
1Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Last update: 11:09 PM, March 7, 2025

Acting, Planning,
and Learning

Malik Ghallab, Dana Nau,
and Paolo TraversoChapter 6

Acting with HTNs

Dana S. Nau
University of Maryland

with contributions from
Mark “mak” Roberts

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://scholar.google.com/citations?user=vlbX4J8AAAAJ

2Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Using HTN Domain Models for Acting

● Unlike an HTN domain model, the actor’s environment is not necessarily deterministic or static
▸ Exogenous events, unanticipated action outcomes ⇒ current state may be different from what an

HTN model would predict
● Actor can’t backtrack to a previous state; prior actions are in the past

● HTN domain models still are very useful for providing operational models to the actor
▸ How to carry out “standard operating procedures”
▸ How to perform complex tasks without searching through a large state space
▸ How to avoid situations where unanticipated events are likely to cause bad outcomes
▸ How to recover when unanticipated events occur

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

3Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Reactive HTN Actor
● Like TO-HTN-Forward but executes each action

▸ Can similarly modify other Chapter 5 algorithms
Line
0 Return success or failure, not a plan
1 s isn’t an argument, observe it instead
3 Instead of computing γ, execute action
2 Failure recovery: if m fails, try next one

▸ if they all fail, return failure to next higher
level in the recursion stack,
to try other methods there

Poll 1. Is line doing backtracking?
A. Yes B. No C. Unsure

0

● At Line 2, a bad method instance can lead to
non-optimal solution or failure
▸ Can use a heuristic function
▸ Can call an HTN planner – but other ways

have less computational overhead

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

4Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

8

Planning stage
Acting stage

Run-HLookahead

HTN-Run-Lookahead(Σ, T)
while True do:

s ← observed current state
π = Lookahead(Σ, s, T)
if π = failure then return failure
if π = ⟨ ⟩ then return success
a ← pop(π)
trigger execution of a

● Here, Lookahead is an HTN planner
● Goal formula may not exist

▸ Cannot rely on s ⊨ g
▸ Need Lookahead to return ⟨ ⟩ iff no actions

are needed to accomplish T

● Call Lookahead, get π, perform 1st action, call
HLookahead again …

● Useful when unexpected things are likely to happen
▸ Replans immediately

● Lookahead needs to return quickly
▸ Otherwise, HTN-Run-Lookahead may pause

repeatedly waiting for Lookahead to return
▸ May want Lookahead to look a limited distance

or horizon ahead

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

5Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Run-HLookahead (Example 1)

HTN-Run-Lookahead(Σ, T)
while True do:

s ← observed current state
π = Lookahead(Σ, s, T)
if π = failure then return failure
if π = ⟨ ⟩ then return success
a ← pop(π)
trigger execution of a

● Call HTN-Run-Lookahead with Lookahead = TO-HTN-Forward (THF)
▸ Σ = the TOHTN domain in Example 5.8
▸ P = (Σ, s0, T = ⟨{pile(c1)=p2}⟩)

● If nothing unexpected happens:
▸ Call TO-HTN-Forward(Σ, s0, T)

• π = ⟨take(r1,c1,c2,p1,d1), move(r1,d1,d2),
put(r1,c1,c3,p2,d2)⟩

▸ Execute take(r1,c1,c2,p1,d1)
▸ Call THF(..), get π = ⟨move(r1,d1,d2), put(r1,c1,c3,p2,d2)⟩
▸ execute move(r1,d1,d2),
▸ call THF(..), get π = ⟨put(r1,c1,c3,p2,d2)⟩
▸ execute put(r1,c1,c3,p2,d2),
▸ Call THF(..), get π = ⟨ ⟩, return success

● If something unexpected happens but the problem is still solvable:
▸ Call THF(..) with latest observed state, it returns a new plan
▸ This could fail if there is no applicable method for the new state!

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

6Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Run-Lazy-HLookahead

● Could also add a Simulate program as in
Run-Lazy-Lookahead

● Two different tests for ⟨ ⟩
▸ If we’ve exhausted the current plan, call

Lookahead
▸ If Lookahead returns ⟨ ⟩, return success

● Requires Lookahead to return ⟨ ⟩ iff no actions are
needed to accomplish T

Planning Stage
Acting Stage

HTN-Run-Lazy-Lookahead(Σ, T)
π ← ⟨ ⟩; a ← nil
while True do:

if π = ⟨ ⟩ or execution of a failed then
s ← observed state
π = Lookahead(Σ, s, T)
if π = failure then return failure
if π = ⟨ ⟩ then return success

a ← pop(π)
trigger execution of a

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

7Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Run-Lazy-HLookahead (Example 1)

● Call HTN-Run-Lazy-Lookahead
with Lookahead = TO-HTN-Forward (THF)
▸ Σ = TOHTN domain in Example 5.8
▸ initial state s0, T = ⟨{pile(c1)=p2}⟩

● If nothing unexpected happens:
▸ Call THF(Σ, s0, T)

• π = ⟨take(r1,c1,c2,p1,d1), move(r1,d1,d2),
put(r1,c1,c3,p2,d2)⟩

▸ Pop actions from π and execute them, until π = ⟨ ⟩
▸ Call THF again, get π = ⟨ ⟩, return success

● If something unexpected happens but the problem is
still solvable:
▸ Eventually, either π = ⟨ ⟩ or a has failed
▸ Call THF with observed state, it returns a new plan

● HTN-Run-Lookahead is similar but it calls Lookahead
before each action is executed

HTN-Run-Lazy-Lookahead(Σ, T)
π ← ⟨ ⟩; a ← nil
while True do:

if π = ⟨ ⟩ or execution of a failed then
s ← observed state
π = Lookahead(Σ, s, T)
if π = failure then return failure
if π = ⟨ ⟩ then return success

a ← pop(π)
trigger execution of a

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

8Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example 2
● POHTN planning domain

▸ Cranes at loading docks, not on the robots
● Actions:

▸ The usual move action, and these:

● Methods

● The usual navigate methods

d1 d2
p2
c3
c2r1

k2k1

p1

c1

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

9Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example 2
● Call HTN-Run-Lazy-Lookahead with Lookahead = POHTN-

Forward
▸ Σ = POHTN domain on previous page
▸ initial state s0, the only task in T is put-on-robot(c1,r1)

● If nothing unexpected happens:
▸ Call POTHN-Forward(Σ, s0, T)

• Two solution plans, suppose it returns this one:
• π2 = ⟨unstack(k2,c1,c2,p2,d2), move(r1,d1,d2),

load(k2,c1,r1,d2)⟩
▸ Pop actions from π and execute them, until π = ⟨ ⟩
▸ Call POHTN-Forward again, get π = ⟨ ⟩, return success

● Suppose move fails without changing the current state:
▸ Call POHTN-Forward(Σ, s0, T)

• failure: no applicable methods when k2 is holding c1
● Run-Lookahead

▸ Call POHTN-Forward, get plan, execute unstack, call PPlan,
PPlan fails

Run-Lazy-HLookahead(Σ, T)
π ← ⟨ ⟩; a ← nil
while True do:

if π = ⟨ ⟩ or execution of a failed then
s ← observed state
π = HTN-Lookahead(Σ, s, T)
if π = failure then return failure
if π = ⟨ ⟩ then return success

a ← pop(π)
trigger execution of a

d1 d2
p2
c3
c2r1

k2k1

p1

c1

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

10Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Error Recovery in HTN Domains

● HTN methods require the solution plan to
follow a particular trajectory

● Encode requirements that aren’t explicit in the
classical planning domain
▸ Safety requirements:

• Secure a container onto the robot before
starting to move the robot

▸ Commitments to other agents
• Don’t use a particular resource, because

others may need it
▸ A company’s standard operating procedures

● HTN-Run-Lookahead and HTN-Run-Lazy-Lookahead
don’t know anything about the trajectory
requirements

● That’s OK if nothing goes wrong
● If unexpected events occur, need to recover in a way

that still satisfies the trajectory requirements
● Three approaches

1. Modify TO-HTN-Act to call an HTN planner
• HTN planner returns a method selection

2. Modify HTN planner to return a solution tree
• Actor traverses the tree

3. Actor calls HTN planner to do replanning in a
modified domain

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

11Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

method inst.

task task
method inst. method inst.

task

…act.

task

act. act. …act.

task

act. act.……act. act.act.

task
method inst. method inst.method inst. . . .

…act.

task

act. act. …act.

task

act. act. … …act.

task

act. act.

method inst. method inst. method inst.. . .

. . .

…

…

TO-HTN-Act (modified) with an HTN Planner

● HTN planner similar to TO-HTN-Forward, but returns the top-level
method in its solution tree

● Suppose there’s an execution error here
▸ TO-HTN-Act calls the planner here, tells it to use a different method

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

12Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

method inst.

task task
method inst. method inst.

task

…act.

task

act. act. …act.

task

act. act.……act. act.act.

task
method inst. method inst.method inst. . . .

…act.

task

act. act. …act.

task

act. act. … …act.

task

act. act.

method inst. method inst. method inst.. . .

. . .

…

…

Traversing a Solution Tree

● HTN planner returns a solution tree
● Actor traverses the tree
● Suppose there’s an execution error here

▸ Actor calls the planner here, tells it
to use a different method

● HTN planner returns a solution tree, actor traverses the tree
● Time vs. space tradeoff

▸ Here, we need the entire tree
▸ In TO-HTN-Act, we don’t but the actor and planner

duplicate effort, repeatedly recreating the current part of
the tree

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

13Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Modifying the Planning Domain

● Modified version of HTN-Run-Lazy-Lookahead
▸ Calls TPlan to get a plan

● Suppose there’s an execution error here
▸ ak2 was supposed to produce

state sk2
▸ it produced state sk2′ instead

● Actor calls TO-HTN-Forward again, with the
same initial state s0 and task t as before

● Modified planning domain
▸ Methods are modified so that the initial

actions of the plan must be a11, …, akn
▸ Action ak2 is modified so that γ(sk1, ak2) = sk2′

method inst.

task task
method inst. method inst.

task

. . .

…a22

task

a21 a2n …ak2

task

ak1 akn……a11 a1na12

task
m2 mkm1 . . .

…act.

task

act. act. …act.

task

act. act. … …act.

task

act. act.

method inst. method inst. method inst.. . .…

…

initial
state s0

initial task t

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

14Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Summary

● Issues
▸ Actor’s environment may not be deterministic or static
▸ Actor can’t backtrack to a previous state

● TO-HTN-Act: reactive actor similar to TO-HTN-Forward
● HTN-Run-Lookahead, HTN-Run-Lazy-Lookahead

▸ Examples where they work well, where they don’t
● Error recovery in HTN domains
● Three approaches

▸ TO-HTN-Act modified to call an HTN planner
▸ Actor that traverses a solution tree
▸ Actor that re-invokes TO-HTN-Forward on the

original problem in a modified planning domain

● Tradeoff: time versus space

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

