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Abstract

This paper reports an analysis of three recent hierarchical
plan repair algorithms: SHOPFIXER, IPYHOPPER, and
REWRITE. We compare these algorithms qualitatively, and
evaluate their performance, quantitatively, in a series of
benchmark planning problems, informed by our qualitative
analysis. A critical part of the qualitative comparison is that
REWRITE, a problem-rewriting technique, has a substantially
different and more restrictive definition of plan repair than
the other two systems. Understanding this distinction will be
important when choosing a repair method for any given appli-
cation. Our results explain the runtime repair performance of
these systems as well as the coverage of the repair problems
solved, based on algorithmic properties such as chronological
backtracking vs. backjumping over plan trees.

1 Introduction
Plan repair has been shown to provide advantages over gen-
erating new plans from scratch both in terms of planning
runtime and plan stability – the amount of plan content that
is retained between the original and repaired plans (Fox et al.
2006). Fox, et al. showed that plan repair could provide new
plans faster, and with fewer revisions, than replanning ab
initio in the face of disruptions. They used the term “stabil-
ity” to refer to the new plan’s similarity to the old one, by
analogy to the term from control theory. The term “minimal
perturbation” has been used synonymously (Cushing and
Kambhampati 2005). To be precise, “stability” is actually
a relation: a solver is stable if the size of the change in the
output is proportional to the size of the change in its input:
at least in theory, a minimal perturbation solver could actu-
ally be unstable. Plan stability is particularly important for
human interaction, as users are confused by radical changes
to plans introduced in response to trivial upsets.

The concept of stable plan repair has been general-
ized from classical planning to Hierarchical Task Network
(HTN) planning. Early work on hierarchical plan repair in-
troduced validation graphs in the context of hierarchical and
partial-order causal link planning, where plan repair used
validation graphs to identify disruptions and patches to the
partial-order plans (Kambhampati and Hendler 1992). Ex-
tending classical plan repair on sequences of actions, hier-
archical repair algorithms provide localization of errors and
failures and problem refinement methods that take advan-

tage of such localizations to provide better stability (Robert
P. Goldman, Ugur Kuter, and Richard G. Freedman 2020).

Over the years, there have been great strides in HTN plan
repair in which a variety of repair algorithms have been pro-
posed. The three that we consider are SHOPFIXER (Robert
P. Goldman, Ugur Kuter, and Richard G. Freedman 2020),
IPYHOPPER (Zaidins, Roberts, and Nau 2023), and an un-
named algorithm that we will call REWRITE (Höller et al.
2020b). These build on several previous methods (Ayan et al.
2007; Kuter 2012; Bansod et al. 2022; Bercher et al. 2014).

We compare SHOPFIXER, IPYHOPPER, and REWRITE
qualitatively, and evaluate their quantitative performance in
a series of benchmark planning problems in the light of our
qualitative analysis. Our results demonstrate the following:

• Because of differences in their notion of what repairs are
permissible and how to go about doing them, there are
differences in which repair problems REWRITE can solve
as opposed to IPYHOPPER and SHOPFIXER, which
share a definition. The three algorithms also differ in
what kinds of repairs they make.

• The REWRITE repair method, which must replicate
already-executed actions, involves extensive amount of
re-derivation of plans, as can be seen in its worse run-
times for all of the domains.

• Chronological backtracking during hierarchical repair in-
volves blindly trying a large number of subtrees of the
original plan tree, most of which do not contribute to re-
pairing the plan. In more complex problems, semantic
(i.e., causal) backjumping yields better performance, as
can be seen in the Openstacks domain and the more dif-
ficult Rovers problems.

• Less-expensive simulation lookahead for repair provides
a better payoff than extensive work in building data struc-
tures (e.g., explicit causal links) to speed backtracking
and backjumping in problems of modest scale, such as
the Satellite domain.

An additional contribution of our work is to provide the
first publicly-available implementation of the REWRITE re-
pair algorithm. We also extended it to work in lifted do-
mains, which is critical for completeness, since practical
grounding methods typically include problem-specific prun-
ing. Such pruning may compromise the completeness of the



plan repair method, since disturbances may render new parts
of the state space reachable.

2 Hierarchical Plan Repair Strategies
The three algorithms analyzed in this paper have impor-
tant qualitative differences that color the experimental re-
sults and are critical to their interpretation. First, REWRITE’s
definition of plan repair is more stringent than the others;
we have found benchmark planning problems IPYHOPPER
and/or SHOPFIXER solve but REWRITE does not. The sec-
ond difference is between SHOPFIXER and IPYHOPPER.
SHOPFIXER attempts to detect when a plan will be invalid,
before any actions actually fail; it invests in data structures
and computation in order to detect problems as soon as pos-
sible. IPYHOPPER’s projections are not model-based: it
relies on an external simulation to do projection for it, in-
stead of having an internal action model as most planners
do. These differences lead to different plan repair behaviors.

These differences are not simply a matter of one repair
method being “better” than another: instead, different re-
pair methods are better in different situations. The more
stringent definition offered by REWRITE is better when
an HTN method library captures important considerations
about what sequences of actions are and are not correct
plans; the more relaxed definition better when the precise
trajectory is less important. SHOPFIXER’s plan repair ap-
proach is better if the costs of wrong actions are higher than
the costs of computation, e.g. when actions are particularly
expensive, or when deferring repair could leave the agent
trapped in a dead end. When a situation is more forgiving
and when it changes frequently, SHOPFIXER’s aggressive
repair strategy will not be worthwhile. In the following, we
give simple examples that illustrate these differences.

The REWRITE paper (Höller et al. 2020b) defines a re-
paired plan as one that, among other considerations, has a
plan (decomposition) tree that is a refinement of the plan tree
of the initial plan. This definition can exclude some repairs
that seem intuitively plausible.

Consider an HTN plan domain for inter-city travel that has
two alternative methods: rail and air travel. For rail travel, we
take the bus to the station, embark, travel, and then debark.
Similarly, to fly we take the bus to the airport, get on the
plane, fly, and then deplane. Each method has the precon-
dition that the train station (resp., airport) be open. Starting
from home, Panda (Höller et al. 2021) and SHOP3 (Goldman
and Kuter 2019) both can find plans for air and rail travel.

Consider the plan repair problem that occurs when we
take the bus to the train station and discover that the train
station is closed. SHOPFIXER and IPYHOPPER will de-
tect the problem, identify that the original rail-travel
method cannot be fixed, and switch to air travel. However,
REWRITE cannot repair this plan, because the resulting plan
– bus to train station, bus to airport, embark, fly, deplane – is
ill-formed: no expansion of the top level goal contains both
“bus to train station” and “bus to airport.”

This highlights a tradeoff between flexibility and effi-
ciency that the authors of HTN domain descriptions typi-
cally face. If the HTNs use strong search-control strategies

and knowledge to make planning efficient by quickly find-
ing a good and acceptable solution, then those HTNs are
usually not flexible enough to allow exploring alternative
plans for in hierarchical plan repair. As the above example
shows, the REWRITE algorithm commits to the prefix of the
hierarchy for planning reasons, but that excludes possible re-
pairs at the higher levels of the hierarchy when a discrepancy
occurs. SHOPFIXER and IPYHOPPER are similar in that
limitation for general cases but they provide backtracking
and backjumping strategies that can alleviate this limitation
in some classes of domains. Section 4 discuss examples of
this phenomenon in our experimental results.

The REWRITE paper gives an example that shows the ra-
tionale for its more restrictive definition of plan repair. In
this example, the agent drives through a city that has con-
gestion pricing, and must pay a toll for each road segment
driven in the congestion zone. Solution plans have the form
x∗anbnx∗: there are actions before and after travel in the
congestion zone (the two x∗’s), then n segments traveled in
the congestion zone (an), followed by n toll payments (bn).
The structure of the HTN methods is the mechanism that
enforces the an-bn balance, so if extraneous actions were
allowed, incorrect (unbalanced) plans could be derived.

SHOPFIXER and IPYHOPPER share the same model of
plan repair, which holds that any HTN method may be re-
done – i.e., its plan regenerated and then executed from the
method’s beginning, as long as the method’s preconditions
hold in the state in which it begins. As we have seen above,
that means that the “intercity-travel” task may be restarted
after the agent has reached the train station and discovered
that it is closed. The difference between the two is how they
attempt to detect future action failures.

When building a repairable plan, SHOPFIXER creates a
decomposition tree that records task decompositions into
subtasks, with cross-links from actions that establish facts
to the actions and methods whose preconditions consume
those facts. This trades some pre-computation and storage
for more rapid detection of possible plan failures – and de-
tection of cases where unexpected effects do not cause plan
failures. An example SHOPFIXER tree is shown in Figure 1.

IPYHOPPER, in contrast, does not precompute any data
structures for identifying plan failures. Instead, when noti-
fied of a plan disturbance, it simulates the existing plan for-
ward in time to find impending failures. When it finds such
a failure, it unexpands the simulated action’s parent node in
the solution tree, and attempts to find a new decomposition
for that node that will not fail. If no such decomposition ex-
ists, the parent’s parent is similarly unexpanded; this contin-
ues up the solution tree until either a valid decomposition is
found or the root is reached, which means no repair exists.

If a valid decomposition is found, IPYHOPPER restarts
the simulation at the leftmost action of the decomposition
in postorder traversal. This continues until either the plan
completes successfully or another failure is simulated. If an-
other failure is simulated, the repair process is repeated and
eventually either the simulation will complete and the plan
is repaired or the root will be reached and repair has failed.

We now will briefly summarize the three hierarchical plan
repair algorithms that we have evaluated in this work.
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Figure 1: SHOP3 plan tree for a rover plan; decomposition
edges are in black; dependency cross-edges in dashed blue.
Edges from the diamond node represent dependencies on
initial state facts.

SHOPFIXER Plan Repair

SHOPFIXER (Robert P. Goldman, Ugur Kuter, and Richard
G. Freedman 2020) is a method for repairing plans gener-
ated by the forward-searching HTN planner, SHOP3. It uses
a graph of causal links and task decompositions to identify a
minimal subset of the plan that must be fixed. SHOPFIXER
extends the notion of plan repair stability introduced by (Fox
et al. 2006), and further develop their methods and experi-
ments, which showed the advantages of plan repair over re-
planning.

The basic idea behind SHOPFIXER’s plan repair ap-
proach is very simple: when a disturbance is introduced into
the plan, SHOPFIXER finds the minimal subtree of the plan
tree that contains the node whose preconditions are clob-
bered by that disturbance: the failure node. If there is no such
node, then the disturbance does not interfere with the suc-
cess of the plan. SHOPFIXER will then repair the plan, start-
ing with the minimal subtree. To find the minimal subtree
around a failure node, SHOPFIXER finds the first task in the
plan that is potentially “clobbered” (rendered unexecutable)
by that disturbance, and restarts the planning search from
that task’s immediate parent in the HTN plan (since that was
where that task was chosen for insertion into the plan). This
plan repair is done by backjumping into the search stack for
SHOP3 and reconstructing the compromised subtree with-
out the later tasks. Note that the first clobbered task may be
either a primitive task or a complex task. Furthermore, if p is
the parent of child c in an HTN plan, then p’s preconditions
are considered chronologically prior to c’s, because it is the
satisfaction of p’s preconditions that enables c to be intro-
duced into the plan: if both p and c fail, and we repair only
c, we will still have a failed plan, because after the distur-
bance, we are not licensed to insert c or its successor nodes.

SHOPFIXER restarts the planning search by backjump-
ing to the corresponding entry in the SHOP3 search stack,
which it retains, and updating the world state at that point

with the effects of the disturbance. When restarting the plan-
ning search, SHOPFIXER “freezes” the prefix of the plan
that has already been executed, as well as the deviation and
its effects. It may backjump to decisions prior to the devia-
tion, for example, if the immediate parent of the failed task
is the top level task of the problem, but it cannot undo the
effects of an action that is already done. SHOPFIXER re-
turns a repaired plan that is made up of the prefix before the
disturbance, the disturbance, and the repaired suffix.

IPyHOPPER Plan Repair
IPYHOPPER (Zaidins, Roberts, and Nau 2023) is a pro-
gression based HTN planner written in Python. The pri-
mary distinction between IPYHOPPER and other plan re-
pair methods is that it does not rely on a projection algo-
rithm. Instead, it uses an external simulator to predict the
effects of planned actions.

IPYHOPPER’s planning engine is an augmented version
of the prior IPyHOP planner (Bansod et al. 2022). For plan-
ning, input is in the form of an initial task list, initial state,
and domain description. The domain description includes
tasks, primitive actions, and method definitions. The initial
tasks are repeatedly decomposed into simpler tasks and then
finally actions based on the domain description. The de-
composition process forms a solution tree by a depth-first
traversal and every intermediate state is saved in the tree for
backtracking. When a task cannot be successfully decom-
posed, a new decomposition is attempted of the most recent
task expanded. When every task has been decomposed and
all actions’ preconditions are established, planning has suc-
cessfully completed and the actions of the tree in preorder
constitute the plan. If the planner backtracks to the sentinel
root node, which is the parent of all input tasks, planning has
failed: no decomposition can achieve the task list in order.

For plan repair, IPYHOPPER restarts the planning pro-
cess at the parent of the immediate parent of a failed action
using the current state in place of the stored state. Initially,
IPYHOPPER restricts the process to this subtree and only
backtracks further up the tree when all decompositions in the
subtree fail. Once it finds a valid decomposition, we simulate
the action execution going forward. If our simulation com-
pletes, the plan is repaired and the process is terminated. If
IPYHOPPER encounters a future simulated failure, it will
redo the repair process. This simulation-repair cycle con-
tinues until either the plan successfully repaired or root is
reached, indicating that no repaired plan is possible.

Plan Repair by Problem Rewriting
The two methods we have discussed above both share the
core pattern of resuming the planning process after some
appropriate change to the search process. They generate a
repaired plan by redoing some portion of planning process.
The rewrite method of Höller, et al. (Höller et al. 2020b) is
very different: it operates by generating a new problem and
domain definition that is solvable iff the plan can be repaired.
These definitions are generated by combining the original
problem and domain definitions, the original solution (plan),
the position reached in execution, and the disturbance. They



do not provide a method for determining whether a plan re-
pair is actually required, so a repair problem must be solved
after every disturbance. A key advantage of their algorithm
is that it is not specific to any particular HTN planner: any
planner that accepts their input format will work.

The central intuition behind the problem/domain method
is to force the planner to build a new plan that has as a pre-
fix the set of actions that were executed before the distur-
bance. The final action in this prefix is modified so that its
effects include the disturbance effects. Any decomposition
plan that is consistent with the observed actions and that con-
tains an executable suffix that performs all the initial tasks,
and achieves any specified goals.1 This definition accounts
for the distinction between repairs permitted by rewrite and
those of SHOPFIXER and IPYHOPPER. The latter systems
accept repaired plans that include methods that have been
abandoned and their tasks achieved through new decompo-
sitions not consistent with the original plan: rewrite does not.

Rewrite algorithm implementation No runnable imple-
mentation of Höller, et al. ’s algorithm was available,2 so we
implemented it ourselves; we will share our implementation
on GitHub under an open source license. Our implementa-
tion follows the original definition in using HDDL for its in-
put and output formats. Our implementation differs from the
original definition in being able to handle action and method
schemas, rather than only handling ground actions and meth-
ods (i.e., it is a lifted implementation). This required exten-
sions to some parts of the original algorithm.

REWRITE generates a new planning domain and prob-
lem, so in theory it may be coupled with any HTN planner.
In practice, since HTN problem definitions are less stan-
dardized than classical ones, there are limits to this flexi-
bility. Our implementation returns a lifted plan repair prob-
lem that can be used directly by the lifted HTN planner
SHOP3 SHOP3 (Goldman and Kuter 2019), and that can be
grounded for use with grounded planners.

We had originally intended to report on experiments that
used both SHOP3 and Panda (Höller et al. 2021) as plan-
ners for the repair problems. Unfortunately, we found that
Panda was unable to handle the benchmark domains we
have used in our experiments, namely, Rovers, Satellite, and
OpenStacks as reported next section. These domains all use
the ADL dialect of PDDL/HDDL, featuring quantified goals
and conditional effects. The parsing and grounding methods
used in Panda were not able to handle the demands of ADL
domains (we confirmed this with Panda developers), so we
had to limit ourselves to using only SHOP3.3 We refer to this
combination as Rewrite-SHOP3. However, since SHOP3 and
Panda would be solving the same problems, we are still test-
ing the essential features of the rewrite algorithm.

1Their HDDL (Höller et al. 2020a) input notation permits prob-
lems that have both initial task networks and goals.

2Daniel Höller, personal communication, 26 September 2023.
3None of the satellite problems could be parsed by Panda in

5 minutes, only 7 of the rovers, and 9 of the openstacks. The 7
rovers problems could be grounded, but only 7 of the 9 openstacks
problems. Details available upon request.

Summary The REWRITE algorithm is most appropriate
for problems where the structure of the plan tree is criti-
cal to correctness (e.g., the toll example, where movements
and payments must be balanced by the tree), but it may fail
where disturbances put the agent into a dead end that it will
have to “back out” of. IPYHOPPER and SHOPFIXER will
be the opposite: both allow for deviations in the plan tree,
so both will easily handle cases that involve backing up to
reverse a deviation and then resuming. They differ in that
IPYHOPPER will more efficiently handle deviations with
immediate impact, and SHOPFIXER can better handle de-
viations with delayed impact, at the expense of computation
that will be wasted on simple cases.

3 Experimental Design
We tested SHOPFIXER, IPYHOPPER, and Rewrite-
SHOP3 on a set of identical initial plans and disturbances
from three domains: rover, satellite, and openstacks. These
are all HTN domains, formalized equivalently in HDDL
and in SHOP3’s input language. All of these domains were
adapted from International Planning Competition (IPC)
PDDL domains predating the HTN track, with HTN meth-
ods added and PDDL goals translated into tasks. These do-
mains (with slightly different disturbances) were used in a
previously published evaluation of the SHOPFIXER plan re-
pair method (Robert P. Goldman, Ugur Kuter, and Richard
G. Freedman 2020).

The Satellite and Rover domains each have 20 problems,
and the Openstacks domain has 30. For each domain, we
ran 50 batches, where each batch was a run of each prob-
lem with one injected disturbance, randomly chosen and ran-
domly placed in the original plan. All original plans were
generated by SHOP3; they were translated into HDDL for
IPYHOPPER and Rewrite-SHOP3. For IPYHOPPER, all
inputs were translated into JSON to avoid the need for a
new HDDL parser. We wish to emphasize that each repair
method started with the same plan and same disturbance in
each batch. So for each problem there are 50 disturbance
examples, which we ran on all three of the algorithms. Run-
times were measured to the nearest hundredth of a second.
All runtimes were wall-clock times, not CPU times: we were
concerned that comparing Python CPU times with Common
Lisp CPU times might not be valid. In the event, differences
between CPU times and wall-clock times were negligible.

Planning Domains
Here we briefly introduce the domains and deviation oper-
ators used in our experiments. All three domains used the
PDDL/HDDL ADL dialect. Domains were modeled equiv-
alently in both HDDL and SHOP3; we have indicated be-
low where the SHOP3 and HDDL domains diverged. All the
original, to-be-repaired plans were generated by SHOP3.

Deviations were modeled similarly to actions, with pre-
conditions. Deviation preconditions and effects were defined
in ways that aimed to avoid making repair problems unsolv-
able. Non-trivial plan disturbances were difficult to model
without rendering problems unsolvable because the lim-
ited expressive power of PDDL (and by extension HDDL)



forced ramifications to be “compiled into” action effects
(e.g., counting the number of open stacks in the Openstacks
domain), introducing dependencies that often could not be
undone (e.g. failing the “send” operation in Openstacks had
to also restore the relevant order to “waiting”).

Rovers The Rovers domain is taken from the third IPC in
2002. Long & Fox say it is “motivated by the 2003 Mars Ex-
ploration Rover (MER) missions and the planned 2009 Mars
Science Laboratory (MSL) mission. The objective is to use
a collection of mobile rovers to traverse between waypoints
on the planet, carrying out a variety of data-collection mis-
sions and transmitting data back to a lander. The problem
includes constraints on the visibility of the lander from var-
ious locations and on the ability of individual rovers to tra-
verse between particular pairs of waypoints.” (Long and Fox
2003) Rovers problems scale in terms of size of the map,
number of goals, and the number of rovers. Disturbances
applied include losing collected data; decalibration of cam-
eras; and loss of visibility between points on the map. For
the Rovers problem, the SHOP3 domain uses a small set of
path-finding axioms to guide navigation between waypoints.
To avoid infinite loops in the navigation search space, IPY-
HOPPER does not use lookahead in the waypoint map, but
it does check for and reject cycles in the state space.

Satellite The Satellite problem also premiered in 2002,
and is described as “inspired by the problem of scheduling
satellite observations. The problems involve satellites col-
lecting and storing data using different instruments to ob-
serve a selection of targets.” (Long and Fox 2003) Distur-
bances used were changes in direction of satellites, decali-
bration, and power loss. Problems scale by number of instru-
ments, satellites and image acquisition goals.

Openstacks Openstacks was introduced, as a translation
of a standard optimization problem, in IPC 2006:

The Openstacks domains are ... based on the
“minimum maximum open stacks” combinatorial op-
timisation problem ... A manufacturer has a number
of orders, each for a combination of different prod-
ucts. Only one product can be made at a time, but the
total required quantity of that product is made at that
time. From the time that the first product requested by
an order is made to the time that all products included
in the order have been made, the order is said to be
“open” and during this time it requires a “stack” ....
The problem is to order the making of the different
products so that the maximum number of stacks that
are in use simultaneously ... is minimised. (Gerevini
et al. 2009)

Problems scale by number of orders, number of products,
and number of products in a single order. Deviations include
removing products that were previously made and causing
the shipping operation to fail. Deviations were particularly
difficult to add to Openstacks without introducing dead ends
into the search space, because there are consistency con-
straints on the state that are only implicit in the operators.
Therefore, to make repair possible, we needed to add a “re-
set” operation that would reset an order to “waiting” mode

from “started.” The SHOP3 domain for Openstacks included
axioms for a cost heuristic. Note that this is a common dif-
ficulty in plan repair: typically domains are not written in
such a way that recovery is possible if a plan encounters
disturbances because limitations in expressive power means
that ramifications must be programmed into the operator
definitions. Furthermore, since state constraints (e.g., graph
connectivity in the logistics domain) are not and cannot be
captured in PDDL, one can inadvertently make dramatic
changes to problem structure by introducing disturbances;
cf. Hoffmann (2011) on problem topology.

4 Results
Satellite The Satellite domain was the easiest for all
three repair methods. Both IPYHOPPER and SHOPFIXER
solved all of the repair problems in our data set, and solu-
tions were found quickly. Rewrite-SHOP3 solved the major-
ity of the problems, between 60% and 85% of them (Fig-
ure 2). Inspection showed that it correctly solved all the
problems that did not need repair (i.e., did not time out re-
deriving the plan). Figure 3 gives the runtimes for all three
methods, using log10 because of the range of values. IPY-
HOPPER runtimes are slightly better than SHOPFIXER
on average. The rewrite times are almost uniformly worse,
and scale worse as the problem size grows. The results for
Rewrite-SHOP3 are not surprising, since proving unsolvabil-
ity may take longer. Indeed, plotting the runtimes for success
and failure separately, demonstrates that (Figure 5). Interest-
ingly, there are no failures due to timeout: Rewrite-SHOP3
is able to prove unsolvable all of the unrepairable problems).
While the IPYHOPPER times are generally the best on av-
erage, its times vary more widely: see Figure 4.
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Figure 2: Rewrite-SHOP3 success rates for the satellite re-
pair problems (note the y axis runs only from 50-90%).

Rovers The Rovers repair problems were more difficult
than Satellite, and none of the repair methods solved all of
them. Figure 6 shows success percentages. Note the out-
liers for IPYHOPPER and SHOPFIXER in problems 3,
and 6 and for IPYHOPPER in problems 10 and 20. Gen-
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Figure 3: Satellite problem runtimes for all repair algo-
rithms, in msecs (rounded up), plotted in log10.
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erally, SHOPFIXER is more successful than IPYHOPPER,
as shown in Table 1.

Generally, while Rewrite-SHOP3 was less successful than
the other algorithms, it tracks their results except for prob-
lems 14 and 15, where the other two are uniformly success-
ful, but Rewrite-SHOP3 is only 84% (42/50) successful.

Runtimes are graphed in Figures 7, and 8. We plot the
successful and failed runs separately, because the failed runs
include both cases where an algorithm proves that the prob-
lem is unsolvable and cases where it simply runs out of time
(time limit was set at 300s).

Again, IPYHOPPER is generally faster, but SHOP-
FIXER scales better with problem difficulty. For IPYHOP-
PER, problem 3 is an outlier in elapsed time, SHOPFIXER
has issues with problem 6, and for Rewrite-SHOP3 the last
two problems, and especially problem 20, are notably more
difficult. As before, on the successful problems, IPYHOP-
PER has a higher runtime variance than SHOPFIXER (see
Figure 9; variance plotted in seconds, not transformed).

Openstacks For Openstacks, both SHOPFIXER and
Rewrite-SHOP3 solved all the repair problems. IPYHOP-
PER solved almost all, but failed for a small number (see
Table 2). The runtimes, graphed in Figure 10 clearly show
that Rewrite-SHOP3 and IPYHOPPER do not scale well
on the more difficult problems, with Rewrite-SHOP3 no-
tably worse. IPYHOPPER runtimes for problems 3, 6, and
12 are outliers: they are much more difficult than similarly-
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Figure 5: Satellite problem runtimes for Rewrite-SHOP3,
comparing successful trials versus failed trials, plotted in
log10(msec).
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Figure 6: Success rates for the Rovers repair problems for
each of the three algorithms.

numbered problems.

5 Discussion
Common Features Across all of the domains, REWRITE
is less time-efficient than the other two repair methods. This
is due to the fact that it replans ab initio, albeit against a new
problem that forces the plan to replicate already-executed
actions. This involves an extensive amount of rework, as
can be seen very clearly in the Openstacks problems, which
have the highest runtimes for generating initial plans. Note
that this could likely be substantially improved by heuristic
guidance that would direct the early part of planning towards
methods that replicate actions previously seen and that avoid
infeasibly introducing new actions.

Satellite It is unsurprising that REWRITE cannot solve
some problems that the other two algorithms solve. Many of
the repairs for satellite simply involve immediately restoring
a condition deleted by a disturbance—and if it was a con-
dition that the plan established, a re-establishment typically
will not work (see Section 2). Perhaps the surprise is that any
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Figure 7: Runtimes for the Rovers repair problems in
log10(msec) for each algorithm. These include only those
problems solved successfully by the algorithm in question.

Solver
IPyHOPPER SHOPFixer

Problem % Success % Success
3 62% 72%
5 100% 94%
6 64% 80%
7 96% 100%
9 92% 100%
10 72% 100%
13 96% 100%
20 24% 100%

Table 1: Success rates for Rover problems where either IPY-
HOPPER or SHOPFIXER did not solve all repairs. Prob-
lems not listed were all solved by both repair methods.

of these scenarios are successfully repaired by REWRITE.
We investigated further, and found that REWRITE could han-
dle all of the cases that did not require repair (where the dis-
turbance did not defeat any action preconditions). Removing
those cases gives the success rates shown in Figure 2.

Here is an example of how REWRITE’s definition of repair
makes it unable to solve a problem handled by the other two
systems. In this repair problem , instrument0 becomes
decalibrated after it has been calibrated and pointed at its ob-
servation target (phenomenon6). The way the domain is
written, calibration occurs only in a sequence of calibration
then observation. Thus there is no plan in which two calibra-
tion operations are not separated by an observation, so repair
by rewrite is impossible. The other two methods simply treat
the preparation task as having failed, and re-execute the cal-
ibration, because their repair definition is more permissive.

For this domain, IPYHOPPER is generally faster than
SHOPFIXER, although it is implemented in interpreted
Python rather than compiled Common Lisp. This is prob-
ably accounted for by the fact that SHOPFIXER invests
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Figure 8: Runtimes for the Rovers repair problems in
log10(msec) for each algorithm. These are only the prob-
lems not solved successfully by the algorithm in question.
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Figure 9: Variance in runtimes for the Rovers repair prob-
lems for IPYHOPPER and SHOPFIXER. Only success-
fully solved problems are plotted.

in building complex plan trees that include dependency in-
formation (see Figure 1) in order to more rapidly iden-
tify the location of precondition violations and their impli-
cations. SHOPFIXER also uses this information to back-
jump (Dechter 2003; Gaschnig 1979) to the point of failure,
instead of relying on chronological backtracking, as does
IPYHOPPER. For these simple problems, SHOPFIXER’s
added effort is generally not worthwhile. We note that the
variance of IPYHOPPER’s runtimes is wider than that of
SHOPFIXER, and that there are more outliers (Figure 4).

Rovers There were several Rovers problems where even
IPYHOPPER and SHOPFIXER could not find solutions—
but the three algorithms behaved quite differently in these
cases. There were 99 Rovers problems that Rewrite-SHOP3
could not repair. Of these, only 2 were due to timeouts,
both on problem 6, showing that the algorithm usually could
prove problems unrepairable. As before, SHOPFIXER’s
more permissive definition of “repairable” meant that it
solved more problems: it found only 35 unrepairable, and of
these only 3 were due to timeouts, as with Rewrite-SHOP3
these were both for problem 6. SHOPFIXER’s backjumping
appeared to serve it well in the Rovers domain: IPYHOP-
PER had much more difficulty with these problems. It failed
to repair 97 cases, of which 78 were due to timeouts. Time-



Problem Success Rate
10 98%
19 98%
28 90%
29 92%
30 96%

Table 2: Openstacks problems where IPYHOPPER did not
solve all of the problems.
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Figure 10: Runtimes for the Openstacks repair problems in
log10(msec) for each algorithm. These include only those
problems solved successfully by the algorithm in question.

outs are not a simple matter of scale: the greatest number of
timeouts (by a factor of 2) is for problem 20, but the runners-
up are 3, 6, and 10, in declining order of number of timeouts.
Since the problems are intended to scale from first to last, the
outcomes are not due only to raw scale.

Repair difficulties in the Rovers domain are due to the
nature of the disturbances in our model. The “obstruct-
visibility” disturbance can render the waypoint graph no
longer fully connected, in terms of rover reachability. Losing
a sample may also give rise to an unrepairable problem.

Openstacks The hardest of the domains, Openstacks
shows the benefit of SHOPFIXER’s more expensive tree
representation in runtime. We can see this even more clearly
if we plot the two algorithms directly against each other
(Figure 11). Indeed, IPYHOPPER’s failures in this domain
are all due to timeouts. Specific problems are indicated in
Table 2. The more difficult search space here heavily penal-
izes IPYHOPPER’s simple chronological backtracking.

In a reversal of the previous patterns, REWRITE solves all
of the problems. This is due to a difference in the way the
domain was formalized compared to the other two domains.
Recall that we had to add a new action to prevent distur-
bances from making the Openstacks problems unsolvable.
That modification had the effect of also helping REWRITE
as did the fact that action choice is primarily constrained by
preconditions, rather than by method structure, which also
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Figure 11: Direct comparison of runtimes for IPYHOPPER
and SHOPFIXER on Openstacks problems. Note that these
are plotted in seconds, and not on a log scale.

avoided issues with this algorithm. Note that this relatively
unconstrained planning also made it more difficult to gener-
ate the initial plans for this domain.

6 Conclusions and Future Directions
We have presented an analysis of three recent hierarchical
repair algorithms from the AI planning literature; namely,
SHOPFIXER, IPYHOPPER, and REWRITE. Qualitatively,
our analyses highlighted significant differences among these
methods: First, REWRITE’s definition of plan repair is
more stringent than the others; we have identified bench-
mark planning problems that are solvable for IPYHOPPER
and/or SHOPFIXER that cannot be solved by REWRITE.
Secondly, SHOPFIXER attempts to detect when a plan will
be invalid, before any actions actually fail; i.e., SHOPFIXER
invests in both data structures and computation in order to
detect compromise to a plan as soon as possible. IPYHOP-
PER, on the other hand, is not a model-based projective
planner in the same sense: it relies on an external simula-
tion to do projection for it, instead of having an internal ac-
tion model as most planners do. This difference in planning
approaches leads to different plan repair behaviors.

Our results on the efficiency of the REWRITE algorithm
should be taken with a large grain of salt. The original de-
velopers of this algorithm point out that their characteriza-
tion is intended to be conceptually correct and clean, and
that they have not yet taken into account the efficiency of
the formulation. In addition to tuning the formulation, its ef-
ficiency could be improved by improved heuristics for plan-
ner when they run against rewrite problems. In particular, a
planner searching the decomposition tree top-down should
take into account the position of its leftmost child when de-
ciding whether to choose the original methods, or methods
whose leaves are taken from the executed prefix of the plan.

Our experiences also highlight unresolved issues in ap-
plying REWRITE in grounded planning systems. How best
to schedule re-grounding vis-à-vis generation of the rewrit-



ten repair problem remains to be determined. While there
were some subtleties to resolve in developing our lifted im-
plementation, it did not have this chicken-and-egg problem.

Another interesting research direction is studying how
HTN domain engineering affects the tradeoffs between effi-
ciency and flexibility. At present, repair problems are gen-
erally created by modifying previously-existing planning
problems (including IPC problems), which are not designed
for execution, let alone to be repairable. In connection with
the general concept of stability, this may yield a new insights
in search-control for plan repair and for repairable plans; de-
riving properties from how preconditions and effects enable
planning heuristics and repairability as well as how those
preconditions and the task structure enable search control at
higher levels of the plan trees. Similar to refineability prop-
erties (Bacchus and Yang 1992; Yang 1997), this approach
can be examined formally, theoretically, and experimentally.
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