
Karan Chawla

December 19, 2019

Introduction

 BLANK! Every student has had this feeling at some point, whether during a presentation

or during a final exam. When your mind goes blank, the task in front of you suddenly seems

impossible. In life, some situations have higher stakes than others. The presentation might be for

investors. The exam could determine your grade.

As computer science undergraduate students, one of the highest stakes we face is the

result of a technical interview. Many students pursue an internship for the summer and find this

programming-style interview standing in the way. People who have not yet accumulated

technical interview experience may find the task of preparing to be daunting. Since countless

online sources exist, how to begin preparing can also seem like a mystery. This comprehensive

yet brief guide acts as a jumping off point. The guide explains the technical and behavioral

portions of the typical programming interview to allow students to maximize their chances of

success.

The tips and tricks in this guide are based on my personal experience and a variety of

reputable external sources. I have performed well on programming interviews for companies

including Google and Facebook in the software engineering category and aim to share a few of

the lessons I have learned. The guide is broken up into the following four main sections:

1. Third-Party Resources

2. Problem-Solving Strategy

3. Leetcode Preparation

4. Interview Behavior

While I do believe that all of these sections will provide helpful information, if you feel

comfortable with certain aspects of the interview already, feel free to jump around to explore the

topics you would find most useful.

Third-Party Resources

 The internet has many resources that help with interview preparation, but without prior

experience, people have difficulty deciding which sources to turn to. In addition to online

sources, many resources with valuable information are in print. The subcategories below act as a

way to separate out third-party resources, as each style comes with unique strengths. The later

sections of this guide will also refer to these sources when discussing optimal preparation.

Textbooks

 One of the cornerstones of algorithmic preparation is Thomas Cormen’s Introduction to

Algorithms textbook. This book is widely regarded as a must-read for thoroughly understanding

fundamental algorithmic principles. The early chapters of the textbook cover concepts about

introductory data structures. The typical programming interview question is a twist on these

fundamental concepts, which means any student could benefit from a refresher in these topics.

This textbook is less geared toward preparation through specific programming questions and

more in line with a course textbook.

Preparing by analyzing interview style questions is also valuable practice. For this

purpose, students use the textbook Cracking the Coding Interview (CTCI), by Gayle Laakmann.

Laakmann is the founder of CareerCup, a company that specializes in helping people prepare for

coding interviews. CTCI is famously known for its tricky programming questions and behavioral

tips, both of which provide valuable insight.

Coding Preparation

 Leetcode is perhaps the most important online platform for coding preparation. If you

talk to computer science students who have done these interviews before, Leetcode is sure to

come up in conversation. The free platform has a database of interview style programming

https://leetcode.com/problemset/all/

questions along with an editor on the side that users can program in. The user can then test their

algorithm for the problem on built-in test cases that ensure only the best solutions pass. Just as

lawyers do trial runs and pilots use simulators, people preparing for their interview need to

sharpen their skillset with these ready-made problems.

Geeks for Geeks is a website that walks through common algorithms for searching,

sorting, etc. and describes how to optimize the process. In interviews, programming an efficient

solution is important, so reading about the iterative improvements Geeks for Geeks describes is

educational. This page on the website lays out common categories of questions, like array

manipulation, strings, tree-based searches, etc. and also links to Leetcode.

General Tips/Handbook

 According to Yangshun Tay’s programming interview guide on Github, specific

techniques can be used across a variety of challenging questions. Tay presents a few of these

techniques for different data structures and goes on to explain the basics behind these strategies.

Among these techniques are dynamic programming, recursion, and tree traversals, which I can

confidently say appear commonly in interviews.

Problem-Solving Strategy

 While the specifics of solving an interview question depend on the question itself, a

generalized framework for tackling challenging problems helps keep students relaxed during the

interview. Usually, the interview starts with quick introductions. At times, the interviewer will

ask about certain elements of your résumé. After no more than five minutes, they will present

you with a programming problem.

https://www.geeksforgeeks.org/must-do-coding-questions-for-companies-like-amazon-microsoft-adobe/
https://yangshun.github.io/tech-interview-handbook/algorithms/algorithms-introduction

 The first step is always to make sure you understand the problem statement. Do not be

afraid to ask questions to the interviewer to clarify any doubts you have about the problem.

Many students quickly jump into coding right away without fully considering the problem and

end up confused. The second step is to think of an inefficient solution for the problem, which is

often done with brute-force methods. This step may sound unintuitive, since we are aiming to

program an efficient solution, but starting off with an easy-to-find solution and iteratively

improving helps describe your train of thought. The third step as mentioned is to iteratively

improve by thinking about how this problem is similar to others you have seen in the past.

 After you believe you have completed an efficient solution, take a pause in order to

calculate the runtime complexity of your approach. Interviewers typically will ask you about this

detail if you do not offer the complexity yourself. Finally, you should take a minute to create a

sample test case and run through your algorithm with this input. Often times, programmers find a

small mistake or edge case just by thinking about the result of one sample input.

 According to Geeks for Geeks and Tay’s Handbook, a few categories of programming

questions are very common and require specific techniques to solve. For instance, some

problems will require you to find an optimal solution for a given setup. In this case, you should

think about whether solving a smaller subproblem can lead you to a solution for the overall

problem, which is a trait of Dynamic Programming. For problems with tree-based data

structures, you can use in-order traversals, breadth-first search traversals, and depth-first search

traversal to accomplish many tasks. If you want to read more about these techniques, you should

read Tay’s breakdown of the different categories.

 In a general sense, if you are familiar with these techniques, you have a greater chance of

crafting the optimal solution for your interview problem. Remember to pace yourself, but also do

not waste time on extremely specific edge cases. One common pitfall occurs when people are

tasked with solving an easy problem. Sometimes, these people will spend excess amounts of time

making sure every detail of their implementation for the easy problem is correct, when in reality

the interviewer meant for this problem to lead into a second, more complicated task.

 Overall, this general problem-solving strategy helps add a much-needed structure to one’s

thought process. If the problem seems difficult, all you have to do is take a deep breath, make

sure you understand the task at hand, and slowly build up your solution. If you practice with the

common techniques used to solve these questions, you will be more prepared for interview day.

Leetcode Preparation

 Since practice makes perfect, Leetcode is the place to go for the most effective training.

The online platform has hundreds of programming questions ranging from easy to hard difficulty

ratings. Creating an account can be confusing, but the best page for interview questions is the

“Algorithms” category. Before you start on any coding problems that catch your eye, you need to

select your programming language of choice.

Choosing the Right Language

 Selecting your programming language is an important consideration and will affect your

language-specific preparation. Often, the company you are interviewing for will ask you for your

preferred programming language ahead of time. Your decision should reflect a high level of

expertise in your chosen language. I will go over the strengths of two of the most common

choices: Python and Java.

Python is a programming language built around scripting, which means you won’t have

to worry about data types, return types, and syntax issues. Scripting languages are useful during

interviews because programmers have to account for these details in other languages, which

takes up valuable interview time. Nonetheless, you still need to learn about the basic libraries

and built-in data structures for Python, including sets, dictionaries, arrays, etc. The built-in

support for these data structures is convenient and useful for solving many problems, given you

know which structure to use in different scenarios.

Java is a programming language with strict typing and many built-in data structures. Java

has a strict enforcement of data types and syntax rules. At times, this requirement makes creating

perfect Java code during an interview difficult. However, the strict rules also force programmers

to come up with structured code right off the bat. This structure gets the interviewee to think

deeply about the inputs, outputs, and data structures needed for the problem, which can save

debugging time down the road.

 The question of which programming language to choose has no obvious answer. People

usually prefer to choose based on their personal experience and also their preferred style of

programming. Overall, Python has fewer restrictions, but Java has more structure.

 Leetcode Tips

 After choosing the programming language, you should attempt to solve Leetcode

questions to gain experience. Start with the easy rated problems, even if you believe these

problems are too easy for you! Often, students look at a problem and think the problem is easy

but cannot translate their solution into working code. The process of coding even elementary

algorithms helps you familiarize yourself with language-specific details and commonly missed

edge cases.

 For each problem you complete on the website, you should keep track of the data

structures you used to reach an optimal solution. Certain operations like search and delete are

efficient on specific data structures, so remembering these details will come in handy during the

interview. Interviewers are impressed by candidates who have a thorough understanding of the

tradeoffs for operations between different data structures. Also, these differences play a role in

the overall runtime complexity of your solution, which often determines whether you pass the

interview.

 Practicing on Leetcode is not a one-day affair. Completing five questions per day for one

week is significantly more helpful than staying up one night to do 35 questions. For the best

results, you should make Leetcode a daily portion of your preparation. You should also consider

using a website like CoderPad, which simulates the text editor used in a real interview setting. If

you follow this advice and consistently practice, interview day will seem much less daunting.

Interview Behavior

 The technical programming interview is unlike interviews in other fields, but the core of

all interviews is human-to-human interaction. This aspect of the interview trips up many

students, since people usually code in silence. According to Facebook and other tech companies,

students are expected to talk about their thought process, elaborate on the solution they have

constructed, and reason about the solution’s runtime complexity.

 Some interviewers like to take the first five minutes to talk about your personal projects

and experiences. During this portion, you should humanize yourself with an interesting story

about a team or project experience. Make sure to not take up too much time with a dragged-out

story!

 When the interviewer presents you with the question, you can ask for a few minutes to

think about the problem statement. After all, no one is expected to come up with a solution right

away. When you are coding, however, detailing your thought process to the interviewer can be

helpful. The interviewer will understand the approach you are attempting and may even offer

suggestions to guide you along the right path. When you don’t communicate, the interviewer

often has difficulty assessing your thought process and your final code.

You can make mistakes! Students are expected to make errors. If you can catch your

error and modify your algorithm to account for the mistake, the interviewer will notice your

ability to improve. Sometimes, you have to completely change your solution halfway through the

interview when you realize you have been pursuing the wrong path. Take a deep breath to reset,

let your interviewer know why your current solution does not work, and don’t get discouraged. If

you are in a tough spot and are unsure how to continue, try using the following phrases:

• “I see why…but how can I…”

• “My current approach could lack…How should I focus on improving it?”

• “Am I going down the right path?”

These phrases signal to the interviewer that you are actively trying to improve your

approach but may need some guidance. You can ask for some guidance, but you should avoid

using these phrases too often.

Conclusion

 There is no foolproof method of preparation for programming interviews. People often

get curveballs and sometimes are not able to solve the coding problem. You should always keep

a positive attitude, because each opportunity to interview will give you more experience. If you

use the advice and resources from this guide, you can maximize your chance for success. Good

luck with your interviews!

Works Cited

Cormen, Thomas, et al. Introduction to Algorithms. 3rd ed., 2009.

This algorithms textbook is widely regarded as a must-read for learning basic algorithmic

principles that are assessed in programming interviews. I use principles from their elementary

chapters in data structures to introduce technical concepts to the reader at the beginning of my

guide.

Facebook. “Preparing for Your Software Engineering Interview at Facebook.” Facebook,

https://www.facebook.com/careers/life/preparing-for-your-software-engineering-

interview-at-facebook/.

Facebook is one of the largest tech companies in the world, which also means the company has a

lot of experience in conducting interviews. The tips present on this page are representative of the

practices published online by many big tech companies. These tips are helpful to talk about in

my guide, as they provide a good view of what to expect when interviewing with a big company.

Laakmann, Gayle. Cracking the Coding Interview. 4th ed.

Laakmann is the founder and CEO of CareerCup, a company that specializes in helping people

prepare for coding interviews. His book, abbreviated CTCI, is famously known among computer

science students who are looking for in-depth preparation. While the book has sound

programming advice, the book mostly helped me with the behavioral aspect of the interview.

This is a facet of the preparation that many students ignore or are unaware of.

“Leetcode Algorithms.” Leetcode, https://leetcode.com/problemset/algorithms/.

Leetcode is a website that has given many computer science students an opportunity to test their

interview coding abilities. The platform is well known and also offers premium user

subscriptions. The site allows users to choose problems to solve and offers test cases for the

users to check their code against. The explanations for the solutions of these problems helped me

create a general walkthrough for how these problems can be tackled and solved.

“Must Do Coding Questions.” Geeks for Geeks, 2019, https://www.geeksforgeeks.org/must-do-

coding-questions-for-companies-like-amazon-microsoft-adobe/.

Geeks for Geeks is a website that has helped computer science students tackle difficult

algorithmic questions for years. This page specifically deals with the different types of

programming questions that may come up during a technical interview, including questions on

arrays, strings, trees, etc. The web page helped me break down a few core areas of preparation

for the interview and suggest some problems representative of each area.

Tay, Yangshun. “Tech Interview Handbook.” Github, 2019, https://yangshun.github.io/tech-

interview-handbook/algorithms/array.

Tay is a full-time developer at Facebook and is also very active on Github. His guide has many

useful tips for the different categories of programming questions. This material allowed me to

recommend common operations and tricks students should be familiar with. The handbook also

refers to various Leetcode problems for each category, which I refer to as well.

Woo, Vincent. “CoderPad.” CoderPad, https://coderpad.io/.

CoderPad is a very successful online company that allows interviewers to customize the

interview easily in terms of coding language and execution ability. The most common difference

between normal coding and certain coding interviews is that the interviewee needs to code

without syntax clues and debugging messages that arise from executing their code. Companies

use sites like Coderpad to conduct interviews with candidates, so I inform the reader that

practicing on this site helps interviewees get accustomed to the format of the real interview.

