Last update: 11:09 PM, March 7, 2025

Acting, Planning, and Learning

Malik Ghallab, Dana Nau, and Paolo Traverso

Chapter 8 Probabilistic Representation and Acting

Dana S. Nau University of Maryland

with contributions from

Mark "mak" Roberts

Motivation

- Situations where actions have multiple possible outcomes and each outcome has a *known* probability distribution of occurring
 - Part IV: Non-deterministic Models addresses multiple actions outcomes with unknown probability distributions
- Several possible action representations
 - Bayes nets, probabilistic actions, ...
- Book doesn't commit to any representation
 - Mainly concentrates on the underlying semantics

Credit: Dennis Hill CC BY 2.0

Definitions and Example

- Probabilistic domain model: $\Sigma = (S, A, \gamma, Pr, cost)$
 - ► *S* and *A* − finite sets of states and actions
 - $\gamma: S \times A \rightarrow 2^S$
- γ(s,a) = {all possible "next states" after applying action a in state s}
 - *a* is applicable in state *s* iff $\gamma(s,a) \neq \emptyset$
- Pr(s' | s, a) = probability that *a* will take us to *s'* from *s*
 - $Pr(s' | s, a) \neq 0$ iff $s' \in \gamma(s, a)$
- cost: $S \times A \times S \to \mathbb{R}$
 - cost(s,a,s') = cost if a takes us to s' from s
 - may omit, default is cost(s,a,s') = 1
- Applicable(s) = {all actions applicable in s} = $\{a \in A \mid \gamma(s,a) \neq \emptyset\}$

- Start at d1, want to get to d4
- Some roads are one-way, some are two-way
- Unreliable steering when the road forks
 - may take the wrong fork
- Simplified state and action names:
 - write {loc(r1)=d2} as d2
 - write move(r1,d2,d3) as m23

- $\gamma(d1,m12) = \{d2\}$
 - Pr(d2 | d1, m12) = 1
- m21, m34, m41, m43, m45, m52, m54:
 - deterministic like m12
- $\gamma(d1,m14) = \{d1,d4\}$
 - Pr(d4 | d1, m14) = 0.5
 - Pr(d1 | d1, m14) = 0.5
- $\gamma(d2,m23) = \{d3,d5\}$
 - ▶ Pr(d3 | d2, m23) = 0.8
 - ▶ Pr(d5 | d2, m23) = 0.2
- there's no m25

- Start at d1, want to get to d4
- Some roads are one-way, some are two-way
- Unreliable steering when the road forks
 - may take the wrong fork
- Simplified state and action names:
 - write {loc(r1)=d2} as d2
 - write move(r1,d2,d3) as m23

- $\gamma(d1,m12) = \{d2\}$
 - Pr(d2 | d1, m12) = 1
- m21, m34, m41, m43, m45, m52, m54:
 - deterministic like m12
- $\gamma(d1,m14) = \{d1,d4\}$
 - Pr(d4 | d1, m14) = 0.5
 - Pr(d1 | d1, m14) = 0.5
- $\gamma(d2,m23) = \{d3,d5\}$
 - ▶ Pr(d3 | d2, m23) = 0.8
 - ▶ Pr(d5 | d2, m23) = 0.2
- there's no m25

- We will represent these problems as a graph
 - Nodes are assignments to variables (i.e., states)
 - Weighted edges change the assignment (i.e, actions)
 - Label is action instance; value indicates Pr(s'| s,a)
- Simplified state and action names:
 - write {loc(r1)=d2} as d2
 - write move(r1,d2,d3) as m23

• *Policy*: function $\pi : S' \to A$ where $S' \subseteq S$

- require $\pi(s) \in \text{Applicable}(s)$ for every $s \in S'$
- $Domain(\pi) = S'$
- Transitive closure
 - γ̂(s₀,π) = {all states reachable from s₀ using π}
 = union of the following sets

 $S_0 = \{s_0\}$

 $S_1 = \{\text{states reachable from } S_0\} = \bigcup \{\gamma(s, \pi(s)) \mid s \in S_0\}$

 $S_2 = \{ \text{states reachable from } S_1 \} = \bigcup \{ \gamma(s, \pi(s)) \mid s \in S_1 \}$

Set minus

- Reachability graph: $Graph(s,\pi) = (V,E)$
 - $V = \hat{\gamma}(s, \pi)$

. . .

- $E = \{(s,s') \mid s \in V, s' \in \gamma(s,\pi(s))\}$
- $leaves(s,\pi) = \hat{\gamma}(s,\pi) \setminus \text{Domain}(\pi)$

may be empty

 $\pi_1 = \{(d1,m12), (d2,m23), (d3,m34)\}$

 $\pi_2 = \{(d1,m12), (d2,m23), (d3,m34), (d5,m54)\}$

 $\pi_3 = \{(d1,m12), (d2,m23), (d3,m34), (d5,m56)\}$

 $\pi_4 = \{(d1,m12), (d2,m23), (d3,m34), (d5,m57), (d7,m75)\}$

Poll: Can we use a plan (sequence of actions) instead? A. yes B. no C. don't know

Poll: What are the leaves of π_3 ?

Problems, Solutions

- MDP problem: $P = (\Sigma, s_0, S_g)$, require $s_0 \notin S_g$
 - This is a specific type of MDP problem called a goal reachability problem
 - More generally, MDPs specify a set of terminal states
- *Solution* for (Σ, s_0, S_g) :
 - A policy π such that $leaves(s_0,\pi) \cap S_g \neq \emptyset$
- A solution policy π is *closed* if it doesn't stop at non-goal states unless there's no way to continue
 - for every state s in γ̂(s₀,π), either
 s ∈ Domain(π) (i.e., π(s) is defined)
 or s ∈ S_g
 π₁ =
 or Applicable(s) = Ø

Poll. Is π_1 a solution? A. yes B. no C. don't know **Poll.** Is π_1 a closed solution?

Poll. Suppose d3 was the goal instead. Which policies are closed wrt. d3?

 $\pi_1 = \{(d1,m12), (d2,m23), (d3,m34)\}$

 $\pi_2 = \{(d1,m12), (d2,m23), (d3,m34), (d5,m54)\}$

 $\pi_3 = \{(d1,m12), (d2,m23), (d3,m34), (d5,m56)\}$

 $\pi_4 = \{(d1,m12), (d2,m23), (d3,m34), (d5,m57), (d7,m75)\}$

Run-Policy(Σ , s_0 , S_g , π) $s \leftarrow s_0$ while $s \notin S_g$ and $s \in Domain(\pi)$ do perform action $\pi(s)$ $s \leftarrow$ observe resulting state

- *History*: sequence of states $\sigma = \langle s_0, s_1, s_2, ... \rangle$ produced by Run-Policy
 - May be finite or infinite
- Let $H(s,\pi) = \{ \text{all possible histories from } s \text{ using } \pi \}$
- If $\sigma \in H(s, \pi)$ then
 - $\Pr(\sigma | s, \pi) = \prod_{s_i, s_{i+1} \in \sigma} \Pr(s_{i+1} | s_i, \pi(s_i))$
 - = product of probabilities of state transitions
- $\sum_{\sigma \in H(s,\pi)} \Pr(\sigma | s, \pi) = 1$

Poll. If $s \notin Domain(\pi)$ then what is $H(s,\pi)$?					
A. undefined	B.Ø	C. {()}	D. $\{s\}$		
E. $\{\langle s \rangle\}$	F. other	G. unsure			

• $\pi_3 = \{(d1,m12), (d2,m23), (d3,m34), (d5,m56)\}$

•
$$H(s_0, \pi_3) = \{\sigma_1, \sigma_2\}$$
, where:

- $\sigma_1 = \langle d1, d2, d3, d4 \rangle$
- $\sigma_2 = \langle d1, d2, d5, d6 \rangle$
- $\Pr(\sigma_1 | s_0, \pi_3) = 1 \times 0.8 \times 1 = 0.8$
- $\Pr(\sigma_2 | s_0, \pi_3) = 1 \times 0.2 \times 1 = 0.2$

Unsafe Solutions m52 • Probability of reaching a goal state: $\Pr(S_g | s, \pi) = \sum_{\sigma \in H(s,\pi)} \{\Pr(\sigma | s, \pi) | \sigma \text{ ends at a state in } S_g\}$ d2 m23 0.8 d3 m54 m12 m21 m34 $\Pr(S_g | s, \pi) = \begin{cases} 1, & \text{if } s \in S_g \\ \sum_{s' \in \gamma(s, \pi(s))} \Pr(S_g | s', \pi), & \text{otherwise} \end{cases}$ n43 m41 Start: d1 $s_0 = d1$

- A solution is *unsafe* if $0 < \Pr(S_g | s_0, \pi) < 1$
 - $\pi_3 = \{(d1, m12), (d2, m23), (d3, m34), (d5, m56)\}$
 - $H(s_0, \pi_3) = \{\sigma_1, \sigma_2\}$:

• Equivalently:

- $\sigma_1 = \langle d1, d2, d3, d4 \rangle$ ends at a goal state; $\Pr(\sigma_1 | s_0, \pi_3) = 1 \times 0.8 \times 1 = 0.8$
- $\sigma_2 = \langle d1, d2, d5, d6 \rangle$ doesn't; $Pr(\sigma_2 | s_0, \pi_3) = 1 \times 0.2 \times 1 = 0.2$
- $\Pr(S_{g} | s_0, \pi_3) = \Pr(\sigma_1 | s_0, \pi_3) = 0.8$

d6

d7

d5

mas

d4

Goal: $S_g = \{ d4 \}$

m14

0.5 0.5

Unsafe Solutions d6 m52 d5 d7 • Probability of reaching a goal state: $\Pr(S_g | s, \pi) = \sum_{\sigma \in H(s,\pi)} \{\Pr(\sigma | s, \pi) | \sigma \text{ ends at a state in } S_g\}$ d2 m23 0.8 d3 m54 m12 m21 m34 $\Pr(S_g | s, \pi) = \begin{cases} 1, & \text{if } s \in S_g \\ \sum_{s' \in \gamma(s, \pi(s))} \Pr(S_g | s', \pi), & \text{otherwise} \end{cases}$ n43 MAS m41 Start: d1 $s_0 = d1$ d4 m14

0.5 0.5

Goal: $S_g = \{ d4 \}$

- A solution is *unsafe* if $0 < \Pr(S_g | s_0, \pi) < 1$
 - $\pi_4 = \{(d1, m12), (d2, m23), (d3, m34), (d5, m57), (d7, m75)\}$
 - $H(s_0, \pi_4) = \{\sigma_1, \sigma_2\}$:

• Equivalently:

- $\sigma_1 = \langle d1, d2, d3, d4 \rangle$ ends at a goal state; $\Pr(\sigma_1 | s_0, \pi_4) = 1 \times .8 \times 1 = 0.8$
- $\sigma_3 = \langle d1, d2, d5, d7, d5, d7, ... \rangle$ doesn't; $Pr(\sigma_3 | s_0, \pi_4) = 1 \times .2 \times 1 \times 1 \times 1 \times ... = 0.2$
- $\Pr(S_{\sigma} | s_0, \pi_4) = \Pr(\sigma_1 | s_0, \pi_4) = 0.8$

Safe Solutions

• A solution is *safe* if $Pr(S_g | s_0, \pi) = 1$

- An *acyclic* safe solution:
 - $\pi_2 = \{(d1, m12), (d2, m23), (d3, m34), (d5, m54)\}$

- H(s₀, π₂) = {σ₁, σ₂}, where:
 σ₁ = (d1, d2, d3, d4) Pr (σ₁ | s₀, π₂) = 1 × .8 × 1 = .8
 σ₄ = (d1, d2, d5, d4) Pr (σ₄ | s₀, π₂) = 1 × .2 × 1 = .2
- $\Pr(S_g | s_0, \pi_2) = .8 + .2 = 1$

Safe Solutions

 $\Pr(\sigma_5 \mid s_0, \pi_5) = \frac{1}{2}$

 $\Pr(\sigma_6 \mid s_0, \pi_5) = (\frac{1}{2})^2 = \frac{1}{4}$

 $\Pr(\sigma_7 \mid s_0, \pi_5) = (\frac{1}{2})^3 = \frac{1}{8}$

• A solution is *safe* if $Pr(S_g | s_0, \pi) = 1$

• A *cyclic* safe solution:

• $\pi_5 = \{(d1, m14)\}$

- $H(s_0, \pi_5)$ contains infinitely many histories:
 - $\sigma_5 = \langle d1, d4 \rangle$
 - $\sigma_6 = \langle d1, d1, d4 \rangle$
 - $\sigma_7 = \langle d1, d1, d1, d4 \rangle$
 - • •
 - $\sigma_{\infty} = \langle d1, d1, d1, d1, d1, \ldots \rangle$
- $\Pr(S_g | s_0, \pi_5) = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 1$

Poll: what is $Pr(\sigma_{\infty} | s_0, \pi_5)$? A. 1 B. 0 C. a number between 0 and 1 D. undefined

Safe and Unsafe States

- s is safe if $\exists \pi$ such that $\Pr(S_g | s, \pi) = 1$
 - same as saying (Σ, s, S_g) has a safe solution
 - ▶ d1, d2, d3, d4
- s is unsafe if $\exists \pi$ s.t. $\Pr(S_g | s, \pi) > 0$ ulletand $\forall \pi$, $\Pr(S_g | s, \pi) < 1$
 - same as saying (Σ, s, S_g) has an unsafe solution but no safe solution
 - d5
- s is a dead end if $\forall \pi$, $\Pr(S_g | s, \pi) = 0$
 - same as saying (Σ, s, S_g) has no solution
 - d6, d7, d8, d9
- An MDP is *safe* if all of its states are safe ullet

- d7 is an *immediate* dead end
 - No applicable actions
- d6, d8, d9 are *deep* dead ends
 - Applicable actions, but can't reach S_{g}

- cost(s, a, s') = cost of using a in s
- Extend example so that:
 - each "horizontal" action costs 1
 - each "vertical" action costs 100
- Let $\sigma = \langle s_0, s_1, s_2, \ldots \rangle \in H(s_0, \pi)$
 - i.e., starting at s_0 , π can produce history σ
- Then $cost(\sigma) = \sum_{i} cost(s_i, \pi(s_i))$
- Let π be a safe solution, i.e., $\Pr(S_g|s_0,\pi) = 1$
- At each state $s \in Domain(\pi)$, expected cost of following π to goal:
 - Weighted sum of history costs:
 - $V^{\pi}(s) = \sum_{\sigma \in H(s,\pi)} \Pr(\sigma \mid s, \pi) \operatorname{cost}(\sigma)$
 - perform action $\pi(s)$ Recursive equation From the book $s \leftarrow$ observe resulting state $V^{\pi}(s) = \begin{cases} 0, \text{ if } s \in S_g \\ \sum_{s' \in v(s,\pi(s))} \Pr(s' \mid s, \pi(s))[\operatorname{cost}(s,\pi(s),s') + V^{\pi}(s')], \text{ otherwise} \end{cases}$

Expected Cost

A. yes

B. no

My version

Run-Policy(Σ , s_0 , S_g , π)

while $s \notin S_g$ and $s \in Domain(\pi)$ do

14

 $s \leftarrow s_0$

- $\pi_3 = \{(d1, m12), (d2, m23), (d3, m34), (d5, m54)\}$
- Weighted sum of history costs:
 - $\sigma_1 = \langle d1, d2, d3, d4 \rangle$
 - $\Pr(\sigma_1 | s_0, \pi_3) = 0.8$
 - $cost(\sigma_1) = 100 + 1 + 100 = 201$
 - $\sigma_2 = \langle d1, d2, d5, d4 \rangle$
 - $\Pr(\sigma_2 | s_0, \pi_3) = 0.2$
 - $cost(\sigma_2) = 100 + 1 + 100 = 201$
- $V^{\pi_3}(d1) = .8(201) + .2(201) = 201$

- Recursive equation \Rightarrow 4 equations, 4 unknowns $V^{\pi_3}(d1) = 100 + V^{\pi_3}(d2)$ $V^{\pi_3}(d2) = 1 + .8(V^{\pi_3}(d3)) + .2(V^{\pi_3}(d5))$ $V^{\pi_3}(d3) = 100 + V^{\pi_3}(d4)$ $V^{\pi_3}(d5) = 100 + V^{\pi_3}(d4)$ $V^{\pi_3}(d4) = 0$
- So $V^{\pi_3}(d1) = 100 + 1 + .8(100) + .2(100) = 201$

- $\pi_7 = \{(d1, m14), (d2, m23), (d3, m34), (d5, m54)\}$
- Weighted sum of history costs:
 - $\sigma_5 = \langle d1, d4 \rangle$ $\Pr(\sigma_5 | \pi_7) = \frac{1}{2}, \quad \cot(\sigma_5) = 1$ • $\sigma_6 = \langle d1, d1, d4 \rangle$ $\Pr(\sigma_6 | \pi_7) = (\frac{1}{2})^2, \quad \cot(\sigma_6) = 2$ • $\sigma_7 = \langle d1, d1, d1, d4 \rangle$ $\Pr(\sigma_7 | \pi_7) = (\frac{1}{2})^3, \quad \cot(\sigma_7) = 3$...
- $V^{\pi_7}(d1) = (\frac{1}{2})1 + (\frac{1}{2})^2 2 + (\frac{1}{2})^3 3 + \dots = 2$
- Recursive equation:

 $V^{\pi_{7}}(d1) = 1 + \frac{1}{2}(0) + \frac{1}{2}(V^{\pi_{7}}(d1))$ $\frac{1}{2}V^{\pi_{7}}(d1) = 1$ $V^{\pi_{7}}(d1) = 2$

- Given safe solution π ,
 - Compute V^π by solving n linear equations, n unknowns
 - n = number of states reachable from s_0 using $\pi = |\hat{\gamma}(s_0, \pi)|$

Dominance and Optimality

- Let π and π' be safe solutions
 - *π* dominates *π*' if V^π(s) ≤ V^{π'}(s) at every state *s* where they're both defined
 - i.e., every state $s \in Domain(\pi) \cap Domain(\pi')$
- On the previous two slides
 - $\pi_3 = \{(d1, m12), (d2, m23), (d3, m34), (d5, m54)\}$
 - $\pi_7 = \{(d1, m14), (d2, m23), (d3, m34), (d5, m54)\}$
 - They differ only at d1
 - $V^{\pi_3}(d1) = 201; \quad V^{\pi_7}(d1) = 2$
 - π_7 dominates π_3
- Compare π_3 with $\pi_5 = \{(d1, m14)\}$
 - the only state in the domain of both policies is d1
 - $V^{\pi_3}(d1) = 201; \quad V^{\pi_5}(d1) = 2$
 - π_5 dominates π_3

- π is *optimal* if π dominates *every* safe solution
- If π and π' are both optimal, then $V^{\pi}(s) = V^{\pi'}(s)$ at every state where they're both defined
- Example: compare π_5 and π_7
 - the only state where both are defined is d1
 - $V^{\pi_5}(d1) = V^{\pi_7}(d1) = 2$

Optimality

- Let $V^*(s)$ = expected cost of an optimal safe solution
- *Optimality principle* (Bellman's theorem):

 $V^*(s) = \begin{cases} 0, \text{ if } s \text{ is a goal} \\ \min_{a \in \text{Applicable}(s)} \sum_{s' \in \gamma(s,a)} \Pr(s' \mid s,a) [\operatorname{cost}(s,a,s') + V^*(s')], \text{ otherwise} \end{cases}$

- Example:
 - $V^*(d4) = 0$
 - $V^*(d3) = 100$
 - $V^*(d5) = \min\{100, 15 + V^*(d2)\}$
 - $V^*(d2) = 0.8[15 + V^*(d3)] + 0.2[15 + V^*(d5)]$ = 15 + 0.8 $V^*(d3)$ + 0.2 $V^*(d5) = 95 + 0.2V^*(d5)$
 - ► V*(d6) = 1
 - ► $V^*(d1) = \min\{10+V^*(d2), 0.5[20+V^*(d6)]+0.5[20]\}$ = $\min\{10+V^*(d2), 20+0.5V^*(d6)\}$ = $\min\{10+V^*(d2), 20.5\}$

Poll. What is $V^*(d5)$?		
A. 100 B. 15+V*(d2)	C. other	D. don't know

Poll. What is V	^{**} (d1)?		
A. 10+V*(d2)	B. 20.5	C. other	D. don't know

Summary

- Actions with probabilistic outcomes
- $\gamma(s,a) = a$ set of states, Pr(s' | s, a)
- $cost(s, a, s') \in \mathbb{R}$
- Policies
 - Transitive closure
 - Reachability graph, leaves
- MDP problem: $P = (\Sigma, s_0, S_g)$, require $s_0 \notin S_g$
 - This is a goal reachability problem
- Solutions, closed solutions
- *History*: sequence of states
 - $\sigma = \langle s_0, s_1, s_2, \ldots \rangle$ produced by Run-Policy
- $H(s,\pi) = \{ \text{all possible histories from } s \text{ using } \pi \}$

- Probability of reaching a goal state:
 - $\Pr(S_g | s, \pi) = \sum_{\sigma \in H(s,\pi)} \{\Pr(\sigma | s, \pi) | \sigma \text{ ends in } S_g\}$ or equivalently:

$$\Pr(S_g | s, \pi) = \begin{cases} 1, & \text{if } s \in S_g \\ \sum_{s' \in \gamma(s, \pi(s))} \Pr(S_g | s', \pi), & \text{otherwise} \end{cases}$$

- Unsafe and safe solutions
 - Acyclic and cyclic safe solutions
- Expected cost
 - $V^{\pi}(s) = \sum_{\sigma \in H(s,\pi)} \Pr(\sigma \mid s, \pi) \operatorname{cost}(\sigma)$ or equivalently:

$$V^{\pi}(s) = 0, \text{ if } s \in S_g$$

= $\sum_{s' \in \gamma(s,\pi(s))} \Pr(s' \mid s, \pi(s)) [\operatorname{cost}(s,\pi(s),s') + V^{\pi}(s')],$
otherwise

• Planning as optimization