Last update: 11:09 PM, March 7, 2025

Acting, Planning, and Learning

Malik Ghallab, Dana Nau, and Paolo Traverso

Chapter 5 HTN Representation and Planning

Dana S. Nau University of Maryland

with contributions from

Mark "mak" Roberts

Hierarchical Task Network (HTN) Planning

- For some planning problems, we may already have ideas for how to look for solutions
- Example: travel to a destination that's far away:
 - Brute-force search:
 - many combinations of vehicles and routes
 - Experienced human: small number of "recipes"
 - e.g., flying:
 - buy ticket from local airport to remote airport
 - 2. travel to local airport
 - 3. fly to remote airport
 - 4. travel to final destination

- Two ways to put such information into a planner
 - Domain-specific algorithm
 - Domain-independent planning engine + domain-specific planning information
 - HTN planning (this Part)
- Ingredients:
 - state-variable planning domain (Part I)
 - *tasks*: activities to perform
 - *HTN methods*: ways to perform tasks

Total-Order HTN Planning

- Three kinds of tasks
 - Primitive task: head of an action
 - Compound task: name(args)
 - *name* is a *compound-task name*
 - Goal task: goal(g)
 - g is any classical goal formula
- Method: a tuple (*head*, *nonprimitive task*, *preconditions*, *subtasks*)
- Write it as pseudocode: *method-name(args)* Task: *nonprimitive task* Pre: *preconditions* Sub: *list of subtasks*

- TOHTN planning domain: a pair (Σ, \mathcal{M})
 - Σ : state-variable planning domain
 - \mathcal{M} : set of methods
- TOHTN planning problem P = (Σ, M, s₀, T)
 T = ⟨t₁, t₂, ..., t_k⟩
- *Solution* for *P*:
 - any executable plan that can be generated for *T* by applying
 - methods to nonprimitive tasks
 - actions to primitive tasks

The DWR Domain from Chapter 2

- The slides for Chapter 2 used a simpler domain than the one in the book
 - Too simple to illustrate what HTNs can do
- Here's the DWR domain from the book
 - Objects:
 - robots r1, r2
 - loading docks d1, d2, d3
 - containers c1, c2, c3
 - piles p1, p2, p3
 - Rigid relations:
 - adjacent = {(d1,d2), (d2,d1), (d2,d3), (d3,d2), (d3,d1), (d1,d3)};
 - at = {(p1, d1), (p2, d2), (p3, d2)}.

- State variables:
 - $cargo(r) \in Containers \cup {nil}$
 - $loc(r) \in Docks$
 - occupied(d) $\in \{T, F\}$
 - pile(c) \in Piles \cup {nil}
 - $pos(c) \in Robots \cup Containers \cup {nil}$
 - $top(p) \in Containers \cup {nil}$
 - where $r \in Robots$, $c \in Containers$, $p \in Piles$

$$s_0 = \{ cargo(r1) = nil, cargo(r2) = nil, loc(r1) = d1, loc(r2) = d2, occupied(d1)=T, occupied(d2)=F, occupied(d3)=F, pile(c1) = p1, pile(c2) = p2, pile(c3) = p2, pos(c1) = nil, pos(c2) = c3, pos(c3) = nil, top(p1)=c1, top(p2) = c2, top(p3) = nil \}$$

The DWR Domain from Chapter 2

Action schemas:

- take(r, c, c', p, d)
 - pre: at(*p*,*d*), cargo(*r*) = nil, loc(*r*) = *d*, pos(*c*) = *c'*, top(*p*) = *c*
 - eff: cargo(r) $\leftarrow c$, pile(c) \leftarrow nil, pos(c) $\leftarrow r$, top(p) $\leftarrow c'$
- put(r, c, c', p, d)
 - pre: at(*p*,*d*), pos(*c*) = *r*, loc(*r*) = *d*, top(*p*) = *c'*
 - eff: cargo(r) \leftarrow nil, pile(c) \leftarrow p, pos(c) \leftarrow c', top(p) \leftarrow c
- ▶ move(*r*, *d*, *d*′)
 - pre: adjacent(*d*,*d'*), loc(*r*) = *d*, occupied(*d'*) = F
 - eff: $loc(r) \leftarrow d'$, $occupied(d) \leftarrow F$, $occupied(d') \leftarrow T$

where

- $c \in Containers; c' \in Containers \cup Robots \cup {nil};$
- $d, d' \in Docks; p \in Piles; r \in Robots.$

Poll: Notice that cargo(r) = c iff pos(c) = r. Can we rewrite the domain to eliminate cargo(r)? A. yes B. no C. don't know

- State variables:
 - $cargo(r) \in Containers \cup {nil}$
 - $loc(r) \in Docks$
 - occupied(d) $\in \{T, F\}$
 - pile(c) \in Piles \cup {nil}
 - $pos(c) \in Robots \cup Containers \cup {nil}$
 - $top(p) \in Containers \cup {nil}$
 - where $r \in Robots$, $c \in Containers$, $p \in Piles$

$$s_0 = \{ \text{cargo}(r1) = \text{nil}, \text{cargo}(r2) = \text{nil}, \\ \text{loc}(r1) = d1, \quad \text{loc}(r2) = d2, \\ \text{occupied}(d1)=T, \text{occupied}(d2)=F, \text{occupied}(d3)=F, \\ \text{pile}(c1) = p1, \quad \text{pile}(c2) = p2, \quad \text{pile}(c3) = p2, \\ \text{pos}(c1) = \text{nil}, \quad \text{pos}(c2) = c3, \quad \text{pos}(c3) = \text{nil}, \\ \text{top}(p1)=c1, \quad \text{top}(p2) = c2, \quad \text{top}(p3) = \text{nil} \}$$

TOHTN Planning Domain

If I say "HTN" assume TOHTN unless stated otherwise

- TOHTN planning domain $\Sigma = (\Sigma_c, \mathcal{M})$
 - $\Sigma_c = DWR$ domain on the previous pages
 - \mathcal{M} = a set of eight methods:

• Compound task put-in-pile(*r*,*c*,*p*,*d*): put container *c* into pile *p* if it isn't there already

m1-put-in-pile(r, c, p, d)task: {pile(c) = p} pre: at(p, d), pile $(c) \neq p$, cargo(r) = nil sub: get-container(r, c), navigate(r, d), put(r, c, top(p), p, d)

- Preconditions:
 - 1^{st} one ensures d has the correct value
 - Others check for applicability
- Last subtask: one of the args is a state variable, top(p)
 - Violates a restriction in Chapter 2
 - But many HTN algorithms don't need the restriction

TOHTN Planning Domain (continued)

- Goal task: goal(cargo(*r*)=*c*)
 - Get c onto r
 - Subtask of m2-put-in-pile
- We aren't doing classical planning, so we need a method:

```
m1-get-container(r, c)

task: get-container(r, c)

pre: cargo(r) = c

sub: // no subtasks

m2-get-container(r, c, p, d)

task: get-container(r, c)

pre: cargo(r) = nil, pile(c) = p, at(p, d)

sub: navigate(r, d), uncover(c),

take(r, c, pos(c), p, d)
```

```
• Remove any containers that may be piled on top of c
```

```
m1-uncover(c)
task: uncover(c)
pre: top(pile(c)) = c
sub: // no subtasks
```

• Compound task uncover(*c*):

Subtask of m1-fetch

```
m2-uncover(r, c, p, c', p', d)

task: uncover(c)

pre: pile(c) = p, top(p) = c', c' \neq c,

at(p, d), at(p', d), p \neq p',

loc(r) = d, cargo(r) = nil

sub: take(r, c', pos(c'), p, d),

put(r, c', top(p'), p', d),

uncover(c)
```

Poll: Can we rewrite m2-uncover to eliminate c'?A. yes B. no C. don't know

TOHTN Planning Domain (continued)

- Compound task navigate(*r*,*d*):
 - Get robot *r* from current location to *d*
 - May require several move actions
- These methods are just for illustration, I don't recommend using them
 - Use a route planner instead
- Method for the case where loc(r) = d
 m1-navigate(r, d)
 task: navigate(r, d)
 pre: loc(r) = d
 sub: // no subtasks
- Method for cases where loc(r) is adjacent to d m2-navigate(r, d', d) task: navigate(r, d) pre: adjacent(d', d), loc(r) = d' sub: move(r, d', d)

- Method for cases where loc(r) isn't adjacent to d m3-navigate(r, d', d) task: navigate(r, d) pre: loc(r) ≠ d, ¬adjacent(loc(r), d), adjacent(loc(r), d') sub: move(r, loc(r), d') // primitive task navigate(r, d) // compound task
- Methods in \mathcal{M} :
 - m1-put-in-pile, m2-put-in-pile, m1-get-container, m2-get-container, m1-uncover, m2-uncover, m1-navigate, m2-navigate, m3-navigate
- Tasks in Σ :
 - Primitive: all instances of
 - move(*r*,*l*,*m*), take(*r*,*c*,*l*), put(*r*,*c*,*l*)
 - Compound: all instances of
 - put-in-pile(*c*,*p*), uncover(*c*), and navigate(*r*,*d*)
 - Goal tasks: all instances of goal(cargo(r) = c)

Planning Algorithm

• Definitions

 $Achievers(s,t) = \{a \in Applicable(s) \mid \gamma(s,a) \models t\}$ $Ground(\mathcal{M}) = \{all \text{ ground instances of methods in } \mathcal{M}\}$

 $Refiners(s, t, M) = \{m \in Ground(M) \mid t \text{ is refinable by } m \text{ in } s\}$

- Three cases: primitive, compound, goal task
 - Primitive task: apply action

state s;
$$T = \langle t, t_2, ..., t_k \rangle$$

new state $\gamma(s,t)$; $T' = \langle t_2, ..., t_k \rangle$

Compound task: apply method instance

state s;
$$T = \langle t, t_2, ..., t_k \rangle$$

method instance m
 $\langle u_1, ..., u_j, t_2, ..., t_k \rangle$

• Goal task: apply method instance or action-

TO-HTN-Forward($\Sigma_c, \mathcal{M}, s, T$) if T is empty then return $\langle \rangle$ $t \leftarrow$ the first element of T; $T' \leftarrow$ the rest of T 1 $M \leftarrow \text{HTN-Get-Candidates}(\Sigma_c, \mathcal{M}, s, t)$ if $M = \emptyset$ then return failure nondeterministically choose $m \in M$ switch *m* do **case** *m* is an action **do** 2 $\pi \leftarrow \text{TO-HTN-Forward}(\Sigma_c, \mathcal{M}, \gamma(s, m), T')$ if $\pi \neq$ failure then return $m \cdot \pi$ else return failure case *m* is a ground method **do** 3 **return** TO-HTN-Forward($\Sigma_c, \mathcal{M}, s, \text{subtasks}(m) \cdot T'$) HTN-Get-Candidates ($\Sigma_c, \mathcal{M}, s, t$) switch t do **case** t is an action **do** 4 if t is applicable in s then $M \leftarrow \{a\}$ else $M \leftarrow \emptyset$ **case** t is a compound task **do** $M \leftarrow Methods(s, t, \mathcal{M})$ 5 case t is a goal task do 6 $M \leftarrow Methods(s, t, \mathcal{M}) \cup Actions(s, t)$ if $s \models t$ then $M \leftarrow M \cup \{\text{null}\}$ 7 return \mathcal{M}

Planning Algorithm

- Most implementations do depth-first
 - Can use heuristic function, but the ones in Chapter 3 will probably need modification
 - Primitive task: apply action

state s;
$$T = \langle t, t_2, ..., t_k \rangle$$

new state $\gamma(s,t)$; $T = \langle t_2, ..., t_k \rangle$

Compound task: apply all method instances

state *s*; $T = \langle t, t_2, ..., t_k \rangle$ method instance *m* $\langle u_1, ..., u_j, t_2, ..., t_k \rangle$

Goal task: apply all method instances
 and actions

```
TO-HTN-Forward-Det(\Sigma_c, \mathcal{M}, s_0, T_0)
    Frontier \leftarrow \{(\langle \rangle, s_0, T_0)\} // {initial node}
    Expanded \leftarrow \emptyset
    while Frontier \neq \emptyset do
         select a node v = (\pi, s, T) \in Frontier
         remove v from Frontier and add it to Expanded
         if T = \langle \rangle then return \pi
         t \leftarrow the first element of T; T' \leftarrow the rest of T
         switch t do
               case t is an action do
                    if t is applicable in s then Children \leftarrow \{(\pi \cdot t, \gamma(s, t), T')\}
                    else Children \leftarrow \emptyset
               case t is a compound task do
                    Children \leftarrow \{(\pi, s, \operatorname{sub}(m) \cdot T') \mid m \in \operatorname{Refiners}(s, t, \mathcal{M})\}
               case t is a goal task do
                    Children \leftarrow \{(\pi \cdot a, \gamma(s, a), T') \mid a \in Achievers(s, t)\} \cup
                                      \{(\pi, s, \operatorname{sub}(m) \cdot T') \mid m \in \operatorname{Refiners}(s, t, \mathcal{M})\}
                    if s \models t then Children \leftarrow Children \cup \{(\pi, s, T')\}
         prune 0 or more nodes from Children, Frontier and Expanded
         Frontier \leftarrow Frontier \cup Children
```

return failure

Search Direction, Search Strategies

- Down, then forward (progression)
 - totally-ordered compound tasks: SHOP, Pyhop, GTPyhop
 - partially-ordered compound tasks: SHOP2, SHOP3
 - totally-ordered goal tasks: GDP, GoDeL
 - acting, task refinement: RAE
 - Monte Carlo rollouts: UPOM
- Down and backward (regression)
 - plan-space planning: SIPE, O-Plan, UMCP
- Forward, then down (level 1, level 2, level 3, ...)
 - ► AHA*: A* search
 - Bridge Baron 1997: game-tree generation

Complexity and Expressivity

- HTN planning is Turing-complete
 - There are HTN planning problems that are undecidable
- TOHTN planning is decidable, but is more expressive than classical planning
 - Every classical planning problem can be translated into an equivalent TOHTN planning problem
 - There are TOHTN planning problems that cannot be translated into classical planning problems

- Some subsets of TOHTN planning can be translated into classical planning problems
- Some subsets of TOHTN planning can be translated into propositional logic
- These translation techniques have been used to produce efficient TOHTN planners

- All of these are worst-case results
 - Most TOHTN planning problems are much simpler (e.g., in NP)
 - Example later

Pyhop

- A simple HTN planner written in Python
 - import pyhop
 - Depth-first version of TO-HTN-Forward with no goal tasks
 - Less than 150 lines of code, works in both Python 2 and 3
- State: Python object that contains state variables
 - s = gtpyhop.State('Current state')
 - To say r1 is at d1 in state *s*:
 - s.loc['r1'] = 'd1'
- Actions and methods: ordinary Python functions
- Some limitations compared to most other HTN planners
 - I'll discuss later

- Open-source software, Apache license
 - http://bitbucket.org/dananau/pyhop

Comparison

Task: transport(c,y,z) – transport c from y to z

• TOHTN method:

Method m_transport(r,x,c,y,z) Task: transport(c,y,z) Pre: loc(r) = x, cargo(r) = nil, loc(c) = ySub: move(r,x,y), take(r,c,y), move(r,y,z), put(r,c,z)

Most HTN planners:

- Write in a planning language the planner can read and analyze
- Can have parameters not mentioned in the task
 - robot *r*, location *x*
 - Backtrack over multiple possibilities
- Planner knows in advance what the subtasks are
 - Helps with implementing heuristic functions

- Pyhop method: ordinary Python function
 - Args: state *s* and the task parameters

- Advantages
 - Don't need to learn a planning language: write methods and actions in Python
- Disadvantages:
 - Planner doesn't know in advance what the subtasks are
 - How to implement a heuristic function?
 - What about parameters not mentioned in the task?

GTPyhop

- GTPyhop (2021):
- Like Pyhop, but has both compound tasks and goal tasks
 - declare *task methods* for compound tasks
 - declare goal methods for goal tasks
- Open-source: https://github.com/dananau/GTPyhop
- Mostly backward-compatible with Pyhop

Two kinds of goals:

- *Unigoal*: a single atom
 - represented as a triple (name, arg, value)
 ('pos', 'a', 'b')
 - > goal: get to a state s in which
 s.pos['a']=='b'
- *Multigoal*: a conjunction of atoms
 - represented as a state-like object

g = gtpyhop.Multigoal('Sussman goal')

g.pos = {'a':'b', 'b':'c'}

• goal: get to a state *s* in which

s.pos['a']=='b' and s.pos['b']=='c'

Example: Blocks World

- Simple classical planning domain
 - Blocks, robot hand for stacking them, infinitely large table
- State-variable notation:
- pickup(*x*)
 - pre: loc(x)=table, clear(x)=T, holding=nil
 - eff: loc(x)=crane, clear(x)=F, holding=x
- putdown(*x*)
 - ▶ pre: holding=*x*
 - eff: holding=nil, loc(x)=table, clear(x)=T
- unstack(*x*,*y*)
 - ▶ pre: loc(x)=y, clear(x)=T, holding=nil
 - eff: loc(x)=crane, clear(x)=F, holding=x, clear(y)=T
- stack(x,y)
 - ▶ pre: holding=x, clear(y)=T
 - eff: holding=nil, clear(y)=F, loc(x)=y, clear(x)=T

- The "Sussman anomaly"
 - Planning problem that caused problems for early classical planners
 - $s_0 = \{ clear(a)=F, clear(b)=T, clear(c)=T, loc(a)=table, loc(c)=a, holding(hand)=nil \}$

 $g = \{loc(a)=b, loc(b)=c\}$

 $\pi = \langle unstack(c,a), putdown(c), \\ pickup(b), stack(b,c), \\ pickup(a), stack(a,b) \rangle$

Domain-Specific Algorithm

loop

if there's clear block that needs to be moved and it can immediately be moved to a place where it won't need to be moved again

then move it there

else if there's a clear block that needs to be moved

then move it to the table

else if the current state satisfies the goal

then return success

else return failure

- Situations in which *c* needs to be moved:
 - loc(c)=d, goal contains loc(c)=e, and $d \neq e$
 - loc(c)=d, d is a block, goal contains loc(b)=d for some $b \neq c$
 - loc(c)=d and d is a block that needs to be moved
- Can extend this to include situations involving clear and holding

- Sound, complete, guaranteed to terminate
- Runs in time $O(n^3)$
 - Can be modified to run in time O(n)
- Often finds optimal (shortest) solutions, but sometimes only near-optimal
 - For block-stacking problems,
 PLAN-LENGTH is NP-complete
- Can implement as GTPyhop methods

States and Goals

• A State object to hold all the state-variable bindings:

```
s0 = gtpyhop.State('Sussman initial state')
s0.pos = {'a':'table', 'b':'table', 'c':'a'}
s0.clear = {'a':False, 'b':True, 'c':True}
s0.holding = {'hand':False}
```

- s0.pos = {'a':'table', 'b':'table', 'c':'a'}
 - is Python dictionary notation for

s0.pos['a'] = 'table'
s0.pos['b'] = 'table'
s0.pos['c'] = 'a'

Two ways to write goals:

- *Unigoal*: a single atom
 - represented as a triple (name, arg, value)
 ('pos', 'a', 'b')

Goal:

g

b

С

- get to a state s in which
 s.pos['a']=='b'
- *Multigoal*: a conjunction of atoms
 - represented as a state-like object
 g = gtpyhop.Multigoal('Sussman goal')
 g.pos = {'a':'b', 'b':'c'}
 - get to a state s in which
 s.pos['a']=='b' and s.pos['b']=='c'

Actions

- pickup(*x*)
 - pre: loc(x)=table, clear(x)=T, holding=nil
 - eff: loc(x)=crane, clear(x)=F, holding=x
- putdown(x)
 - ▶ pre: holding=*x*
 - eff: holding=nil, loc(x)=table, clear(x)=T
- unstack(*x*,*y*)
 - pre: loc(x)=y, clear(x)=T, holding=nil
 - eff: loc(x)=crane, clear(x)=F, holding=x, clear(y)=T
- stack(x,y)
 - pre: holding=x, clear(y)=T
 - eff: holding=nil, clear(y)=F, loc(x)=y, clear(x)=T

```
Poll. How many arguments does the unstack task have?A. 1B. 2C. 3D. otherE. don't know
```

```
• Args: current state s, block x
def pickup(s,x):
    if s.pos[x] == 'table' \
        and s.clear[x] == True \
        and s.holding['hand'] == False:
        s.pos[x] = 'hand'
        s.clear[x] = False
        s.holding['hand'] = x
        False
        s.holding['hand'] = x
    }
        Effects: modify
        variable bindings in s
        return s
```

```
def putdown(s,x):
    if s.holding['hand'] = x:
        s.pos[x] = 'table'
        s.clear[x] = True
        s.holding['hand'] = False
        return s
```

Task Methods

- m_take: method to pick up a clear block x, regardless of what it's on
 - Args: current state *s*, block *x*.
 - ▶ if *x* is clear:
 - return one task list if x is on the table, another task list if x isn't on the table
 - Else return nothing
 - means method is inapplicable
 - (also OK to return false like Pyhop does)
 - Declare m_take to be a task method
 - relevant for all tasks of the form (take, ...)

• m_put: similar

```
def m_take(s,x):
    if s.clear[x] == True:
        if s.pos[x] == 'table':
            return [('pickup', x)]
        else: return [('unstack',x,s.pos[x])]
```

gtpyhop.declare_task_methods('take',m_take)

```
def m_put(s,x,y):
    if s.holding['hand'] == x:
        if y == 'table': return [('putdown',x)]
        else: return [('stack',x,y)]
        else: return False > optional
```

Poll. In a TOHTN planning domain, how many
methods would we need for take?A. 1B. 2C. 3D. otherE. don't know

Goal Methods

loop

if there's clear block that needs to be moved and it can immediately be moved to a place where it won't need to be moved again then move it there

else if there's a clear block that needs to be moved then move it to the table

else if the current state satisfies the goal

then return success else return failure


```
s = current state
def m moveblocks(s, mgoal):
                                     mgoal = a multigoal
  for x in all clear blocks(s):
                                     boldface: helper functions
    stat = status(x, s, mgoal)
    if stat == 'move-to-block':
      where = mgoal.pos[x]
      return [('take',x), ('put',x,where), mgoal]
    elif stat == 'move-to-table':
      return [('take',x), (put,x,'table'), mgoal]
    for x in all clear blocks(s):
      if status(x,s,mgoal) == 'waiting' \
          and s.pos[x] != 'table':
        return [('take',x), ('put',x,'table'), mgoal]
    return []
                                      declare relevant for every
```

gtpyhop.declare_multigoal_methods(m_moveblocks)

```
gtpyhop.find_plan(s0,g)
returns
[('unstack','c','a'), ('putdown','c'),
('pickup','b'), ('stack','b','c'),
('pickup','a'), ('stack','a','b')]
Poll. Can we rewrite
this as a set of
TOHTN methods?
A. Yes B. No
C. Don't know
```

POHTN (Partially Ordered HTN) Planning

- Sometimes we don't want to specify a total ordering on tasks
- Represent partially ordered tasks as a *task network*:
 - a pair $\mathcal{T}=(T,\prec)$
 - T is a set of task nodes
 - \prec is a partial ordering of *T*
- *Task node:* a pair $\tau = (l, t)$
 - ► *t* is a task
 - *l* is a name that uniquely identifies τ
- Need labels so we can have multiple occurrences of *t*
- POHTN Method: a tuple
 (head, task, pre, sub, ≺)

- As usual, write POHTN methods as pseudocode:
 - method-name(args)
 Task: nonprimitive task
 Pre: preconditions
 Sub: subtask nodes
 <: partial ordering of the subtask nodes</pre>
- TOHTN planning is a special case of POHTN planning
 - \prec is a total ordering
- Details on the following slides
 - We'll skip them

Example POHTN Problem

• Σ_c : DWR with cranes attached to loading docks, not robots

unstack(k, c, c', p, d) // take container c from pile p pre: at(k, d), at(p, d), holding(k) = nil, pos(c) = c', top(p) = ceff: holding $(k) \leftarrow c$, pos $(c) \leftarrow k$, pile $(c) \leftarrow$ nil, top $(p) \leftarrow c'$

stack(k, c, c', p, d) // put container c onto pile p pre: at(k, d), at(p, d), holding(k) = c, top $(p) \leftarrow c'$ eff: holding $(k) \leftarrow$ nil, pos(c) = c', pile $(c) \leftarrow p$, top(p) = c

unload(k, c, r, d) // take container c from robot r pre: at(k, d), holding(k) = c, loc(r) = deff: cargo $(r) \leftarrow c$, pos $(c) \leftarrow r$, holding $(k) \leftarrow$ nil

 $\begin{aligned} \mathsf{load}(k, c, r, d) & // \textit{ put container } c \textit{ onto robot } r \\ \mathsf{pre: } \mathsf{at}(k, d), \mathsf{holding}(k) = \mathsf{nil}, \mathsf{loc}(r) = d, \mathsf{cargo}(r) = c \\ \mathsf{eff: } \mathsf{pos}(c) \leftarrow k, \mathsf{holding}(k) \leftarrow c, \mathsf{cargo}(r) \leftarrow \mathsf{nil} \end{aligned}$

Poll. How many solution plans?A. 1B. 2C. 3D. 4E. other

$$P = (\Sigma, s_0, (T, \prec))$$

$$T = \{ \text{put-on-robot(c1,r1)} \}; \ \prec = \emptyset$$

• $\Sigma = (\Sigma_c, \mathcal{M})$ • \mathcal{M} : three methods = (Σ_c, \mathcal{M}) =

m1-navigate(r, d)m2-navigate(r, d', d)task: navigate(r, d)task: navigate(r, d)pre: loc(r) = dpre: adjacent(d', d), loc(r) = d'sub: // nonesub: (t1, move(r, d', d))<: // none</td><: // none</td>

Solution Trees

Planning Algorithm

Three cases: primitive, compound, goal task

• Primitive task node: apply action

 $\mathcal{T} = (T, \prec), \quad T = \{\tau, \tau_2, ..., \tau_k\}, \text{ nothing precedes } \tau$ state s_0 new state $\gamma(s_0, \tau); \quad \{\tau_2, ..., \tau_k\}$

• Compound task node: apply method instance

 $\mathcal{T} = (T, \prec), \quad T = \{\tau, \tau_2, ..., \tau_k\}, \text{ nothing precedes } \tau$ method instance m i.e., $\nexists \tau' \in T \text{ s.t. } \tau' \prec \tau$ state s_0 { $v_1, ..., v_j$, $\tau_2, ..., \tau_k$ } make $v_1, ..., v_j$ precede everything τ preceded

```
PO-HTN-Forward(\Sigma_c, \mathcal{M}, s, \mathcal{T})
    if \mathcal{T} is empty then return \langle \rangle
1 nondeterministically choose a node \tau in \mathcal{T} that has no predecessors in \mathcal{T}
    foreach \tau' in \mathcal{T} that has no predecessors in \mathcal{T} do
       if \tau' \neq \tau then add ordering constraints to \mathcal{T} to make \tau < \tau'
    t \leftarrow \text{task}(\tau)
    M \leftarrow \text{HTN-Get-Candidates}(\Sigma_c, \mathcal{M}, s, t)
    if M \neq \emptyset then
         nondeterministically choose m \in M
      if m is an action then
               \pi \leftarrow \text{PO-HTN-Forward}(\Sigma_{c}, \mathcal{M}, \gamma(s, a), \mathcal{T} \setminus \{\tau\})
               if \pi \neq failure then return a \cdot \pi
       else if m is a ground method then
               return PO-HTN-Forward(\Sigma_c, \mathcal{M}, s, refine(\mathcal{T}, \tau, m))
    return failure
```

Summary

- HTN planning
 - Planning problem: initial state, list of *tasks*
 - Apply HTN *methods* to tasks to get *subtasks* (smaller tasks)
 - Do this recursively to get smaller and smaller subtasks
 - At the bottom: *primitive tasks* that correspond to actions
 - TOHTN: tasks are totally ordered
 - Planning algorithm: TO-HTN-Forward
 - POHTN: tasks are partially ordered
 - Planning algorithm: PO-HTN-Forward
- Pyhop: Python implementation of total-order HTN planning
 - Open source: <u>http://bitbucket.org/dananau/pyhop</u>
- GTPyhop: Python implementation of HTN + HGN planning
 - Open source: <u>https://github.com/dananau/GTPyhop</u>
- Examples: DWR, blocks world, cranes