
1Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Last update: 11:09 PM, March 7, 2025

Acting, Planning,
and Learning

Malik Ghallab, Dana Nau,
and Paolo TraversoChapter 5

HTN Representation and Planning

Dana S. Nau
University of Maryland

with contributions from
Mark “mak” Roberts

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://scholar.google.com/citations?user=vlbX4J8AAAAJ

2Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Hierarchical Task Network (HTN) Planning

● For some planning problems, we may already
have ideas for how to look for solutions

● Example: travel to a destination that’s far away:
▸ Brute-force search:

• many combinations of vehicles and
routes

▸ Experienced human: small number of
“recipes”
 e.g., flying:

1. buy ticket from local airport to
remote airport

2. travel to local airport
3. fly to remote airport
4. travel to final destination

● Two ways to put such information into a
planner
▸ Domain-specific algorithm
▸ Domain-independent planning engine +

domain-specific planning information
• HTN planning (this Part)

● Ingredients:
▸ state-variable planning domain (Part I)
▸ tasks: activities to perform
▸ HTN methods: ways to perform tasks

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

3Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Total-Order HTN Planning

● Three kinds of tasks
▸ Primitive task: head of an action
▸ Compound task: name(args)

• name is a compound-task name
▸ Goal task: goal(g)

• g is any classical goal formula

● Method: a tuple
(head, nonprimitive task,
preconditions, subtasks)

● Write it as pseudocode:
method-name(args)
 Task: nonprimitive task
 Pre: preconditions
 Sub: list of subtasks

● TOHTN planning domain: a pair (Σ,M)
▸ Σ: state-variable planning domain
▸M: set of methods

● TOHTN planning problem P = (Σ,M,s0,T)
▸ T = ⟨t1, t2, …, tk⟩

● Solution for P:
▸ any executable plan that can be

generated for T by applying
• methods to nonprimitive tasks
• actions to primitive tasks

s0

task

action

method

tasktask

task

method

task

s1 s2action s3action

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

4Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

The DWR Domain from Chapter 2
● The slides for Chapter 2 used a simpler domain than

the one in the book
▸ Too simple to illustrate what HTNs can do

● Here’s the DWR domain from the book

● Objects:
▸ robots r1, r2
▸ loading docks d1, d2, d3
▸ containers c1, c2, c3
▸ piles p1, p2, p3

● Rigid relations:

▸ adjacent = {(d1,d2), (d2,d1), (d2,d3),
 (d3,d2), (d3,d1), (d1,d3)};

▸ at = {(p1, d1), (p2, d2), (p3, d2)}.

● State variables:
• cargo(r) ∈ Containers ∪ {nil}
• loc(r) ∈ Docks
• occupied(d) ∈ {T, F}
• pile(c) ∈ Piles ∪ {nil}
• pos(c) ∈ Robots ∪ Containers ∪ {nil}
• top(p) ∈ Containers ∪ {nil}

▸ where r ∈ Robots, c ∈ Containers, p ∈ Piles

● 𝑠0 = {cargo(r1) = nil, cargo(r2) = nil,
loc(r1) = d1, loc(r2) = d2,
occupied(d1)=T, occupied(d2)=F, occupied(d3)=F,
pile(c1) = p1, pile(c2) = p2, pile(c3) = p2,
pos(c1) = nil, pos(c2) = c3, pos(c3) = nil,
top(p1)=c1, top(p2) = c2, top(p3) = nil}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

5Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

The DWR Domain from Chapter 2
Action schemas:
▸ take(r, c, c′, p, d)

• pre: at(p,d), cargo(r) = nil, loc(r) = d, pos(c)= c′, top(p) = c
• eff: cargo(r) ← c, pile(c) ← nil, pos(c) ← r, top(p) ← cʹ

▸ put(r, c, c′, p, d)
• pre: at(p,d), pos(c) = r, loc(r) = d, top(p) = c′
• eff: cargo(r) ← nil, pile(c) ← p, pos(c) ← c′, top(p) ← c

▸ move(r, d, d′)
• pre: adjacent(d,d′), loc(r) = d, occupied(d ʹ) = F
• eff: loc(r) ← d′, occupied(d) ← F, occupied(d ʹ) ← T

where
▸ c ∈ Containers; c′ ∈ Containers ∪ Robots ∪ {nil};
▸ d, d ʹ ∈ Docks; p ∈ Piles; r ∈ Robots.

Poll: Notice that cargo(r) = c iff pos(c) = r. Can
we rewrite the domain to eliminate cargo(r)?
A. yes B. no C. don’t know

● State variables:
• cargo(r) ∈ Containers ∪ {nil}
• loc(r) ∈ Docks
• occupied(d) ∈ {T, F}
• pile(c) ∈ Piles ∪ {nil}
• pos(c) ∈ Robots ∪ Containers ∪ {nil}
• top(p) ∈ Containers ∪ {nil}

▸ where r ∈ Robots, c ∈ Containers, p ∈ Piles

● 𝑠0 = {cargo(r1) = nil, cargo(r2) = nil,
loc(r1) = d1, loc(r2) = d2,
occupied(d1)=T, occupied(d2)=F, occupied(d3)=F,
pile(c1) = p1, pile(c2) = p2, pile(c3) = p2,
pos(c1) = nil, pos(c2) = c3, pos(c3) = nil,
top(p1)=c1, top(p2) = c2, top(p3) = nil}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

6Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

TOHTN Planning Domain
● TOHTN planning domain Σ = (Σc, M)

▸ Σc = DWR domain on the previous pages
▸ M = a set of eight methods:

● Compound task put-in-pile(r,c,p,d): put container c into pile
p if it isn’t there already

▸ Preconditions:
• 1st one ensures d has the correct value
• Others check for applicability

▸ Last subtask: one of the args is a state variable, top(p)
• Violates a restriction in Chapter 2
• But many HTN algorithms don’t need the restriction

If I say “HTN” assume TOHTN
unless stated otherwise

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

7Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

TOHTN Planning Domain (continued)

● Goal task: goal(cargo(r)=c)
▸ Get c onto r
▸ Subtask of m2-put-in-pile

● We aren’t doing classical planning,
so we need a method:

● Compound task uncover(c):
▸ Subtask of m1-fetch

● Remove any containers that may be piled on top of c

Poll: Can we rewrite m2-uncover
to eliminate c′ ?
A. yes B. no C. don’t know

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

8Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

TOHTN Planning Domain (continued)

● Compound task navigate(r,d):
▸ Get robot r from current location to d
▸ May require several move actions

● These methods are just for illustration,
I don’t recommend using them
▸ Use a route planner instead

● Method for the case where loc(r) = d

● Method for cases where loc(r) is adjacent to d

● Method for cases where loc(r) isn’t adjacent to d

● Methods in M:
▸ m1-put-in-pile, m2-put-in-pile,

m1-get-container, m2-get-container,
m1-uncover, m2-uncover,
m1-navigate, m2-navigate, m3-navigate

● Tasks in Σ:
▸ Primitive: all instances of

• move(r,l,m), take(r,c,l), put(r,c,l)
▸ Compound: all instances of

• put-in-pile(c,p), uncover(c), and navigate(r,d)
▸ Goal tasks: all instances of goal(cargo(r) = c)

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

9Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

TOHTN Planning problem
● Planning problem: P = (Σ, s0, T)
● Solution (detailed definition in book)

▸ any executable plan produced by applying method
instances to nonprimitive tasks, actions to primitive tasks

● Refinement tree (detailed definition in book)
▸ tree showing how the solution was derived
▸ Nodes:

root, compound tasks, goal tasks,
method instances, actions

▸ Edges:
root → top-level tasks,
task → method instance,
method instance → subtasks

P = (Σ, s0, ⟨{pile(c1)=p2}⟩)
π = ⟨take(r1,c1,c2,p1,d1), move(r1,d1,d2), put(r1,c1,c3,p2,d2)⟩

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

10Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Planning Algorithm
● Definitions

● Three cases: primitive, compound, goal task
▸ Primitive task: apply action

▸ Compound task: apply method instance

▸ Goal task: apply method instance or action

new state γ(s,t) ; T′ = ⟨t2, …, tk⟩

state s; T = ⟨t, t2, …, tk⟩

⟨ u1, …, uj , t2, …, tk⟩

state s; T = ⟨t, t2, …, tk⟩
method instance m

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

11Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

⟨ u1, …, uj , t2, …, tk⟩

state s; T = ⟨t, t2, …, tk⟩
method instance m

Planning Algorithm

● Most implementations do depth-first
▸ Can use heuristic function, but the ones in

Chapter 3 will probably need modification
▸ Primitive task: apply action

▸ Compound task: apply all method instances

▸ Goal task: apply all method instances
and actions

new state γ(s,t) ; T = ⟨t2, …, tk⟩

state s; T = ⟨t, t2, …, tk⟩

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

12Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Search Direction, Search Strategies

● Down, then forward (progression)
▸ totally-ordered compound tasks: SHOP, Pyhop, GTPyhop
▸ partially-ordered compound tasks: SHOP2, SHOP3
▸ totally-ordered goal tasks: GDP, GoDeL
▸ acting, task refinement: RAE
▸ Monte Carlo rollouts: UPOM

● Down and backward (regression)
▸ plan-space planning: SIPE, O-Plan, UMCP

● Forward, then down (level 1, level 2, level 3, …)
▸ AHA*: A* search
▸ Bridge Baron 1997: game-tree generation

task

task

…task task

task

…task task

task

…task task

task

…task task

task task

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

13Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Complexity and Expressivity

● HTN planning is Turing-complete
▸ There are HTN planning problems that are

undecidable
● TOHTN planning is decidable, but is more

expressive than classical planning
▸ Every classical planning problem can be

translated into an equivalent TOHTN
planning problem

▸ There are TOHTN planning problems that
cannot be translated into classical planning
problems

● Some subsets of TOHTN planning can be
translated into classical planning problems

● Some subsets of TOHTN planning can be
translated into propositional logic

● These translation techniques have been used to
produce efficient TOHTN planners

● All of these are worst-case results
▸ Most TOHTN planning problems are much

simpler (e.g., in NP)
▸ Example later

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

14Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Pyhop

● A simple HTN planner written in Python
• import pyhop

▸ Depth-first version of TO-HTN-Forward with no goal tasks
▸ Less than 150 lines of code, works in both Python 2 and 3

● State: Python object that contains state variables
• s = gtpyhop.State('Current state')

▸ To say r1 is at d1 in state s:
• s.loc['r1'] = 'd1'

● Actions and methods: ordinary Python functions
● Some limitations compared to most other HTN planners

▸ I’ll discuss later

● Open-source software, Apache license
▸ http://bitbucket.org/dananau/pyhop

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
http://bitbucket.org/dananau/pyhop

15Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Comparison

Most HTN planners:
● Write in a planning language the planner can

read and analyze
● Can have parameters not mentioned in the task

• robot r, location x
▸ Backtrack over multiple possibilities

● Planner knows in advance what the subtasks are
▸ Helps with implementing heuristic functions

Method m_transport(r,x,c,y,z)
Task: transport(c,y,z)
Pre: loc(r) = x, cargo(r) = nil, loc(c) = y
Sub: move(r,x,y), take(r,c,y), move(r,y,z), put(r,c,z)

● Advantages
▸ Don’t need to learn a planning language: write

methods and actions in Python
● Disadvantages:

▸ Planner doesn’t know in advance what the
subtasks are
• How to implement a heuristic function?

▸ What about parameters not mentioned in the task?

Task: transport(c,y,z) – transport c from y to z

● TOHTN method:

● Pyhop method: ordinary Python function
▸ Args: state s and the task parameters

def m_transport(s,c,y,z):
 (r,x) = find_suitable_robot('transport’,s,c,y,z)

 if r != 'failure':
 return [('move',r,x,y), ('take',r,c,y), \
 ('move',r,y,z), ('put',r,c,z)]
 else: return False

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

16Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

GTPyhop
● GTPyhop (2021):
● Like Pyhop, but has both compound tasks

and goal tasks
▸ declare task methods for compound tasks
▸ declare goal methods for goal tasks

● Open-source:
https://github.com/dananau/GTPyhop

● Mostly backward-compatible with Pyhop

Two kinds of goals:
● Unigoal: a single atom

▸ represented as a triple (name, arg, value)
('pos', 'a', 'b’)

▸ goal: get to a state s in which
s.pos['a']=='b'

● Multigoal: a conjunction of atoms
▸ represented as a state-like object

g = gtpyhop.Multigoal('Sussman goal’)

g.pos = {'a':'b', 'b':'c’}

▸ goal: get to a state s in which
 s.pos['a']=='b' and s.pos['b']=='c'

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://github.com/dananau/GTPyhop

17Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example: Blocks World
● Simple classical planning domain

▸ Blocks, robot hand for stacking them,
infinitely large table

● State-variable notation:

● pickup(x)
▸ pre: loc(x)=table, clear(x)=T, holding=nil
▸ eff: loc(x)=crane, clear(x)=F, holding=x

● putdown(x)
▸ pre: holding=x
▸ eff: holding=nil, loc(x)=table, clear(x)=T

● unstack(x,y)
▸ pre: loc(x)=y, clear(x)=T, holding=nil
▸ eff: loc(x)=crane, clear(x)=F, holding=x, clear(y)=T

● stack(x,y)
▸ pre: holding=x, clear(y)=T
▸ eff: holding=nil, clear(y)=F, loc(x)=y, clear(x)=T

● The “Sussman anomaly”
▸ Planning problem that caused problems for early

classical planners

π = ⟨unstack(c,a), putdown(c),
 pickup(b), stack(b,c),
 pickup(a), stack(a,b)⟩

s0 = {clear(a)=F, clear(b)=T,
clear(c)=T,
loc(a)=table,
loc(b)=table, loc(c)=a,
holding(hand)=nil}

g = {loc(a)=b, loc(b)=c}

s0

c
a b

g

b
c

a

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

18Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Domain-Specific Algorithm
loop
 if there’s clear block that needs to be moved

 and it can immediately be moved to a place
 where it won’t need to be moved again

 then move it there
 else if there’s a clear block that needs to be moved
 then move it to the table
 else if the current state satisfies the goal
 then return success
 else return failure

● Situations in which c needs to be moved:
▸ loc(c)=d, goal contains loc(c)=e, and d ≠ e
▸ loc(c)=d, d is a block, goal contains loc(b)=d for some b ≠ c
▸ loc(c)=d and d is a block that needs to be moved

● Can extend this to include situations involving clear and holding

s0

c
a b

g

b
c

a

● Sound, complete, guaranteed to terminate
● Runs in time O(n3)

▸ Can be modified to run in time O(n)
● Often finds optimal (shortest) solutions,

but sometimes only near-optimal
▸ For block-stacking problems,

PLAN-LENGTH is NP-complete
● Can implement as GTPyhop methods

π = ⟨unstack(c,b),
 putdown(c),
 pickup(b),
 stack(b,c),
 pickup(a),
 stack(a,b)⟩

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

19Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

States and Goals

● A State object to hold all the state-variable bindings:

s0 = gtpyhop.State('Sussman initial state')

s0.pos = {'a':'table', 'b':'table', 'c':'a'}

s0.clear = {'a':False, 'b':True, 'c':True}

s0.holding = {'hand':False}

▸ s0.pos = {'a':'table’, 'b':'table', 'c':'a’}

is Python dictionary notation for
s0.pos['a'] = 'table'
s0.pos['b'] = 'table'
s0.pos['c'] = 'a'

Two ways to write goals:
● Unigoal: a single atom

▸ represented as a triple (name, arg, value)
('pos', 'a', 'b')

▸ get to a state s in which
s.pos['a']=='b'

● Multigoal: a conjunction of atoms
▸ represented as a state-like object

g = gtpyhop.Multigoal('Sussman goal')

g.pos = {'a':'b', 'b':'c'}

▸ get to a state s in which
s.pos['a']=='b' and s.pos['b']=='c'

s0

c
a b

g

b
c

aGoal:
Initial state:

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

20Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

● pickup(x)
▸ pre: loc(x)=table, clear(x)=T, holding=nil
▸ eff: loc(x)=crane, clear(x)=F, holding=x

● putdown(x)
▸ pre: holding=x
▸ eff: holding=nil, loc(x)=table, clear(x)=T

● unstack(x,y)
▸ pre: loc(x)=y, clear(x)=T, holding=nil
▸ eff: loc(x)=crane, clear(x)=F, holding=x, clear(y)=T

● stack(x,y)
▸ pre: holding=x, clear(y)=T
▸ eff: holding=nil, clear(y)=F, loc(x)=y, clear(x)=T

Actions

def pickup(s,x):
 if s.pos[x] == 'table’ \

 and s.clear[x] == True \
 and s.holding['hand'] == False:
 s.pos[x] = 'hand’
 s.clear[x] = False
 s.holding['hand'] = x
 return s

def putdown(s,x):
 if s.holding['hand'] = x:
 s.pos[x] = 'table’
 s.clear[x] = True
 s.holding['hand'] = False

 return s

gtpyhop.declare_actions(pickup,putdown)

Effects: modify
variable bindings in s

Preconditions:
if test

• Tell GTPyhop these are actions

• Args: current state s, block x

Poll. How many arguments does the unstack task have?
 A. 1 B. 2 C. 3 D. other E. don’t know

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

21Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Task Methods

● m_take: method to pick up a clear block x,
regardless of what it’s on
▸ Args: current state s, block x.
▸ if x is clear:

• return one task list if x is on the table,
another task list if x isn’t on the table

▸ Else return nothing
• means method is inapplicable
• (also OK to return false like Pyhop does)

▸ Declare m_take to be a task method
• relevant for all tasks of the form

(take, ...)

● m_put: similar

def m_take(s,x):
 if s.clear[x] == True:

 if s.pos[x] == 'table’:
 return [('pickup', x)]
 else: return [('unstack',x,s.pos[x])]

gtpyhop.declare_task_methods('take',m_take)

def m_put(s,x,y):
 if s.holding['hand'] == x:
 if y == 'table’: return [('putdown',x)]

 else: return [('stack',x,y)]
 else: return False

gtpyhop.declare_task_methods('put',m_put)

Poll. In a TOHTN planning domain, how many
methods would we need for take?
A. 1 B. 2 C. 3 D. other E. don’t know

optional

declare
relevant for task ‘put’

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

22Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Goal Methods def m_moveblocks(s, mgoal):
 for x in all_clear_blocks(s):
 stat = status(x, s, mgoal)
 if stat == 'move-to-block':
 where = mgoal.pos[x]
 return [('take',x), ('put',x,where), mgoal]
 elif stat == 'move-to-table':

 return [('take',x), (put,x,'table'), mgoal]
 for x in all_clear_blocks(s):
 if status(x,s,mgoal) == 'waiting' \
 and s.pos[x] != 'table':
 return [('take',x), ('put',x,'table'), mgoal]

 return []

gtpyhop.declare_multigoal_methods(m_moveblocks)

Poll. Can we rewrite
this as a set of
TOHTN methods?
 A. Yes B. No
 C. Don’t know

s0

c
a b

g

b
c

a

loop
 if there’s clear block that needs to be moved

 and it can immediately be moved to a place
 where it won’t need to be moved again

 then move it there
 else if there’s a clear block that needs to be moved
 then move it to the table
 else if the current state satisfies the goal
 then return success
 else return failure

s = current state
mgoal = a multigoal
boldface: helper functions

gtpyhop.find_plan(s0,g)

returns
[('unstack','c','a'), ('putdown','c'),
('pickup','b’), ('stack','b','c'),
('pickup','a'), ('stack','a','b')]

declare relevant for every
multigoal

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

23Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

POHTN (Partially Ordered HTN) Planning

● Sometimes we don’t want to specify a total
ordering on tasks

● Represent partially ordered tasks as a task
network:
▸ a pair T = (T, ≺)
▸ T is a set of task nodes
▸ ≺ is a partial ordering of T

● Task node: a pair τ = (l, t)
▸ t is a task
▸ l is a name that uniquely identifies τ

● Need labels so we can have multiple
occurrences of t

● POHTN Method: a tuple
 (head, task, pre, sub, ≺)

● As usual, write POHTN methods as pseudocode:

method-name(args)
 Task: nonprimitive task
 Pre: preconditions
 Sub: subtask nodes
 ≺: partial ordering of the subtask nodes

● TOHTN planning is a special case of POHTN
planning
▸ ≺ is a total ordering

● Details on the following slides
▸ We’ll skip them

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

24Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

m1-put-on-robot(k, c, c′, r, d, p)
 task: put-on-robot(c, r)
 pre: cargo(r) = nil, top(p) = c, at(p,d),
 attached(k,d), holding(k) = nil
 sub: (t1, navigate(r, d))
 (t2, unstack(k,c,c′,p,d))
 (t3, load(k,r,c,d))
 ≺: t1 ≺ t3, t2 ≺ t3

Example POHTN Problem

● Σc : DWR with cranes attached to loading docks, not robots

Poll. How many solution plans?
A. 1 B. 2 C. 3 D. 4 E. other

d1 d2
p2
c3
c2
c1

r1

k2k1

p1

● Σ = (Σc, M)
▸ M : three

methods

● P = (Σ, s0, (T, ≺))
▸ 𝑇 = {put-on-robot(c1,r1)}; ≺ = ∅

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

25Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

m1-put-on-robot(k, c, c′, r, d, p)
 task: put-on-robot(c, r)
 pre: cargo(r) = nil, top(p) = c, at(p,d),
 attached(k,d), holding(k) = nil
 sub: (t1, navigate(r, d))
 (t2, unstack(k,c,c′,p,d))
 (t3, load(k,r,c,d))
 ≺: t1 ≺ t3, t2 ≺ t3

Solution Trees

● π1 = move(r1,d1,d2), unstack(k2,c1,c2,p2,d2), load(k2,c1,r1,d2)
● π2 = unstack(k2,c1,c2,p2,d2), move(r1,d1,d2), load(k2,c1,r1,d2)

● P = (Σ, s0, (T, ≺))
▸ 𝑇 = {put-on-robot(c1,r1)}; ≺ = ∅

d1 d2
p2
c3
c2
c1

r1

k2k1

p1

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

26Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Planning Algorithm
Three cases: primitive, compound, goal task

● Primitive task node: apply action

● Compound task node: apply method instance

T = (T,≺), T = {τ, τ2, …, τk}, nothing precedes τ
state s0 i.e., ∄τ′ ∈ T s.t. τ′ ≺ τ

new state γ(s0, τ) ; {τ2, …, τk}

{ υ1, …, υj , τ2, …, τk}
 make υ1, …, υj precede everything τ preceded

T = (T,≺), T = {τ, τ2, …, τk}, nothing precedes τ
method instance m i.e., ∄τ′ ∈ T s.t. τ′ ≺ τ
state s0

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

27Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Summary
● HTN planning

▸ Planning problem: initial state, list of tasks
▸ Apply HTN methods to tasks to get subtasks (smaller tasks)

• Do this recursively to get smaller and smaller subtasks
▸ At the bottom: primitive tasks that correspond to actions

▸ TOHTN: tasks are totally ordered
• Planning algorithm: TO-HTN-Forward

▸ POHTN: tasks are partially ordered
• Planning algorithm: PO-HTN-Forward

● Pyhop: Python implementation of total-order HTN planning
▸ Open source: http://bitbucket.org/dananau/pyhop

● GTPyhop: Python implementation of HTN + HGN planning
▸ Open source: https://github.com/dananau/GTPyhop

● Examples: DWR, blocks world, cranes

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
http://bitbucket.org/dananau/pyhop
https://github.com/dananau/GTPyhop

