
1

JSR-305: Annotations for
Software Defect Detection

William Pugh
Professor
Univ. of Maryland
pugh@cs.umd.edu
http://www.cs.umd.edu/~pugh/

Wednesday, May 28, 2008

mailto:pugh@cs.umd.edu
mailto:pugh@cs.umd.edu
http://findbugs.sourceforge.net
http://findbugs.sourceforge.net

2

Why annotations?

• Static analysis can do a lot

• can even analyze interprocedural paths

• Why do we need annotations?

• they express design decisions that may be
implicit, or described in documentation, but
not easily available to tools

Wednesday, May 28, 2008

3

Where is the bug?

if (spec != null) fFragments.add(spec);

if (isComplete(spec)) fPreferences.add(spec);

boolean isComplete(AnnotationPreference spec) {

 return spec.getColorPreferenceKey() != null

 && spec.getColorPreferenceValue() != null

 && spec.getTextPreferenceKey() != null

 && spec.getOverviewRulerPreferenceKey() != null;
 }

Wednesday, May 28, 2008

4

Finding the bug

• Many bugs can only be identified, or only
localized, if you know something about what
the code is supposed to do

• Annotations are well suited to this...

• e.g., @Nonnull

Wednesday, May 28, 2008

5

JSR-305

• At least two tools already have defined their
own annotations:

• FindBugs and IntelliJ

• No one wants to have to apply two sets of
annotations to their code

• come up with a common set of annotations
that can be understood by multiple tools

Wednesday, May 28, 2008

6

JSR-305 target

• JSR-305 is intended to be compatible with
JSE 5.0+ Java

Wednesday, May 28, 2008

7

JSR-308

• Annotations on Java Types

• Designed to allow annotations to occur in
many more places than they can occur now

• ArrayList<@Nonnull String> a = ...

• Targets JSE 7.0

• Will add value to JSR-305, but JSR-305
cannot depend upon JSR-308

Wednesday, May 28, 2008

8

Nullness

• Nullness is a great motivating example

• Most method parameters are expected to
always be nonnull

• some research papers support this

• Not always documented in JavaDoc

Wednesday, May 28, 2008

9

Documenting nullness
• Want to document parameters, return values,

fields that should always be nonnull

• Should warn if null passed where nonnull
value required

• And which should not be presumed nonnull

• argument to equals(Object)

• Should warn if argument to equals is
immediately dereferenced

Wednesday, May 28, 2008

10

Only two cases?

• What about Map.get(...)?

• Return null if key not found

• even if all values in Map are nonnull

• So the return value can’t be @Nonnull

• But lots of places where you “know” that the
returned value will be nonnull

Wednesday, May 28, 2008

Null in some situation

• There are places where a value might be null,
under some circumstance

• return value from Map.get(Object)

• first argument to
Method.invoke(Object obj, Obj.. args)

• should be null if method is a static method

11

Wednesday, May 28, 2008

Just dereference it

• If you use that value that might be null in some
circumstance, but you have reason to believe
should not be null (perhaps due to the values
of other parameters, or program state)

• you might just dereference it without null
check

• If it is null, something is wrong and throwing
a NPE is the right thing to do

12

Wednesday, May 28, 2008

Data on use of Map.get(...)

• In JDK 1.6.0, build 105

• 196 calls to Map.get(...)

• where the return value is dereferenced without
a null check

13

Wednesday, May 28, 2008

14

Thus, 3 cases
• I think there have 3 nullness annotations

•@Nonnull

•@NullFeasible

•@UnknownNullness

• same as no annotation

•Would love better name suggestions

• might use @Nullable for one of last two
these, but which one?

Wednesday, May 28, 2008

15

@Nonnull
• Should not be null

• For fields, interpreted as should be nonnull
after object is initialized

• Tools will try to generate a warning if they see
a possibly null value being used where a
nonnull value is required

• same as if they see a dereference of a
possibly null value

Wednesday, May 28, 2008

16

@NullFeasible

• Code should always worry that this value
might be null

• e.g., argument to equals

• Tools should flag any dereference that isn’t
preceded by a null check

Wednesday, May 28, 2008

17

@UnknownNullness
• Same as no annotation

• Needed because we are going to introduce
default and inherited annotations

• Need to be able to get back to original state

• Null under some circumstances

• might vary in subtypes, or depend on other
parameters or state

• Interprocedural analysis might give us better
information

Wednesday, May 28, 2008

18

@NullFeasible
requires work

• If you mark a return value as @NullFeasible,
you will likely have to go make a bunch of
changes

• kind of like const in C++

• My experience has been that there are lots of
methods that could return null

• but that in a particular calling context, you
may know that it can’t

Wednesday, May 28, 2008

Proving no NPEs

• Some static analysis tools might want to prove
that no null pointers can be dereferenced

• Such tools would likely warn if a value with
unknown nullness is dereferenced without a
null check

• other tools would not generate a warning in
this case

19

Wednesday, May 28, 2008

20

Type Qualifiers

• Many of the JSR-305 annotations will be type
qualifiers: additional type constraints on top of
the existing Java type system

• aka Pluggable type system

Wednesday, May 28, 2008

http://bracha.org/pluggable-types.pdf
http://bracha.org/pluggable-types.pdf

21

@Nonnegative and friends

• Fairly clear motivation for @Nonnegative

• More?

• @Positive

• Where do we stop?

• @NonZero

• @PowerOfTwo

• @Prime

Wednesday, May 28, 2008

22

Three-way logic again

• If we have @Nonnegative, do we also need:

• @Signed

• similar to @NullFeasible

• returned by hashCode(), Random.nextInt()

• @UnknownSign

• similar to unknown nullness

Wednesday, May 28, 2008

23

User defined type qualifiers

• In (too many) places, Java APIs use integer
values or Strings where enumerations would
have been better

• except that they weren’t around at the time

• Lots of potential errors, uncaught by compiler

Wednesday, May 28, 2008

24

Example in java.sql.Connection
createStatement(int resultSetType, int resultSetConcurrency, int
resultSetHoldability)

Creates a Statement object that will generate ResultSet objects with the given
type, concurrency, and holdability.

resultSetType: one of the following ResultSet constants:
ResultSet.TYPE_FORWARD_ONLY,
ResultSet.TYPE_SCROLL_INSENSITIVE, or
ResultSet.TYPE_SCROLL_SENSITIVE

resultSetConcurrency: one of the following ResultSet constants:
ResultSet.CONCUR_READ_ONLY or ResultSet.CONCUR_UPDATABLE

resultSetHoldability: one of the following ResultSet constants:
ResultSet.HOLD_CURSORS_OVER_COMMIT or
ResultSet.CLOSE_CURSORS_AT_COMMIT

Wednesday, May 28, 2008

25

The fix
• Declare

• public @TypeQualifier
 @interface ResultSetType {}

• public @TypeQualifier
 @interface ResultSetConcurrency {}

• public @TypeQualifier
 @interface ResultSetHoldability {}

• Annotate static constants and method
parameters

Wednesday, May 28, 2008

26

User defined Type Qualifiers

• JSR-305 won’t define @ResultSetType

• Rather JSR-305 will define the meta-
annotations

• that allow any developer to define their own
type qualifier annotations

• which they can apply and will be interpreted
by defect detection tools

Wednesday, May 28, 2008

Defining a type qualifier

@TypeQualifier
public @interface Nonnull {

 When when() default When.ALWAYS;
 }

27

Wednesday, May 28, 2008

The When element

• An enum that describes the relationship
between

• the values S allowed at a location and

• the set T of values described by the type
qualifier

• values: ALWAYS, NEVER, MAYBE, UNKNOWN

28

Wednesday, May 28, 2008

Meanings

• ALWAYS: S ⊆ T

• NEVER: S ⊆ T̅

• MAYBE: ¬ ALWAYS ∧ ¬ NEVER

• UNKNOWN: true

29

ALWAYS

NEVER

MAYBE

Wednesday, May 28, 2008

Applied to Nonnull

• Say we start by defining @Nonnull

• @Nonnull(when=When.MAYBE)

• null feasible

• @Nonnull(when=When.UNKNOWN)

• unknown nullness

30

Wednesday, May 28, 2008

Why so many when’s?
• Don’t want to bias type qualifiers as to whether

you start with the positive or negative version

• @Nonnull(when=When.NEVER)

• represents a value that is always null

• But what if we had started by defining @Null

• @Null(when=When.NEVER)

• nonnull

• @Null(when=When.MAYBE)

• null feasible
31

Wednesday, May 28, 2008

More examples

• Start by defining @Negative

• @Negative(when=When.NEVER)

• nonnegative

• @Negative(when=When.MAYBE)

• signed

32

Wednesday, May 28, 2008

Checking type qualifiers

• If we detect a feasible path on which a

• ALWAYS or MAYBE source

• flows to a NEVER sink

• generate a warning

• And the converse

• NEVER or MAYBE source flowing to an
ALWAYS sink

33

Wednesday, May 28, 2008

Strict type qualifiers

• If you don’t define a when element for a type
qualifier, the type qualifier is strict

• applying it is treated as ALWAYS

• anything else is treated as UNKNOWN

• report a warning if an UNKNOWN source
reaches an ALWAYS sink

• Great for stuff like @ResultSetHoldability

34

Wednesday, May 28, 2008

The value element
• Type qualifiers can define a value element
@TypeQualifier public @interface Foo {
	 int value();
}

• Defines a family of type qualifiers: @Foo(1),
@Foo(2), ...

• Orthagonal/Independent

• Whether a value is @Foo(1) is independent
of whether it is @Foo(2)

35

Wednesday, May 28, 2008

Exclusive values
public @TypeQualifier(exclusive=true)
 @interface ClassName {
	 Kind value();
	 enum Kind { SLASHED, DOTTED };
}

•Defines two exclusive type qualifiers:
@ClassName(ClassName.Kind.SLASHED)
@ClassName(ClassName.Kind.DOTTED)

•Anything marked as
@ClassName(ClassName.Kind.SLASHED) ALWAYS
is also
@ClassName(ClassName.Kind.DOTTED) NEVER

36

Wednesday, May 28, 2008

Exhaustive values?
public @TypeQualifier(exhaustive=true)
@interface Bar {
	 Color value();
	 enum Color { RED, GREEN, BLUE };
}

• If something is Bar(Color.RED) NEVER and
Bar(Color.GREEN) NEVER
it must be Bar(Color.BLUE) ALWAYS
• If a value is exhaustive, it is also exclusive.

37

Wednesday, May 28, 2008

Syntax

• Two potential ways to denote exclusive/
exhaustive type qualifiers

1)Define boolean exclusive/exhaustive
attributes to the TypeQualifier

2)Define marker annotations that are applied
to the value() member of a TypeQualifier

38

Wednesday, May 28, 2008

Possible syntax
• Syntax (1)
public @TypeQualifier(exclusive=true)
@interface Bar {
	 Color value();
	 enum Color { RED, GREEN, BLUE };
}

• Syntax (2)
public @TypeQualifier @interface Bar {
	 @Exclusive Color value();
	 enum Color { RED, GREEN, BLUE };
}

39

Wednesday, May 28, 2008

Example usage

• public @TypeQualifier(exhaustive=true)
@interface Sign {
	 NumericSign value();
 When when() default When.ALWAYS;
	 enum NumericSign
 { NEGATIVE, ZERO, POSITIVE };
}

• Can then define @Nonnegative, @Nonzero, etc.

40

Wednesday, May 28, 2008

Limiting the scope of a type
qualifier

• When the @TypeQualifier annotation is
applied, can define the types it can be applied
to:
@TypeQualifier(
 applicableTo=CharSequence.class)

public @interface Foo {}

• primitive types allowed if wrapper types
allowed

41

Wednesday, May 28, 2008

Type qualifier nicknames

• No one wants to be typing

@Nonnull(when=When.MAYBE)
all over the place

• Define a type qualifier nickname
@TypeQualifierNickname

@Nonnull(when=When.MAYBE)

public @interface NullFeasible {}

42

Wednesday, May 28, 2008

Default and Inherited
Type Qualifiers

Wednesday, May 28, 2008

44

Most parameters are nonnull

•Most reference parameters are intended to be
non-null

•many return values and fields as well

•Adding a @Nonnull annotation to a majority
of parameters won’t sell

•Treating all non-annotated parameters as
nonnull also won’t sell

Wednesday, May 28, 2008

45

Default type qualifiers
•Can mark a method, class or package as having

nonnull parameters by default

• If a parameter doesn’t have a nullness annotation

• climb outwards, looking at method, class, outer
class, and then package, to find a default
annotation

•Can mark a package as nonnull parameters by
default, and change that on a class or parameter
basis as needed

Wednesday, May 28, 2008

46

Inherited Annotations

•We want to inherit annotations

•Object.equals(@CheckForNull Object obj)

• int compareTo(@Nonnull E e)

•@Nonnull Object clone()

Wednesday, May 28, 2008

Inherited qualifiers take
precedence over default

• Default qualifiers shouldn’t interfere with or
override inherited type qualifiers

47

Wednesday, May 28, 2008

48

Do defaults apply to most
JSR-305 type qualifiers?

•Case for default and inherited nullness type
qualifiers is very compelling

•Should it be general mechanism available for
many/all type qualifiers?

Wednesday, May 28, 2008

Defining default type
qualifiers

• @TypeQualifierDefault marks an annotation that
can be used to specify default type qualifiers
@Nonnull

@TypeQualifierDefault(ElementType.PARAMETER)

public @interface ParametersAreNonnullByDefault {}

49

Wednesday, May 28, 2008

Meaning

• If TypeQualifierDefault is used to annotate an
annotation

• Any type qualifiers also applied to the
annotation are taken as defaults for the element
types provided as arguments to the
TypeQualifierDefault

50

Wednesday, May 28, 2008

Defined default annotations

• JSR-305 will only define
ParametersAreNonnullByDefault, but
more can be defined outside of JSR-305

• and can be interpreted by static analyzers
that interpret JSR-305 annotations

51

Wednesday, May 28, 2008

Using default annotations

•Just apply the annotation to a package, class,
or method

@ParametersAreNonnullByDefault

class FooBar { ... }

52

Wednesday, May 28, 2008

53

Type qualifier validators

• A type qualifier can define a validator

• typically, a static inner class to the annotation

• Checks to see if a particular value is an instance
of the type qualifier

• Static analysis tools can execute the validator
at analysis time to check constant values

• Dynamic instrumentation could check validator
at runtime

Wednesday, May 28, 2008

54

CreditCard example

@Documented @TypeQualifier @Retention(RetentionPolicy.RUNTIME)

public @interface CreditCardNumber {

 class Validator implements TypeQualifierValidator<CreditCardNumber> {

 public boolean forConstantValue(CreditCardNumber annotation, Object v) {
 if (v instanceof String) {

 String s = (String) v;

 if (java.util.regex.Pattern.matches("[0-9]{16}", s)
 && LuhnVerification.checkNumber(s))

 return true;

 }

 return false;
 }}}

Wednesday, May 28, 2008

Need a way to cast

• Need to provide a way to cast to a type qualifier

• e.g., force the analysis to assume that the
result returned by this method is always
@CreditCardNumber, even if it can’t prove it

• Use when=When.ASSUME_ALWAYS ?

55

Wednesday, May 28, 2008

Standard type qualifiers

Wednesday, May 28, 2008

57

@Syntax

• Used to indicate String values with particular
syntaxes

• @Syntax(“RegEx”)

• @Syntax(“Java”)

• @Syntax(“SQL”)

• Allows for error checking and used by IDE’s in
refactoring

Wednesday, May 28, 2008

58

@MatchesPattern

• Provides a regular expression that describes
the legal String values

• @MatchesPattern(“\\d+”)

• Indicates that the allowed values are non-
empty strings of digits

Wednesday, May 28, 2008

59

@Untainted / @Tainted

• Needed for security analysis

• Information derived directly from web form
parameters is tainted

• can be arbitrary content

• Strings used to form SQL queries or HTML
responses must be untainted

• otherwise get SQL Injection or XSS

Wednesday, May 28, 2008

Question about @Taint

• Is one kind of taint sufficient, or do we want to
allow specification of different kinds of taint?

• Is HTTP request parameter taint distinct
from command line taint or SQL result taint?

60

Wednesday, May 28, 2008

Annotations other than
type qualifier

Wednesday, May 28, 2008

62

Thread/Concurrency
Annotations

•Annotations to denote how locks are used to
guard against data races

•Annotations about which threads should
invoke which methods

•See annotations from Java Concurrency In
Practice as a starting point

Wednesday, May 28, 2008

JCP Annotations

@ThreadSafe
@NotThreadSafe
@Immutable
@GuardedBy(“this”)
@GuardedBy(“lock”)
@GuardedBy(...)

63

Wednesday, May 28, 2008

64

What is wrong with this
code?

Properties getProps(File file)
throws ... {
 Properties props = new Properties();
 props.load(new FileInputStream(file));
 return props;
 } Doesn’t close file

Wednesday, May 28, 2008

65

Resource Closure
•@WillNotClose

• this method will not close the resource

•@WillClose

• this method will close the resource

•@WillCloseWhenClosed

• Usable only in constructors and factories:
constructed object decorates the parameter,
and will close it when the constructed object is
closed

Wednesday, May 28, 2008

66

Miscellaneous

•@CheckReturnValue

•@OverridingMethodsMustInvokeSuper

•@InjectionAnnotation

Wednesday, May 28, 2008

67

@CheckReturnValue

•Indicates a method that should always be
invoked as a function, not a procedure.

•Example:

• String.toLowerCase()

• BigInteger.add(BigInteger val)

•Anywhere you have an immutable object and
methods that might be thought of a a mutating
method return the new value

Wednesday, May 28, 2008

@OverridingMethodsMust
InvokeSuper

• Applied to a method, it indicates that if this
method is overridden in a subclass, the
overriding method should invoke the
annotated methods via an invocation using
super

68

Wednesday, May 28, 2008

69

@InjectionAnnotation

•Static analyzers get confused if there is a field
or method that is accessed via reflection/
injection, and they don’t understand it

•Many frameworks have their own annotations
for injection

•Using @InjectionAnnotation on an annotation
@X tells static analysis tools that @X denotes
an injection annotation

Wednesday, May 28, 2008

JSR-305 status

• David Hovemeyer and I have largely
implemented in FindBugs what is described
here for type qualifiers (mostly Dave)

• still need to work on validators and type
qualifiers with exclusive/exhaustive values

70

Wednesday, May 28, 2008

