Soheil Feizi

Associate Professor, CS @ UMD

Short Bio: Soheil Feizi is a faculty and the director of Reliable AI Lab in the Computer Science department at University of Maryland, College Park (UMD). Currently on leave from his academic position, he is the Founder and CEO of RELAI , a startup dedicated to advancing AI reliability. He holds a Ph.D. from MIT and completed postdoctoral research at Stanford University . He has published over 100 peer-reviewed papers and given more than 50 invited talks. He has received multiple awards for his work including the ONR's Young Investigator Award, the NSF CAREER Award, the ARO's Early Career Program Award, two best paper awards, the Ernst Guillemin Thesis Award, a Teaching Award, and more than fifteen research awards from national agencies such as NSF, DARPA, ARL, ONR, DOE, NIST as well as industry such as Meta, IBM, Amazon, Qualcomm and Capital One. His work has been featured by major outlets such as the Washington Post, BBC, MIT Technology Review, Bloomberg, and the Wire . Recently, he testified before the U.S. House's Bipartisan Task Force on AI, reflecting his commitment to ensuring AI is developed with safety, accuracy, and reliability in mind. He is committed to promoting diversity in STEM and has mentored several high school, undergraduate, and graduate students through various programs.


Research

My research is centered around developing reliable and trustworthy Artificial Intelligence (AI) with a focus on understanding its robustness (to natural and/or adversarial input variations), generalizability (to unforeseen data domains) and interpretability (of both test and training time predictions). I am interested in the reliability anslysis of both predictive and generative AI models.

Read More

Highlights

New: Launched: RELAI, , a startup whose goal is to make AI reliability accessible and achievable for all.

New: Testified before the U.S. House's Bipartisan Task Force on AI. .

New: Interviews with: Washington Post, Wired, MIT Technology Review, Bloomberg

ARO's Early Career Program Award Read More.

ONR Young Investigator Award Read More.

NSF CAREER AWARD. Read More.

Note to Prospective Students:

I am looking for students and post-docs interested in working in theoritical and practical aspects of AI/ML. Information for prospective students can be found here.

Update: I am currently on leave in AY24-25 and will not take new students. For oppurtunities regarding RELAI, please visit Career Page .

For more info, see my profiles in Google Scholar, DBLP, LinkedIn and Twitter.

Read More

NEWS:

Launched RELAI

2024

Founded RELAI, a startup whose goal is to make AI reliability accessible and achievable for all. [Read more].

Testified in US Congress

2024

I restified before the U.S. House's Bipartisan Task Force on AI. [Read more].

Four NeurIPS Papers

2024

Four papers accepted in NeurIPS'24 [Read more]

two icml two EMNLP

Early Career Award

2023

I received ARO's Early Career Program Award to study robust dynamic AI systems . [Read more].

Talk at Google's GenAI Workshop

2023

I gave a talk on (un)reliability of AI-text detectors at Google's GenAI workshop [Read more]

AI4All Summer Camp

2023

We hosted a two-week long AI4All camp for high school students at UMD. [Read more]

NSF AI Institute

2023

Our NSF AI Institute on Trustworthy AI in Law & Society (TRAILS) got funded. [Read more].

Amazon Award

2023

I received an Amazon Research Award on understanding spurious correlations in deep learning. [Read more]

Three ICML Papers

2023

Three papers on poisoning robustness and interpretability accepted in ICML'23 [Read more]

Young Investigator Award

2022

I received ONR's Young Investigator Award on studying foundations of robust learning [Read more].

Five NeurIPS Papers

2022

Five papers on adv/distributional robustness, poisoning and Hard ImageNet accepted in NeurIPS'22 [Read more]

ICLR Area Chair

2022

I'll serve as an area chair for ICLR'23. [Read more]

ML Rising Stars

2022

Our ML Rising Stars program is now accepting applications [Read more].

Two ICML Papers

2022

Two works (FOCUS, Improved poisoning Robustness) accepted in ICML'22 [Read more]

ICML Workshop Panelist

2022

I was a panelist in the Shift Happens workshop in ICML'22 [Read more]

Plenary Talk

2022

I gave a plenary talk on generative models in the FinDer summer school [Read more]

Three ICLR Papers

2022

Three works (Salient Imagenet, Policy Smoothing, Improved L2 Robustness) accepted in ICLR'22 [Read more]

Two CVPR Papers

2021

Two works (RIVAL10 dataset and analysis, Patch defense for object detection) accepted in CVPR'22 [Read more]

Simons Talk

2022

I gave a talk on studying failure modes of deep learning at Simons/UC Berkeley [Watch here].

CISS Talks

2022

I give two talks on RL robustness and distributional robustness at CISS (Princeton) [Read more]

AISTATS Paper

2021

Our work on provable robustness against fractional threat models accepted in AISTATS'22 [Read more]

ICML Area Chair

2022

I will serve as an area chair for ICML 2022 [Read more].

UCSD Talk

2021

I give a talk at UCSD's HDSI on studying failure models of deep learning. [Read more]

USC Talk

2021

I give a talk at USC's ML Symposium on studying failure models of deep learning.

UMD Talk

2021

I give a deptartment colloquium talk at UMD on studying failure models of deep learning. [Read more]

NeurIPS paper

2021

Our work on a new training procedure for DL interpretability has been accepted in NeurIPS. [Read more]

COLT Area Chair

2021

I'll serve as a COLT 2022 area chair. [Read more]

NIST Panel Organizer

2021

Organizer and moderator at NIST AI Measurement and Evaluation Workshop. [Read more]

Two ICML papers

2021

Two ICML papers including a long talk (among top 3% of submissions). [Read more]

AISTATS Paper

2021

Our Subadditive GANs work is in AISTATS'21 (oral presentation, among top 3% of submissions)) [Read more]

NeurIPS Area Chair

2021

I serve as a NeurIPS 2021 area chair [Read more]

ICLR Area Chair

2021

I serve as an ICLR 2022 area chair. [Read more]

AAAI Area Chair

2021

I serve as an AAAI 2022 area chair. [Read more]

MIT/Harvard Talk

2021

I gave a talk on distributional robustness at a joint MIT/Harvard seminar.

UW/UT Austin Talk

2021

I gave a talk on generalizable adversarial robustness at a joint UW/UT Austin seminar.

EPFL Talk

2021

I gave a talk on foundations of robust learning at EPFL.

NSF CAREER AWARD

2020

Received CAREER award on foundations of deep generative models. [Read more]

Five ICLR papers

2021

Five ICLR papers on adversarial robustness, GANs and influence functions. [Read more]

AAAI 2021 Paper


Our work on Lottery Tickets in Generative Models has been accepted in AAAI'21 [Read more]

FAccT 2021 Paper

2020

Our work on Adversarial Fairness has been accepted in FAccT'21 [Read more]

Five NeurIPS papers

2020

Five NeurIPS papers on robustness, GANs and interpretability. [Read more]

NeurIPS 2020 Workshop

2020

I am an organizer of a NeurIPS deep inverse workshop. [Read more]

NIST AWARD

2020

Received an award from National Institute of Standards and Technology supporting our research on robustness.

Best Paper Award

2020

from MIT-IBM Watson AI Lab at KDD's Adv ML workshop for our provable poisoning defense. [Read more]

COLT 2021 Area Chair

2020

I am an area chair for COLT 2021 [Read more]

ICLR 2021 Area Chair

2020

I am an area chair for ICLR 2021 [Read more]

Talk at Princeton's IAS

2020

On Generalizable Adversarial Robustness to Unforeseen Attacks. [Talk Video]

Talk at Simons

2020

Reunion of deep learning foundations workshop. [Read more]

Talk at Capital One

2020

I gave a talk on Unsupervised Anomaly Detection at Capital One Modeling and Analytics Conference.

Three ICML Papers

2020

On curvature-based robustness certificates, smoothing-based robustness certificates, and influence functions. [Read more]

AWS ML Research Award

2020

For “Explainable Deep Learning: Accuracy, Robustness and Fairness”. [Read more]

Area Chair at NeurIPS 2020

2020

I am serving as an area chair in NeurIPS 2020. [Read more]

UMD Research Excellence

2020

I was an honeree at 2020 Maryland Research Excellence Celebration. [Read more]

Deep Generative Model at ITA

2020

I organized a session on deep generative models at ITA 2020. [Read more]

Talk at NIST

2020

I gave a talk on certifiably robust method against adversarial examples at NIST.

Talk at NeurIPS

Dec, 2019

Gave a talk in the ML with Guarantees workshop at NeurIPS [Watch the Video]

Two AISTATS Papers

Dec, 2019

Two AISTATS papers on non-LP adv. robustness and flow-based generative models. [Read more]

Three NeurIPS papers


Three NeurIPS papers on GANs, interpretability and adversarial examples. [Read more]

Robustness Talk

Oct, 2019

I gave a talk on certifiably robust method against adversarial examples [Read more]

Paper on arXiv!

Oct, 2019

Our work on Wasserstein Smoothing [paper] is available on arXiv.

Teaching Award


I received the teaching award at UMD for my Fall 2018 and Spring 2019 courses. [Read more]

ICCV Paper

Jul, 2019

Our work on Normalized Wasserstein [paper] has been accepted to ICCV 2019.

Deep Learning Workshop

Sept, 2019

I am attending a theory of deep learning workshop at IST, Austria.

ICML Paper

APR, 2019

Our work on deep learning interpretation [paper] has been accepted to ICML 2019.

ICML Paper

APR, 2019

Our work on Entropic GANs meet VAEs [paper] has been accepted to ICML 2019.

Best Paper Award

APR, 2019

Our work on Multivariate Maximal Correlation [paper] has received TNSE's best paper award.

Awarded Simons-Berkeley Fellowship


I have received the Simons-Berkeley Research Fellowship on Deep Learning Foundations.

Department Colloquium

8
FEB, 2019

I gave a talk on deep learning foundations. Read More

New Paper on arXiv

4
FEB, 2019

Our work on Normalized Wasserstein Distance [paper] is available on arXiv.

New Paper on arXiv

4
FEB, 2019

Our work on Deep Learning Interpretation [paper] is available on arXiv.

New Paper on arXiv

4
FEB, 2019

Our work on Robustness Certificates against Adversarial Examples [paper] is available on arXiv.

New Paper on arXiv

4
FEB, 2019

Our work on Compressing GANs [paper] is available on arXiv.

Talk at American University

4
FEB, 2019

I gave a talk at American University on generative models.

ICLR Paper

27
Dec, 2018

Our work on Inevitability of Adversarial Examples [paper] has been accepted in ICLR.

Talk at Capital One

17
Dec, 2018

I gave a talk at Capital One's Machine Learning center on Unsupervised Anomaly Detection.

Talk at NIH

30
Nov, 2018

I gave a talk at NIH on ML in biological applications.

Talk at IBM Research

26
Oct, 2018

I gave a talk at IBM research on a statistical approach to generative models.

Lecture at CS Honors

17
Oct, 2018

I gave a lecture at CS honors class on GANs.

New Paper on arXiv

3
OCT, 2018

Our work titled Entropic GANs meet VAEs [paper] is available on arXiv.

Paper Accepted!

29
SEPT, 2018

Our work on Spectral Alignment of Graphs [paper] has been accepted to IEEE Transactions on Network Science and Engineering.

Talk at Quantum Machine Learning Workshop

27
SEPT, 2018

I gave an invited talk titled Generative Adversarial Networks: Formulation, Design and Computation in the QML workshop.

Paper Accepted!

5
SEPT, 2018

Our work on understanding the Landscape of Neural Networks [paper] has been accepted to NeurIPS.

New Paper on arXiv

5
SEPT, 2018

Our work on Adversarial Examples [paper] is available on arXiv.

Paper Accepted!

20
JUL, 2018

Our work on Source Inference in Graphs [paper] has been accepted to IEEE Transactions on Network Science and Engineering.

Machine Learning Course

01
JUL, 2018

I am teaching CMSC 726 in Fall 2018. See the course webpage here.

First Day @ UMD

01
JUL, 2018

I am officially starting my faculty career at CS@UMD. I am also a member of UMIACS.

Talk @ Google Research

28
JUN, 2018

I am giving a talk titled "GANs: model-based or model-free?" in google research.