting to get fair values. In each experiment, we fed the query
simplexes into the algorithm, and computed their existence probabilities. If the computed probability
for a simplex was over 0.5, but did not exist, it is counted to false positive ratio. In contrast, if the
computed probability for a simplex was below 0.5, but did exist, it is counted to false negative ratio.
We measured the computational accuracy with these metrics.

In Table 4, we can see that as the number of points increases, the computational cost increases
exponentially for the previous approach, while ours remain fairly stable up to 30K points. When
the number of points reached 100K, the previous method failed because of excessive memory
consumption. However, when the number of points is smaller than 1K, the previous method ran faster
than ours, because we need to construct PD even for the small number of points, which consumes
most of the time for all these cases.

In terms of accuracy, we can observe that the previous method and ours both give accurate estimations
when (d = 2, k = 1). However, when (d = 2, k = 1), we can see that the false negative ratio is
almost 50% – as we set the number of existing simplexes and non-existing simplexes in the query
set as the same, it means that the previous method chose wrong sample points for most of the query
simplexes, so that it predicted most of them as not existing. To select the most representative point,
we found the intersection point between the dual form and the affine space created by the weighted
points in the simplex. This could be another interesting direction to explore, but this approach found
out to be not very accurate in this experiment. In contrast, our approach gave stable estimations for
all the cases. This result demonstrates that our method is more scalable, and gives reliable probability
estimations than the previous approach, which is necessary for accurate 3D mesh representation.

C Loss Functions

Here we provide formal definitions for the loss functions that we use in the paper.

C.1 Mesh to DMesh

In this section, we explore the loss function used to transform the ground truth mesh into our DMesh
representation. As previously mentioned in Section 4.3, the explicit definition of ground truth
connectivity in the provided mesh allows us to establish a loss function based on it.

Building on the explanation in Section 4.3, if the ground truth mesh consists of vertices P and faces
F, we can construct an additional set of faces F̄. These faces are formed from vertices in P but do not
intersect with faces in F.

F̄ = F∗ − F, where F∗ = every possible face combination on P.

Then, we notice that we should maximize the existence probabilities of faces in F, but minimize
those of faces in F̄. Therefore, we can define our reconstruction loss function as

Lrecon = −
∑
F∈F

Λ(F) +
∑
F∈F̄

Λ(F). (15)

If the first term of the loss function mentioned above is not fully optimized, it could lead to the
omission of ground truth faces, resulting in a poorer recovery ratio (Section 5.1). Conversely, if the

16

second term is not fully optimized, the resulting DMesh might include faces absent in the ground
truth mesh, leading to a higher false positive ratio (Section 5.1). Refer to Appendix D.1 for details on
how this reconstruction loss is integrated into the overall optimization process.

C.2 Point Cloud Reconstruction

In the task of point cloud reconstruction, we reconstruct the mesh by minimizing the (L1-norm based)
expected Chamfer Distance (CD) between the given point cloud (Pgt) and the sample points (Pours)
from our reconstructed mesh. We denote the CD from Pgt to Pours as CDgt, and the CD from Pours

to Pgt as CDours. The final reconstruction loss is obtained by combining these two distances.

Lrecon = CDgt + CDours. (16)

C.2.1 Sampling Pours

To compute these terms, we start by sampling Pours from our current mesh. First, we sample a set
of faces that we will sample points from. We consider the areas of the triangular faces and their
existence probabilities. To be specific, we define η(F) for a face F as

η̄(F) = Λ(F), η(F) = Farea · η̄(F),

and define a probability to sample F from the entires faces F as

Psample(F) =
η(F)∑

F ′∈F η(F
′)
.

We sample N faces from F with replacement and then uniformly sample a single point from each
selected face to define Pours. In our experiments, we set N to 100K.

In this formulation, we sample more points from faces with a larger area and higher existence
probability to improve sampling efficiency. However, we observed that despite these measures, the
sampling efficiency remains low, leading to slow convergence. This issue arises because, during
optimization, there is an excessive number of faces with very low existence probability.

To overcome this limitation, we decided to do stratified sampling based on point-wise real values
and cull out faces with very low existence probabilities. To be specific, we define two different η
functions:

η̄1(F) = Λwdt(F) ·min(ψi, ψj , ψk), η1(F) = Farea · η̄1(F)
η̄2(F) = Λwdt(F) ·max(ψi, ψj , ψk), η2(F) = Farea · η̄2(F)

where (ψi, ψj , ψk) are the real values of the points that comprise F . Note that η1 is the same as η 6.

For the faces in F, we first calculate the η̄1 and η̄2 values and eliminate faces with values lower than a
predefined threshold ϵη . We denote the set of remaining faces as F1 and F2. Subsequently, we sample
N
2 faces from F1 and the other N

2 faces from F2, using the following two sampling probabilities:

Psample,1(F) =
η1(F)∑

F ′∈F1
η1(F ′)

, Psample,2(F) =
η2(F)∑

F ′∈F2
η2(F ′)

.

The rationale behind this sampling strategy is to prioritize (non-existing) faces closer to the current
mesh over those further away. In the original η = η1 function, we focus solely on the minimum real
value, leading to a higher sampling rate for existing faces. However, to remove holes in the current
mesh, it’s beneficial to sample more points from potential faces—those not yet existing but connected
to existing ones. This approach, using η2, enhances reconstruction results by removing holes more
effectively. Yet, there’s substantial potential to refine this importance sampling technique, as we
haven’t conducted a theoretical analysis in this study.

Moreover, when sampling a point from a face, we record the face’s existence probability alongside
the point. Additionally, if necessary, we obtain and store the face’s normal. For a point p ∈ Pours,

6We do not use differentiable min operator, as we do not require differentiability in the sampling process.

17

we introduce functions Λpt(·) and Normal(·) to retrieve the face existence probability and normal,
respectively:

Λpt(p) = Λ(F (p)), Normal(p) = F (p)normal,

F (p) = the face where p was sampled from.

C.2.2 CDgt

Now we introduce how we compute the CDgt, which is CD from Pgt to Pours. For each point
p ∈ Pgt, we first find k-nearest neighbors of p in Pours, which we denote as (p1, p2, ..., pk).
Then, we define a distance function between the point p and the k-nearest neighbors as follows, to
accommodate the orientation information:

D̄(p, pi) = ||p− pi||2 + λnormal · D̄n(p, pi),

where D̄n(p, pi) = 1− | < pnormal, Normal(pi) > |,
(17)

where λnormal is a parameter than determines the importance of point orientation in reconstruction.
If λnormal = 0, we only consider the positional information of the sampled points.

After we evaluate the above distance function values for the k-nearest points, we reorder them in
ascending order. Then, we compute the following expected minimum distance from p to Pours,

D(p,Pours) =
∑

i=1,...,k

D̄(p, pi) · P (pi) · P̄ (pi),

P (pi) = Λpt(pi) · Iprev(F (pi),
P̄ (pi) = Πi=1,...,k−1(1− P (pi)),

where Iprev is an indicator function that returns 1 only when the given face has not appeared before
in computing the above expected distance. For instance, if the face ids for the reordered points were
(1, 2, 3, 2, 3, 4), the Iprev function evaluates to (1, 1, 1, 0, 0, 1). This indicator function is needed,
because if we select pi as the nearest point to p with the probability Λpt(p), it means that we interpret
that the face corresponding to pi already exists, and then we would select pi on the face as the nearest
point to p rather than the other points that were sampled from the same face, but have larger distance
than pi and thus come after pi in the ordered points.

Note that we dynamically change k during runtime to get a reliable estimation of D(p,Pours). That
is, for current k, if most of P̄ (pk)s for the points in Pgt are still large, it means that there is a chance
that the estimation could change a lot if we find and consider more neighboring points. Therefore,
in our experiments, if any point in Pgt has P̄ (pk) larger than 10−4, we increase k by 1 for the next
iteration. However, if there is no such point, we decrease k by 1 to accelerate the optimization
process.

Finally, we can compute CDgt by summing up the point-wise expected minimum distances.

CDgt =
∑

p∈Pgt

D(p,Pours).

C.2.3 CDours

In computing CDours, which is CD from Pours to Pgt, we also find k-nearest neighbors for each
point p ∈ Pours, which we denote as (p1, p2, ..., pk). Then, for a point p, we use the same distance
function D̄ in Eq. 17 to find the distance between p and (p1, p2, ..., pk). After that, we select the
minimum one for each point, multiply the existence probability of each point, and then sum them up
to compute CDours.

D(p,Pgt) = min
i=1,...,k

D̄(p, pi),

CDours =
∑

p∈Pours

Λpt(p) ·D(p,Pgt).

Finally, we can compute the final reconstruction loss for point clouds as shown in Eq. 16.

18

C.3 Multi-View Reconstruction

When we are given multi-view images, we reconstruct the mesh by minimizing the L1 difference
between our rendered images and the given images. In this work, we mainly use both diffuse and
depth renderings to reconstruct the mesh.

If we denote the (Nimg) ground truth images of Npixel number of pixels as Igti (i = 1, ..., Nimg),
and our rendered images as Ioursi , we can write the reconstruction loss function as

Lrecon =
1

Nimg ·Npixel

∑
i=1,...,Nimg

||Igti − I
ours
i ||.

Then, we can define our rendered image as follows:

Ioursi = F(P,F,Λ(F),MVi,Pi).

where F is a differentiable renderer that renders the scene for the given points P, faces F, face
existence probabilities Λ(F), i-th modelview matrix MVi ∈ R4×4, and i-th projection matrix
Pi ∈ R4×4. The differentiable renderer F has to backpropagate gradients along P, F, and Λ(F) to
update our point attributes. Specifically, here we interpret Λ(F) as opacity for faces to use in the
rendering process. This is because opacity means the probability that a ray stops when it hits the
face, which aligns with our face existence probability well. For this reason, we ignore faces with very
low existence probability under some threshold to accelerate the reconstruction, as they are almost
transparent and do not contribute to the rendering a lot.

To implementF , we looked through previous works dedicated for differentiable rendering (Laine u. a.,
2020; Liu u. a., 2019). However, we discovered that these methods incur substantial computational
costs when rendering a large number of (potentially) semi-transparent triangles, as is the case in
our scenario. Consequently, we developed two efficient, partially differentiable renderers that meet
our specific requirements. These renderers fulfill distinct roles within our pipeline—as detailed in
Appendix D, our optimization process encompasses two phases within a single epoch. The first
renderer is employed during the initial phase, while the second renderer is utilized in the subsequent
phase.

C.3.1 FA

Figure 9: FB uses tessellation structure
to efficiently render overlapped faces in
the correct order.

If there are multiple semi-transparent faces in the scene,
we have to sort the faces that covers a target pixel with their
(view-space) depth values, and iterate through them until
the accumulated transmittance is saturated to determine
the color for the pixel. Conducting this process for each
individual pixel is not only costly, but also requires a lot
of memory to store information for backward pass.

Recently, 3D Gaussian Splatting (Kerbl u. a., 2023) over-
came this issue with tile-based rasterizer. We adopted this
approach, and modified their implementation to render
triangular faces, instead of gaussian splats. To briefly in-
troduce its pipeline, it first assigns face-wise depth value
by computing the view-space depth of its center point.
Then, after subdividing the entire screen into 16× 16 tiles,
we assign faces to each tiles if they overlap. After that, by
using the combination of tile ID and the face-wise depth
as a key, we get the face list sorted by depth value in each
tile. Finally, for each tile, we iterate through the sorted faces and determine color and depth for each
pixel as follows.

C =
∑

i=1,...,k

Ti · αi · Ci, (Ti = Πj=1,...,i−1(1− αj)),

where Ti is the accumulated transmittance, αi is the opacity of the i-th face, and Ci is the color (or
depth) of the i-th face. Note that αi = Λ(Fi), as mentioned above.

19

(a) Rendered Images from FA (b) Rendered Images from FA′

Figure 10: Rendered images from two differentiable renderers, FA and FA′ . Left and right image
corresponds to diffuse and depth rendering, respectively. (a) FA is our (partially) differentiable
renderer based on tile-based approach. (b) Since FA does not produce visibility-related gradients, we
additionally use FA′ (Laine u. a., 2020) to render images and integrate with ours.

Even though this renderer admits an efficient rendering of large number of semi-transparent faces,
there are still two large limitations in the current implementation. First, the current implementation
does not produce visibility-related gradients (near face edges) to update point attributes. Therefore,
we argue that this renderer is partially differentiable, rather than fully differentiable. Next, since it
does not compute precise view-point depth for each pixel, its rendering result can be misleading for
some cases, as pointed out in (Kerbl u. a., 2023).

To amend the first issue, we opt to use another differentiable renderer of Laine u. a. (2020), which
produces the visibility-related gradients that we lack. Since this renderer cannot render (large number
of) transparent faces as ours does, we only render the faces with opacity larger than 0.5. Also, we set
the faces to be fully opaque. If we call this renderer as FA′ , our final rendered image can be written
as follows.

Ioursi =
1

2
(FA(P,F,Λ(F),MVi,Pi) + FA′(P,F,Λ(F),MVi,Pi)).

In Figure 10, we illustrate rendered images from FA and FA′ .

Acknowledging that this formulation is not theoretically correct, we believe that it is an intriguing
future work to implement a fully differentiable renderer that works for our case. However, we
empirically found out that we can reconstruct a wide variety of meshes with current formulation
without much difficulty.

As mentioned before, this renderer is used at the first phase of the optimization process, where all of
the point attributes are updated. However, in the second phase, we fix the point positions and weights,
and only update point-wise real values (Appendix D.2). In this case, we can leverage the tessellation
structure to implement an efficient differentiable renderer. As the second renderer does a precise
depth testing unlike the first one, it can be used to modify the errors incurred by the second limitation
of the first renderer (Figure 11).

C.3.2 FB

The second renderer performs precise depth ordering in an efficient way, based on the fixed tessellation
structure that we have. In Figure 9, we illustrate a 2D diagram that explains our approach. When the
green ray, which corresponds to a single ray to determine the color of a single pixel, goes through the
tessellation, we can observe that it goes through a sequence of triangles (tetrahedron in 3D), which
are denoted as T1, T2, and T3. When the ray enters a triangle Ti through one of its three edges, we
can see that it moves onto the other adjacent triangle Ti+1 only through one of the other edges of Ti,
because of compact tessellation. Therefore, when the ray hits one edge of Ti, it can only examine
the other two edges of Ti to find the next edge it hits. Note that we do not have to do depth testing
explicitly in this approach. Also, unlike the first approach, this renderer does not have to store all the
possible faces that a ray collides for the backward pass, because it can iterate the same process in the
opposite way in the backward pass to find the edge that it hit before the last edge. If we only store
the last edge that each hits at the forward pass, we can start from the last edge and find the previous
edges that it hit to compute gradients. Therefore, this second renderer requires much less memory

20

(a) Extracted Mesh after phase 1 (b) Extracted Mesh after phase 2

Figure 11: Reconstructed mesh from multi-view images, rendered in MeshLab’s (Cignoni u. a., 2008)
x-ray mode to see inner structure. In multi-view reconstruction, we divide each epoch in two phases.
(a) After the first phase ends, where we do inaccurate depth testing, lots of false inner faces are
created. (b) To remove these inner faces, we require a renderer that does the exact depth testing,
which we use in the second phase. Also see Appendix D.2 for details about post-processing step to
remove the inner structure.

than the first one, and also performs precise depth testing naturally. However, note that this renderer
is also partilly differentiable, because it cannot update point positions and weights.

To sum up, we implemented two partially differentiable renderers to solve multi-view reconstruc-
tion problem with DMesh. They serve different objectives in our reconstruction process, and we
empirically found out that they are powerful enough to reconstruct target meshes in our experiments.
However, we expect that we can simplify the process and improve its stability, if we can implement a
fully differentiable renderer that satisfy our needs. We leave it as a future work.

C.4 Weight Regularization

Weight regularization aims at reducing the complexity of WDT, which supports our mesh. By using
this regularization, we can discard unnecessary points that do not contribute to representing our mesh.
Moreover, we can reduce the number of points on the mesh, if they are redundant, which ends up in
the mesh simplification effect (Appendix E.3).

We formulate the complexity of WDT as the sum of edge lengths in its dual power diagram. Formally,
we can write the regularization as follows,

Lweight =
∑

i=1,...,N

Length(Ei),

where Ei are the edges in the dual power diagram, and N is the number of edges.

C.5 Real Regularization

Real regularization is a regularization that is used for maintaining the real values of the connected
points in WDT as similar as possible. Also, we leverage this regularization to make real values of
points that are connected to the points with high real values to become higher, so that they can be
considered in reconstruction more often than the points that are not connected to those points. To be
specific, note that we ignore faces with very low existence probability in the reconstruction process.
By using this regularization, it can remove holes more effectively.

21

This real regularzation can be described as

Lreal =
1∑

i=1,...,N Λ(Fi)

∑
i=1,...,N

Λ(Fi) · (σ1(Fi) + σ2(Fi)),

σ1(Fi) =
1

3

∑
j=1,2,3

|ψj −
(ψ1 + ψ2 + ψ3)

3
|,

σ1(Fi) =
1

3

∑
j=1,2,3

|1− ψj | · I(max
j=1,2,3

(ψj) > δhigh).

Here ψ1,2,3 represent the real values of points that comprise Fi, and δhigh is a threshold to determine
“high” real value, which is set as 0.8 in our experiments. Note that the faces with higher existence
probabilities are prioritized over the others.

C.6 Quality Regularization

After reconstruction, we usually want to have a mesh that is comprised of triangles of good quality,
rather than ill-formed triangles. We adopt the aspect ratio as a quality measure for the triangular
faces, and minimize the sum of aspect ratios for all faces during optimization to get a mesh of good
quality. Therefore, we can write the regularization as follows.

Lqual =
1∑

i=1,...,N Λ(Fi)

∑
i=1,...,N

AR(Fi) · Emax(Fi) · Λ(Fi),

AR(Fi) =
Emax(Fi)

Hmin(Fi)
·
√
3

2
,

Emax(Fi) = Maximum edge length of Fi,

Hmin(Fi) = Minimum height of Fi.

Note that we prioritize faces with larger maximum edge length and higher existence probability than
the others in this formulation. In Appendix E.3, we provide ablation studies for this regularization.

D Optimization Process

In this section, we explain the optimization processes, or exact reconstruction algorithms, in detail.
First, we discuss the optimization process for the experiment in Section 5.1, where we represent the
ground truth mesh with DMesh. Then, we discuss the overall optimization process for point cloud or
multi-view reconstruction tasks in Section 5.2, from initialization to post processing.

D.1 Mesh to DMesh

Our overall algorithm to convert the ground truth mesh into DMesh is outlined in Algorithm 1. We
explain each step in detail below.

D.1.1 Point Initialization

At the start of optimization, we initialize the point positions (P), weights (W), and real values (ψ)
using the given ground truth information (Pgt, Fgt). To be specific, we initialize the point attributes
as follows.

P = Pgt, W = [1, ..., 1], ψ = [1, ..., 1].

The length of vector W and ψ is equal to the number of points. In Figure 12, we illustrate the
initialized DMesh using these point attributes, which becomes the convex hull of the ground truth
mesh.

22

Algorithm 1 Mesh to DMesh
Pgt,Fgt ← Ground truth mesh vertices and faces
P,W, ψ ← Initialize point attributes for DMesh
F̄← Empty set of faces
while Optimization not ended do

P,W, ψ ← Do point insertion, with P, F̄
WDT,PD ← Run WDT algorithm, with P,W
F̄← Update faces to exclude, with WDT
Λ(Fgt),Λ(F̄)← Compute existence probability for faces, with P, ψ,WDT, PD
Lrecon ← Compute reconstruction loss, with Λ(Fgt),Λ(F̄)
Update P,W, ψ to minimize Lrecon

Bound P
end
M ← Get final mesh from DMesh

(a) Ground Truth (b) Initialization (c) Point Insertion (d) 5000 Steps

Figure 12: Intermediate results in converting bunny model to DMesh. For given ground truth
mesh in (a), we initialize our point attributes using the mesh vertices. (b) Then, the initial mesh
becomes convex hull of the original mesh. (c) To remove undesirable faces that were not in the
original mesh, we insert additional points on the undesirable faces. Then, some of them disappear
because of the inserted points. (d) After optimizing 5000 steps, just before another point insertion,
DMesh recovers most of the ground truth connectivity.

Note that during optimization, we allow only small perturbations to the positions of initial points,
and fix weights and real values of them to 1. This is because we already know that these points
correspond to the ground truth mesh vertices, and thus should be included in the final mesh without
much positional difference. In our experiments, we set the perturbation bound as 1% of the model
size.

However, we notice that we cannot restore the mesh connectivity with only small perturbations to
the initial point positions, if there are no additional points that can aid the process. Therefore, we
periodically perform point insertion to add additional points, which is described below.

D.1.2 Point Insertion

The point insertion is a subroutine to add additional points to the current point configurations. It is
performed periodically, at every fixed step. The additional points are placed at the random place on
the faces in F̄, which correspond to the faces that should not exist in the final mesh. Therefore, these
additional points can aid removing these undesirable faces.

However, we found out that inserting a point for every face in F̄ can be quite expensive. Therefore, we
use k-means clustering algorithm to aggregate them into 0.1 ·NF clusters, where NF is the number
of faces in F̄, to add the centroids of the clusters to our running point set. On top of that, we select
1000 random faces in F̄ to put additional points directly on them. This is because there are cases
where centroids are not placed on the good positions where they can remove the undesirable faces.

In Figure 12, we render DMesh after point insertion to the initialized mesh. Note that some of the
undesirable faces disappear because of the added points.

23

Algorithm 2 Point cloud & Multi-view Reconstruction
T ← Observation (Point cloud, Multi-view images)
P,W, ψ ← Initialize point attributes for DMesh (using T if possible)
F← Empty set of faces
while epoch not ended do

P,W, ψ ← (If not first epoch) Initialize point attributes with sample points from current DMesh,
for mesh refinement
// Phase 1
while step not ended do

WDT,PD ← Run WDT algorithm with P,W
F← Update faces to evaluate existence probability for, with WDT
Λ(F)← Compute existence probability for faces in F, with P, ψ,WDT, PD
Lrecon ← Compute reconstruction loss, with P,F,Λ(F), T
Lweight ← Compute weight regularization, with PD
Lreal ← Compute real regularization, with P, ψ,WDT
Lqual ← Compute quality regularization, with P,F,Λ(F)
L← Lrecon + λweight · Lweight + λreal · Lreal + λqual · Lqual

Update P,W, ψ to minimize L
end
// Phase 2
WDT,PD ← Run WDT algorithm with P,W
F← Faces in WDT
Λwdt(F)← 1
while step not ended do

Λ(F)← Compute existence probability for F, with P, ψ,Λwdt(F)
Lrecon ← Compute reconstruction loss, with P,F,Λ(F), T
Lreal ← Compute real regularization, with P, ψ,WDT
L← Lrecon + λreal · Lreal

Update ψ to minimize L
end

end
M ← Get final mesh from DMesh, after post-processing

D.1.3 Maintaining F̄

In this problem, we minimize the reconstruction loss specified in Eq. 15 to restore the connectivity
in the ground truth mesh, and remove faces that do not exist in it. In the formulation, we denoted
the faces that are comprised of mesh vertices P, but are not included in the original mesh as F̄. Even
though we can enumerate all of them, the total number of faces in F̄ mounts to O(N3), where N is
the number of mesh vertices. Therefore, rather than evaluating all of those cases, we maintain a set of
faces F̄ that we should exclude in our mesh during optimization.

To be specific, at each iteration, we find faces in the current WDT that are comprised of points in P,
but do not exist in F, and add them to the running set of faces F̄. On top of that, at every pre-defined
number of iterations, in our case 10 steps, we compute k-nearest neighboring points for each point in
P. Then, we find faces that can be generated by combining each point with 2 of its k-nearest points,
following Rakotosaona u. a. (2021). Then, we add the face combinations that do not belong to F to F̄.
In our experiments, we set k = 8.

D.2 Point cloud & Multi-view Reconstruction

In Algorithm 2, we describe the overall algorithm that is used for point cloud and multi-view
reconstruction tasks. We explain each step in detail below.

D.2.1 Two Phase Optimization

We divide each optimization epoch in two phases. In the first phase (phase 1), we optimize all of the
point attributes – positions, weights, and real values. However, in the second phase (phase 2), we fix
the point positions and weights, and only optimize the real values.

24

(a) Ground Truth (b) Initialized DMesh (Points, Extracted Mesh)

Figure 13: Initialized DMesh using sample points from ground truth mesh. (a) From ground
truth mesh, we uniformly sample 10K points to initialize DMesh. (b) In the left figure, sample points
from the ground truth mesh (Psample) are rendered in red. The points that correspond to Pvoronoi are
rendered in blue. In the right figure, we render the initial mesh we can get from the points, which has
a lot of holes.

This design aims at removing ambiguity in our differentiable formulation. That is, even though we
desire face existence probabilities to converge to either 0 and 1, those probabilities can converge to
the values in between. To alleviate this ambiguity, after the first phase ends, we fix the tessellation to
make Λwdt for each face in F to either 0 or 1. Therefore, in the second phase, we only care about
the faces that exist in current WDT , which have Λwdt value of 1. Then, we can only care about real
values.

Note that the two differentiable renderers that we introduced in Appendix C.3 are designed to serve
for these two phases, respectively.

D.2.2 Point Initialization with Sample Points

In this work, we propose two point initialization methods. The first initialization method can be used
when we have sample points near the target geometry in hand.

This initialization method is based on an observation that the vertices of Voronoi diagram of a point
set tend to lie on the medial axis of the target geometry (Amenta u. a., 1998a,b). Therefore, for
the given sample point set Psample, we first build Voronoi diagram of it, and find Voronoi vertices
Pvoronoi. Then, we merge them to initialize our point set P:

P = Psample ∪ Pvoronoi,

all of which weights are initialized to 1. Then, we set the real values (ψ) of points in Psample as 1,
while setting those of points in Pvoronoi as 0.

In Figure 13, we render the mesh that we can get from this initialization method, when we use 10K
sample points. Note that the initial mesh has a lot of holes, because there could be Voronoi vertices
that are located near the mesh surface, as pointed out by (Amenta u. a., 1998b). However, we can
converge to the target mesh faster than the initialization method that we discuss below, because most
of the points that we need are already located near the target geometry.

D.2.3 Point Initialization without Sample Points

If there is no sample point that we can use to initialize our points, we initialize our points with N3

points regularly distributed on a grid structure that encompasses the domain, all of which has weight
1 and ψ value of 1. We set N = 20 for every experiment (Figure 14a). Then, we optimize the mesh
to retrieve a coarse form of the target geometry (Figure 14b). Note that we need to refine this mesh in
the subsequent epochs, as explained below.

25

(a) Epoch 1, Initial State (b) Epoch 1, Last State

(c) Epoch 2, Initial State (d) Epoch 2, Last State

(e) Epoch 3, Initial State (f) Epoch 3, Last State

(g) Epoch 4, Initial State (h) Epoch 4, Last State

Figure 14: Optimization process for multi-view reconstruction for Plant model. At each row, we
present the initial state (left) and the last state (right) of each epoch. For each figure, the left rendering
shows the point attributes color coded based on real values, while the right one shows the extracted
mesh. (a), (b) In the first epoch, we initialize DMesh without sample points. At the end of each epoch,
we sample points from the current mesh, and use them for initialization in the next epoch.

D.2.4 Point Initialization for Different Inputs

Until now, we introduced two point initialization techniques. When the input is a point cloud, we
sample subset of the point cloud to initialize our mesh (Figure 13). However, when the input is
multi-view images, we start from initialization without sample points (Figure 14), because there is no
sample point cloud that we can make use of.

D.2.5 Maintaining F

We maintain the running set of faces to evaluate probability existence for in F. At each iteration,
after we get WDT , we insert every face in WDT to F, as it has a high possibility to persist in the
subsequent optimization steps. Also, as we did int mesh to DMesh conversion (Appendix D.1), at
every 10 optimization step, we find k-nearest neighbors for each point, and form face combinations
based on them. Then, we add them to F.

26

D.2.6 Mesh Refinement

At start of each epoch, if it is not the first epoch, we refine our mesh by increasing the number of
points. To elaborate, we refine our mesh by sampling N number of points on the current DMesh,
and then initialize point attributes using those sample points as we explained above. We increase
N as number of epoch increases. For instance, in our multi-view reconstruction experiments, we
set the number of epochs as 4, and set N = (1K, 3K, 10K) for the epochs excluding the first one.
In Figure 14, we render the initial and the last state of DMesh of each epoch. Note that the mesh
complexity increases and becomes more accurate as epoch proceeds, because we use more points.
Therefore, this approach can be regarded as a coarse-to-fine approach.

D.2.7 Post-Processing

When it comes to multi-view reconstruction, we found out that it is helpful to add one more constraint
in defining the face existence. In our formulation, in general, a face F has two tetrahedra (T1, T2)
that are adjacent to each other over the face. Then, we call the remaining point of T1 and T2 that is
not included in F as P1 and P2. Our new constraint requires at least one of P1 and P2 to have ψ
value of 0 to let F exist.

This additional constraint was inspired by the fact that F is not visible from outside if F exists in
our original formulation, and both of P1 and P2 have ψ value of 1. That is, if it is not visible from
outside, we do not recognize its existence. This constraint was also adopted to accommodate our real
regularization, which increases the real value of points near surface. If this regularization makes the
real value of points inside the closed surface, they would end up in internal faces that are invisible
from outside. Because of this invisibility, our loss function cannot generate a signal to remove them.
In the end, we can expect all of the faces inside a closed surface will exist, because of the absence of
signal to remove them. Therefore, we choose to remove those internal faces by applying this new
constraint in the post-processing step.

Note that this discussion is based on the assumption that our renderer does a precise depth testing. If
it does not do the accurate depth testing, internal faces can be regarded as visible from outside, and
thus get false gradient signal. In Figure 11a, the final mesh after phase 1 is rendered, and we can see
therer are lots of internal faces as the renderer used in phase 1 does not support precise depth testing.
However, we can remove them with the other renderer in phase 2, as shown in Figure 11b, which
justifies our implementation of two different renderers.

Finally, we note that this constraint is not necessary for point cloud reconstruction, because if we
minimize CDours in Appendix C.2, the internal faces will be removed automatically.

E Experimental Details

In this section, we provide experimental details for the results in Section 5, and visual renderings of the
our reconstructed mesh. Additionally, we provide the results of ablation studies about regularizations
that we suggested in Section 4.3.

E.1 Mesh to DMesh

As shown in Table 1, we reconstruct the ground truth connectivity of Bunny, Dragon, and Buddha
model from Stanford dataset (Curless und Levoy, 1996). For all these experiments, we optimized for
20K steps, and used an ADAM optimizer (Kingma und Ba, 2014) with learning rate of 10−4. For
Bunny model, we inserted additional points at every 5000 step. For the other models, we inserted
them at every 2000 step.

In Figure 15, we provide the ground truth mesh and our reconstructed mesh. We can observe that
most of the connectivity is preserved in our reconstruction, as suggested numerically in Table 1.
However, note that the appearance of the reconstructed mesh can be slightly different from the ground
truth mesh, because we allow 1% of positional perturbations to the mesh vertices.

27

(a) Ground Truth Mesh

(b) Reconstructed DMesh

Figure 15: Reconstruction results for mesh to DMesh experiment. From Left: Bunny, Dragon,
and Buddha. We can observe that most of the edge connectivity is perserved in the reconstruction,
even though the appearance is slightly different from the ground truth mesh because of small
perturbations of vertex positions.

E.2 Point Cloud & Multi-view Reconstruction

E.2.1 Hyperparameters for Point Cloud Reconstruction

• Optimizer: ADAM Optimizer, Learning rate = 10−4 for open surface meshes and two mixed
surface meshes (Bigvegas, Raspberry) / 3 · 10−4 for closed surface meshes, and one mixed
surface mesh (Plant).

• Regularization: λweight = 10−8, λreal = 10−3, λqual = 10−3 for every mesh.

• Number of epochs: Single epoch for every mesh.

• Number of steps per epoch: 1000 steps for phase 1, 500 steps for phase 2 for every mesh.

E.2.2 Hyperparameters for Multi-view Reconstruction

• Optimizer: ADAM Optimizer, Learning rate = 10−3 in the first epoch, and 3 · 10−4 in the
other epochs for every mesh.

• Weight Regularization: λweight = 10−8 for every mesh.

• Real Regularization: λreal = 10−3 for the first 100 steps in every epoch for open surface
meshes and one mixed surface mesh (Plant) / 10−2 for the first 100 steps in every epoch for
closed surface meshes and two mixed surface meshes (Bigvegas, Raspberry).

• Quality Regularization: λqual = 10−3 for every mesh.

• Normal Coefficient: λnormal = 0 for every mesh (Eq. 17).

• Number of epochs: 4 epochs for every mesh. In the first epoch, use 20−3 regularly distributed
points for initialization. In the subsequent epochs, sample 1K, 3K, and 10K points from
the current mesh for initialization.

28

(a) Ground Truth Mesh (b) Flexicube (c) Ours

Figure 16: Reconstruction results for a closed surface model in Thingi32 dataset. Flexi-
cube (Shen u. a., 2023) can generate internal structures, while our approach removes them through
post-processing.

(a) Ground Truth (b) Flexicube (c) Flexicube, self-intersecting faces
removed

Figure 17: Reconstruction results for the Plant model. Flexicube (Shen u. a., 2023) can generate
redundant, self-intersecting faces for open surfaces, in this case, leaves. To better capture the
redundant faces, we rendered the models from upper side, which is shown in the bottom right figures.

• Number of steps per epoch: 500 steps for phase 1, 500 steps for phase 2 for every mesh.

• Batch size: 64 for open surface meshes, 16 for the other meshes.

E.2.3 Visual Renderings

In Figure 20, 21, and 22, we provide visual renderings of our point cloud and multi-view reconstruction
results with ground truth mesh. We also provide illustration of input point cloud and diffuse map.
Note that we also used depth renderings for multi-view reconstruction experiments.

E.2.4 Additional Discussion

Generally, we can observe that reconstruction results from both point cloud and multi-view images
capture the overall topology well. However, we noticed that the multi-view reconstruction results are
not as good as point cloud reconstruction results. In particular, we can observe small holes in the
multi-view reconstruction results. We assume that these artifacts are coming from relatively weaker
supervision of multi-view images than dense point clouds. Also, we believe that we can improve
these multi-view reconstruction results with more advanced differentiable renderer, and better mesh
refinement strategy. In the current implementation, we lose connectivity information at the start of
each epoch, which is undesirable. We believe that we can improve this approach by inserting points
near the regions of interest, rather than resampling over entire mesh.

29

(a) Bigvegas

(b) Plant

Figure 18: Point cloud reconstruction results with different λweight. From Left: λweight =
10−6, 10−5, and 10−4.

Also, regarding comparison to Flexicube (Shen u. a., 2023) in Table 2, we tried to found out the
reason why ours give better results than Flexicube in terms of CD to the ground truth mesh for closed
surfaces in thingi32 dataset. We could observe that Flexicube’s reconstruction results capture fine
geometric details on the surface mesh, but also observed that they have lots of false internal structure
(Figure 16). Note that this observation not only applies to closed surfaces, but also to open surfaces,
where it generates lots of false, self-intersecting faces (Figure 17). Our results do not suffer from
these problems, as we do post-processing (Appendix D.2) to remove inner structure, and also our
method can represent open surfaces better than the volumetric approaches without self-intersecting
faces.

E.3 Ablation studies

In this section, we provide ablation studies for the regularizations that we proposed in Section 4.3.
We tested the effect of the regularizations on the point cloud reconstruction task.

E.3.1 Weight Regularization

We tested the influence of weight regularzation in the final mesh, by choosing λweight in
(10−6, 10−5, 10−4). Note that we set the other experimental settings as same as described in Sec-
tion E.2, except λquality, which is set as 0, to exclude it from optimization.

In Table 5, we provide the quantitative results for the experiments. For different λweight, we
reconstructed mesh from point clouds, and computed average Chamfer Distance (CD) and average
number of faces across every test data. We can observe that there exists a clear tradeoff between CD
and mesh complexity. To be specific, when λweight = 10−6, the CD is not very different from the
results in Table 2, where we use λweight = 10−8. However, when it increases to 10−5 and 10−4,
we can observe that the mesh complexity (in terms of number of faces) decreases, but CD increases
quickly.

30

(a) Bigvegas

(b) Plant

Figure 19: Point cloud reconstruction results with different λquality. From Left: λreal =
10−4, 10−3, and 10−2.

Table 5: Ablation study for weight regu-
larization, quantitative results.

λweight 10−6 10−5 10−4

CD 7.48 8.08 10.82
Num. Face 4753 2809 1786

The renderings in Figure 18 support these quantitative re-
sults. When λweight = 10−6, we can observe good recon-
struction quality. When λweight = 10−5, there are small
artifacts in the reconstruction, but we can get meshes of
generally good quality with fewer number of faces. How-
ever, when it becomes 10−4, the reconstruction results
deteriorate, making holes and bumpy faces on the smooth surface. Therefore, we can conclude that
weight regularization contributes to reducing the mesh complexity. However, we need to choose
λweight carefully, so that it does not harm the reconstruction quality. The experimental results tell us
setting λweight to 10−6 could be a good choice to balance between these two contradictory objectives.

E.3.2 Quality Regularization

As we did in the previous section, we test the influence of quality regularization in the final mesh by
selecting λreal among (10−4, 10−3, 10−2). We also set the other experimental settings as same as
before, except λweight = 0.

Table 6: Ablation study for quality regu-
larization, quantitative results.

λqual 10−4 10−3 10−2

CD 7.60 7.42 7.28
Num. Face 8266 8349 10806
Aspect Ratio 2.33 2.06 1.55

In Table 6 and Figure 19, we present quantitative and
qualitative comparisons between the reconstruction results.
We provide statistics about average CD, average number
of faces, and average aspect ratio of faces. Interestingly,
unlike weight regularization, we could not observe tradeoff
between CD and aspect ratio. Rather than that, we could
find that CD decreases as aspect ratio gets smaller, and
thus the triangle quality gets better.

We find the reason for this phenomenon in the increase of smaller, good quality triangle faces. Note
that there is no significant difference between the number of faces between λqual = 10−4 and 10−3.
Also, we cannot find big difference between visual renderings between them, even though the aspect

31

ratio was clearly improved. However, when λqual becomes 10−2, the number of faces increase
fast, which can be observed in the renderings, too. We believe that this increase stems from our
quality constraint, because it has to generate more triangles to represent the same area, if there is less
degree of freedom to change the triangle shape. Since it has more triangle faces, we assume that they
contribute to capturing fine details better, leading to the improved CD.

However, at the same time, note that the number of holes increase as we increase λqual, which lead
to visual artifacts. We assume that there are not enough points to remove these holes, by generating
quality triangle faces that meet our needs. Therefore, as discussed before, if we can find a systematic
way to prevent holes, or come up with a better optimization scheme to remove them, we expect that
we would be able to get accurate mesh comprised of better quality triangles.

32

(a) Mesh 164

(b) Mesh 30

(c) Mesh 320

(d) Mesh 448

Figure 20: Point cloud and Multi-view Reconstruction results for open surface models. From
Left: Ground truth mesh, sample point cloud, point cloud reconstruction results, diffuse rendering,
multi-view reconstruction results.

33

(a) Mesh 64444

(b) Mesh 252119

(c) Mesh 313444

(d) Mesh 527631

Figure 21: Point cloud and Multi-view Reconstruction results for closed surface models. From
Left: Ground truth mesh, sample point cloud, point cloud reconstruction results, diffuse rendering,
multi-view reconstruction results.

34

(a) Bigvegas

(b) Plant

(c) Mesh 313444

Figure 22: Point cloud and Multi-view Reconstruction results for mixed surface models. From
Left: Ground truth mesh, sample point cloud, point cloud reconstruction results, diffuse rendering,
multi-view reconstruction results.

35

	Introduction
	Related Work
	Shape Representations for Optimization
	Delaunay Triangulation for Geometry Processing

	Preliminary
	Probabilistic Approach to Mesh Connectivity
	Basic Principles

	Formulation
	Practical approach to compute wdt
	Definition of real
	Loss Functions
	Reconstruction Loss (Lrecon)
	Regularizations

	Experiments and Applications
	Mesh to DMesh
	Point Cloud & Multi-View Reconstruction

	Conclusion and Future Directions
	Comparison to Other Shape Reconstruction Methods
	Details about Section 3.2
	Mathematical Definitions
	Analysis of previous approach
	Theoretical Aspect
	Experimental Results

	Loss Functions
	Mesh to DMesh
	Point Cloud Reconstruction
	Sampling Pours
	CDgt
	CDours

	Multi-View Reconstruction
	FA
	FB

	Weight Regularization
	Real Regularization
	Quality Regularization

	Optimization Process
	Mesh to DMesh
	Point Initialization
	Point Insertion
	Maintaining

	Point cloud & Multi-view Reconstruction
	Two Phase Optimization
	Point Initialization with Sample Points
	Point Initialization without Sample Points
	Point Initialization for Different Inputs
	Maintaining F
	Mesh Refinement
	Post-Processing

	Experimental Details
	Mesh to DMesh
	Point Cloud & Multi-view Reconstruction
	Hyperparameters for Point Cloud Reconstruction
	Hyperparameters for Multi-view Reconstruction
	Visual Renderings
	Additional Discussion

	Ablation studies
	Weight Regularization
	Quality Regularization

