
1Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Last update: 11:09 PM, March 7, 2025

Acting, Planning,
and Learning

Malik Ghallab, Dana Nau,
and Paolo TraversoChapter 8

Probabilistic Representation and Acting

Dana S. Nau
University of Maryland

with contributions from
Mark “mak” Roberts

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://scholar.google.com/citations?user=vlbX4J8AAAAJ

2Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Motivation
● Situations where actions have multiple possible outcomes and

each outcome has a known probability distribution of occurring
▸ Part IV: Non-deterministic Models addresses multiple actions

outcomes with unknown probability distributions

● Several possible action representations
▸ Bayes nets, probabilistic actions, …

● Book doesn’t commit to any representation
▸ Mainly concentrates on the underlying semantics

roll-die(d)
pre: holding(d) = true
eff:
 1/6: top(d) ← 1
 1/6: top(d) ← 2
 1/6: top(d) ← 3
 1/6: top(d) ← 4
 1/6: top(d) ← 5
 1/6: top(d) ← 6

Credit:
Dennis Hill,
CC BY 2.0

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://www.flickr.com/people/7888217@N04
https://creativecommons.org/licenses/by/2.0/

3Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Definitions and Example

● Probabilistic domain model: Σ = (S, A, γ, Pr, cost)
▸ S and A – finite sets of states and actions
▸ γ: S × A → 2S

● γ(s,a) = {all possible “next states” after applying
action a in state s}
▸ a is applicable in state s iff γ(s,a) ≠ ∅

● Pr(s′ | s, a) = probability that a will take us to s′ from s
▸ Pr(s′ | s, a) ≠ 0 iff s′ ∈ γ(s,a)

● cost: S×A×S →
▸ cost(s,a,s′) = cost if a takes us to s′ from s
▸ may omit, default is cost(s,a,s′) = 1

● Applicable(s) = {all actions applicable in s}
 = {a ∈ A | γ(s,a) ≠ ∅}

● Start at d1, want to get to d4
● Some roads are one-way, some are two-way
● Unreliable steering when the road forks

▸ may take the wrong fork

● Simplified state and action names:
▸ write {loc(r1)=d2} as d2
▸ write move(r1,d2,d3) as m23

Goal:
Sg= {d4}

→ → 0.8
→ 0.2

←
d5

d2

→ → 0.5
←d1

r1
→ 0.5

→

↔

↔d3

d4

↔

Start:
s0= d1

(no m25)
m23

m52

m14

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

4Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

● γ(d1,m12) = {d2}
▸ Pr(d2 | d1, m12) = 1

● m21, m34, m41, m43, m45, m52, m54:
▸ deterministic like m12

● γ(d1,m14) = {d1,d4}
▸ Pr(d4 | d1, m14) = 0.5
▸ Pr(d1 | d1, m14) = 0.5

● γ(d2,m23) = {d3,d5}
▸ Pr(d3 | d2, m23) = 0.8
▸ Pr(d5 | d2, m23) = 0.2

● there’s no m25

● Start at d1, want to get to d4
● Some roads are one-way, some are two-way
● Unreliable steering when the road forks

▸ may take the wrong fork

● Simplified state and action names:
▸ write {loc(r1)=d2} as d2
▸ write move(r1,d2,d3) as m23

Goal:
Sg= {d4}

→ → 0.8
→ 0.2

←
d5

d2

→ → 0.5
←d1

r1
→ 0.5

→

↔

↔d3

d4

↔

Start:
s0= d1

(no m25)
m23

m52

m14

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

5Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

● γ(d1,m12) = {d2}
▸ Pr(d2 | d1, m12) = 1

● m21, m34, m41, m43, m45, m52, m54:
▸ deterministic like m12

● γ(d1,m14) = {d1,d4}
▸ Pr(d4 | d1, m14) = 0.5
▸ Pr(d1 | d1, m14) = 0.5

● γ(d2,m23) = {d3,d5}
▸ Pr(d3 | d2, m23) = 0.8
▸ Pr(d5 | d2, m23) = 0.2

● there’s no m25

● We will represent these problems as a graph
▸ Nodes are assignments to variables (i.e., states)
▸ Weighted edges change the assignment (i.e, actions)

• Label is action instance; value indicates Pr(s’| s,a)
● Simplified state and action names:

▸ write {loc(r1)=d2} as d2
▸ write move(r1,d2,d3) as m23

Start:
s0= d1

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

m
12

m
21

m14

m41

m23

m52

m
43 m
34 m

54
m45

Goal: Sg= {d4}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

6Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

π1 = {(d1,m12), (d2,m23), (d3,m34)}

π2 = {(d1,m12), (d2,m23), (d3,m34), (d5,m54)}

π3 = {(d1,m12), (d2,m23), (d3,m34), (d5,m56)}

π4 = {(d1,m12), (d2,m23), (d3,m34), (d5,m57), (d7,m75)}

Policies
● Policy: function π : S′ → A where S′ ⊆ S

• require π(s) ∈ Applicable(s) for every s ∈ S′
▸ Domain(π) = S′

● Transitive closure
▸ #γ(s0,π) = {all states reachable from s0 using π}

 = union of the following sets
S0 = {s0}
S1 = {states reachable from S0} = ⋃{γ(s,π(s)) | s ∈ S0}
S2 = {states reachable from S1} = ⋃{γ(s,π(s)) | s ∈ S1}
…

● Reachability graph: Graph(s,π) = (V,E)
▸ V = #γ(s,π)
▸ E = {(s,s′) | s ∈ V, s′ ∈ γ(s,π(s))}

● leaves(s,π) = γ̂(s, π) ∖ Domain(π)
▸ may be empty

d6

Start:
s0= d1

Goal: Sg= {d4}

d2

d5
0.2

0.8

0.50.5

d1

d3

d4

m
12

m
21

m14

m41

m23

m52

m
43 m
34 m

54
m45

d7

Poll: Can we use a plan
(sequence of actions) instead?
 A. yes B. no
 C. don’t know

Poll: What are the leaves
of 𝜋!?

Set minus

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

7Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Problems, Solutions
● MDP problem: P = (Σ, s0, Sg), require s0 ∉ Sg

▸ This is a specific type of MDP problem called a
goal reachability problem

▸ More generally, MDPs specify a set of terminal states

● Solution for (S, s0, Sg):
▸ A policy π such that leaves(s0,π) ∩ Sg ≠ ∅

● A solution policy π is closed if it doesn’t stop at
non-goal states unless there’s no way to continue
▸ for every state s in $γ(s0,π), either

s ∈ Domain(π) (i.e., π(s) is defined)
or s ∈ Sg

 or Applicable(s) = ∅

d6

Start:
s0= d1

Goal: Sg= {d4}

d2

d5
0.2

0.8

0.50.5

d1

d3

d4

m
12

m
21

m14

m41

m23

m52

m
43 m
34 m

54
m45

d7

Poll. Is π1 a solution?
 A. yes B. no C. don’t know

Poll. Is π1 a closed solution?

π1 = {(d1,m12), (d2,m23), (d3,m34)}

π2 = {(d1,m12), (d2,m23), (d3,m34), (d5,m54)}

π3 = {(d1,m12), (d2,m23), (d3,m34), (d5,m56)}

π4 = {(d1,m12), (d2,m23), (d3,m34), (d5,m57), (d7,m75)}

Poll. Suppose d3 was the goal
instead. Which policies are
closed wrt. d3?

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

8Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

d6

Start:
s0= d1

Goal: Sg= {d4}

d2

d5
0.2

0.8

0.50.5

d1

d3

d4

m
12

m
21

m14

m41

m23

m52

m
43 m
34 m

54
m45

d7

Histories

● History: sequence of states σ = ⟨s0, s1, s2, …⟩
produced by Run-Policy
▸ May be finite or infinite

● Let H(s,π) = {all possible histories from s using π}
● If σ ∈ H(s, π) then

▸ Pr (σ | s, π) = Õ Pr (si+1 | si, π(si)) si ,si+1∈σ
 = product of probabilities of state transitions

● ∑σ ∈ H(s,π) Pr (σ | s, π) = 1

● π3 = {(d1,m12), (d2,m23), (d3,m34), (d5,m56)}
● H(s0, π3) = {σ1, σ2}, where:

▸ σ1 = ⟨d1,d2,d3,d4⟩
▸ σ2 = ⟨d1,d2,d5,d6⟩

● Pr(σ1 | s0, π3) = 1×0.8×1 = 0.8
● Pr(σ2 | s0, π3) = 1×0.2×1 = 0.2

Run-Policy(Σ, s0, Sg, π)
s ← s0

while s ∉ Sg and s ∈ Domain(π) do
perform action π(s)
s ← observe resulting state

Poll. If s ∉ Domain(π) then what is H(s,π)?
 A. undefined B. ∅ C. {⟨⟩} D. {s}
 E. {⟨s⟩} F. other G. unsure

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

9Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

● π3 = {(d1,m12), (d2,m23), (d3,m34), (d5,m56)}

● H(s0, π3) = {σ1, σ2}:
▸ σ1 = ⟨d1,d2,d3,d4⟩ ends at a goal state; Pr(σ1 | s0, π3) = 1×0.8×1 = 0.8
▸ σ2 = ⟨d1,d2,d5,d6⟩ doesn’t; Pr(σ2 | s0, π3) = 1×0.2×1 = 0.2

● Pr(Sg | s0, π3) = Pr(σ1 | s0, π3) = 0.8

d6

Start:
s0= d1

Goal: Sg= {d4}

d2

d5
0.2

0.8

0.50.5

d1

d3

d4

m
12

m
21

m14

m41

m23

m52

m
43 m
34 m

54
m45

d7

Unsafe Solutions
● Probability of reaching a goal state:

Pr (Sg | s, π) = ∑σ∈H(s,π) {Pr (σ | s, π) | σ ends at a state in Sg}

● Equivalently:

Pr (Sg | s, π) = ' 1, if s ∈ Sg
∑s′∈γ(s,π(s)) Pr (Sg | s′, π), otherwise

● A solution is unsafe if 0 < Pr (Sg | s0, π) < 1

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

10Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

● π4 = {(d1,m12), (d2,m23), (d3,m34), (d5,m57), (d7,m75)}

● H(s0, π4) = {σ1, σ2}:
▸ σ1 = ⟨d1,d2,d3,d4⟩ ends at a goal state; Pr(σ1 | s0, π4) = 1×.8×1 = 0.8
▸ σ3 = ⟨d1,d2,d5,d7,d5,d7,…⟩ doesn’t; Pr(σ3 | s0, π4) = 1×.2×1×1×1×… = 0.2

● Pr(Sg | s0, π4) = Pr(σ1 | s0, π4) = 0.8

Unsafe Solutions
● Probability of reaching a goal state:

Pr (Sg | s, π) = ∑σ∈H(s,π) {Pr (σ | s, π) | σ ends at a state in Sg}

● Equivalently:

Pr (Sg | s, π) = ' 1, if s ∈ Sg
∑s′∈γ(s,π(s)) Pr (Sg | s′, π), otherwise

● A solution is unsafe if 0 < Pr (Sg | s0, π) < 1

d6

Start:
s0= d1

Goal: Sg= {d4}

d2

d5
0.2

0.8

0.50.5

d1

d3

d4

m
12

m
21

m14

m41

m23

m52

m
43 m
34 m

54
m45

d7

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

11Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

● A solution is safe if Pr (Sg | s0, π) = 1

● An acyclic safe solution:
▸ π2 = {(d1, m12), (d2, m23), (d3, m34),

 (d5, m54)}

● H(s0, π2) = {σ1, σ2}, where:
▸ σ1 = ⟨d1, d2, d3, d4⟩ Pr (σ1 | s0, π2) = 1×.8×1 = .8
▸ σ4 = ⟨d1, d2, d5, d4⟩ Pr (σ4 | s0, π2) = 1×.2×1 = .2

● Pr (Sg | s0, π2) = .8 + .2 = 1

Safe Solutions

Start:
s0= d1

Goal: Sg= {d4}

d2

d5
0.2

0.8

0.50.5

d1

d3

d4

m
12

m
21

m14

m41

m23

m52

m
43 m
34 m

54
m45

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

12Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Start:
s0= d1

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

m
12

m
21

m14

m41

m23

m52

m
43 m
34 m

54
m45

Safe Solutions

● A solution is safe if Pr (Sg | s0, π) = 1

● A cyclic safe solution:
▸ π5 = {(d1, m14}

● H(s0, π5) contains infinitely many histories:
▸ σ5 = ⟨d1, d4 ⟩ Pr (σ5 | s0, π5) = ½
▸ σ6 = ⟨d1, d1, d4⟩ Pr (σ6 | s0, π5) = (½)2 = ¼
▸ σ7 = ⟨d1, d1, d1, d4⟩ Pr (σ7 | s0, π5) = (½)3 = 1/8

• • •

▸ σ∞ = ⟨d1, d1, d1, d1, d1, …⟩

● Pr (Sg | s0, π5) = ½ + ¼ + 1/8 + … = 1

Poll: what is Pr (σ∞ | s0, π5)?
A. 1
B. 0
C. a number between 0 and 1
D. undefined

Goal: Sg= {d4}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

13Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

• d7 is an immediate dead end
▸ No applicable actions

• d6, d8, d9 are deep dead ends
▸ Applicable actions, but can’t reach Sg

• s is safe if ∃π such that Pr (Sg | s, π) = 1
▸ same as saying (Σ, s, Sg) has a safe solution
▸ d1, d2, d3, d4

• s is unsafe if ∃π s.t. Pr (Sg | s, π) > 0
 and ∀π, Pr (Sg | s, π) < 1
▸ same as saying (Σ, s, Sg) has an unsafe

solution but no safe solution
• d5

• s is a dead end if ∀π, Pr(Sg | s, π) = 0
▸ same as saying (Σ, s, Sg) has no solution

• d6, d7, d8, d9

• An MDP is safe if all of its states are safe

Safe and Unsafe States

Start:
s0= d1 Goal:

Sg= {d4}

d2
0.2

0.8

0.5
0.5

d1

d3

d4

m
12

m
21

m14

m41

m23

m
43 m
34

m54

d5

d6

d8

d90.5
0.5

m56 d7
m67

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

14Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Expected Cost● cost(s,a,s′) = cost of using a in s
● Extend example so that:

▸ each “horizontal” action costs 1
▸ each “vertical” action costs 100

● Let σ = ⟨s0, s1, s2, …⟩ ∈ H(s0,π)
▸ i.e., starting at s0, π can produce history σ

● Then cost(σ) = å i cost(si,π(si))

● Let π be a safe solution, i.e., Pr(Sg|s0,π) = 1
● At each state s ∈ Domain(π), expected cost of following π to goal:

▸ Weighted sum of history costs:
• Vπ(s) = åσ ∈ H(s,π) Pr(σ | s, π) cost(σ)

▸ Recursive equation
Vπ(s) = 0, if s ∈ Sg

 ås′ ∈ γ(s,π(s)) Pr(s′ | s, π(s))[cost(s,π(s),s′)+ Vπ(s′)], otherwise

Goal:
Sg= {d4}

d2

d5c = 1

c = 100c = 100

c = 1

0.2

0.8

0.5
0.5

d1
Start:
s0= d1

d3

d4

Poll: Are the two
versions equivalent?
 A. yes
 B. no

My version

From the book

Run-Policy(Σ, s0, Sg, π)
s ← s0

while s ∉ Sg and s ∈ Domain(π) do
perform action π(s)
s ← observe resulting state

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

15Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

d2

d5c = 1

c = 100c = 100

c = 1

0.2

0.8

0.5
0.5

d1

d3

d4

• Recursive equation ⇒ 4 equations, 4 unknowns
V π3(d1) = 100 + V π3(d2)
V π3(d2) = 1 + .8(V π3(d3)) + .2(V π3(d5))
V π3(d3) = 100 + V π3(d4)
V π3(d5) = 100 + V π3(d4)
V π3(d4) = 0

• So V π3(d1) = 100 + 1 + .8(100) + .2(100) = 201

• π3 = {(d1, m12), (d2, m23), (d3, m34), (d5, m54)}

• Weighted sum of history costs:

▸ σ1 = ⟨d1, d2, d3, d4⟩
• Pr (σ1 | s0, π3) = 0.8
• cost(σ1) = 100 + 1 + 100 = 201

▸ σ2 = ⟨d1, d2, d5, d4⟩
• Pr (σ2 | s0, π3) = 0.2
• cost(σ2) = 100 + 1 + 100 = 201

• V π3(d1) = .8(201) + .2(201) = 201

Example

Goal:
Sg= {d4}

Start:
s0= d1

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

16Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example
● π7 = {(d1, m14), (d2, m23), (d3, m34), (d5, m54)}
● Weighted sum of history costs:

▸ σ5 = ⟨d1, d4 ⟩
 Pr (σ5 | π7) = ½, cost (σ5) = 1

▸ σ6 = ⟨d1, d1, d4⟩
 Pr (σ6 | π7) = (½)2, cost (σ6) = 2

▸ σ7 = ⟨d1, d1, d1, d4⟩
 Pr (σ7 | π7) = (½)3, cost (σ7) = 3

• • •

● V π7(d1) = (½)1 + (½)2 2 + (½)3 3 + … = 2

● Recursive equation:
 V π7(d1) = 1 + ½(0) + ½(V π7(d1))
½V π7(d1) = 1
 V π7(d1) = 2

● Given safe solution π,
▸ Compute V π by solving n linear equations, n

unknowns
▸ n = number of states reachable from s0 using π

 = | $γ(s0,π) |

d2

d5c = 1

c = 100c = 100

c = 1

0.2

0.8

0.5
0.5

d3

d4d1 Goal:
Sg= {d4}

Start:
s0= d1

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

17Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

• π is optimal if π dominates every safe solution
• If π and π′ are both optimal, then Vπ(s) = Vπ′(s) at

every state where they’re both defined
• Example: compare π5 and π7

▸ the only state where both are defined is d1
▸ V π5(d1) = V π7(d1) = 2

• Let π and π′ be safe solutions
▸ π dominates π′ if Vπ(s) ≤ Vπ′(s)

at every state s where they’re both defined
• i.e., every state s ∈Domain(π) ∩ Domain(π′)

• On the previous two slides
▸ π3 = {(d1, m12), (d2, m23), (d3, m34), (d5, m54)}
▸ π7 = {(d1, m14), (d2, m23), (d3, m34), (d5, m54)}
▸ They differ only at d1

• V π3(d1) = 201; V π7(d1) = 2
▸ π7 dominates π3

• Compare π3 with π5 = {(d1,m14)}
▸ the only state in the domain of both policies is d1

• V π3(d1) = 201; V π5(d1) = 2
▸ π5 dominates π3

Dominance and Optimality
d2

d5c = 1

c = 100c = 100

c = 1

0.2

0.8

0.5
0.5

d3

d4d1 Goal:
Sg= {d4}

Start:
s0= d1

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

18Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

• Let V*(s) = expected cost of an optimal safe solution
• Optimality principle (Bellman’s theorem):

V*(s) = 0, if s is a goal
 mina∈Applicable(s) ås′∈γ(s,a) Pr(s′ | s,a)[cost(s,a,s′) + V*(s′)], otherwise

• Example:
▸ V*(d4) = 0
▸ V*(d3) = 100
▸ V*(d5) = min{100, 15+ V*(d2)}
▸ V*(d2) = 0.8[15 + V*(d3)] + 0.2[15 + V*(d5)]

 = 15 + 0.8V*(d3) + 0.2 V*(d5) = 95 + 0.2V*(d5)
▸ V*(d6) = 1
▸ V*(d1) = min{10+V*(d2), 0.5[20+V*(d6)] + 0.5[20]}

 = min{10+V*(d2), 20 + 0.5V*(d6)}
 = min{10+V*(d2), 20.5}

Optimality

c = 20
c = 10.5

0.5

d6

d2

d5c = 15

c = 100c = 10

0.2

0.8 d3

d4d1 Goal:
Sg= {d4}

Start:
s0= d1

Poll. What is V*(d5)?
A. 100 B. 15+V*(d2) C. other D. don’t know

Poll. What is V*(d1)?
A. 10+V*(d2) B. 20.5 C. other D. don’t know

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

19Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Summary
● Actions with probabilistic outcomes
● γ(s,a) = a set of states, Pr(s′ | s, a)
● cost(s,a,s′) ∈
● Policies

▸ Transitive closure
▸ Reachability graph, leaves

● MDP problem: P = (Σ, s0, Sg), require s0 ∉ Sg

▸ This is a goal reachability problem
● Solutions, closed solutions
● History: sequence of states

σ = ⟨s0, s1, s2, …⟩ produced by Run-Policy
● H(s,π) = {all possible histories from s using π}

● Probability of reaching a goal state:

● Unsafe and safe solutions
▸ Acyclic and cyclic safe solutions

● Expected cost
Vπ(s) = åσ ∈ H(s,π) Pr(σ | s, π) cost(σ)

or equivalently:
Vπ(s) = 0, if s ∈ Sg

 = ås′ ∈ γ(s,π(s)) Pr(s′ | s, π(s))[cost(s,π(s),s′)+ Vπ(s′)],
 otherwise

● Planning as optimization

Pr (Sg | s, π) = ∑σ∈H(s,π) {Pr (σ | s,π) | σ ends in Sg}
or equivalently:

Pr (Sg | s, π) = ' 1, if s ∈ Sg
∑s′∈γ(s,π(s)) Pr (Sg | s′, π), otherwise

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

