Last update: 11:09 PM, March 7, 2025

Acting, Planning, and Learning

Malik Ghallab, Dana Nau, and Paolo Traverso

Chapter 4 Learning with Deterministic Models (brief summary)

Dana S. Nau University of Maryland

Outline and Assumptions

I'll briefly summarize the following sections:

- 4.1 Learning Heuristics
- 4.2. Learning Action Specifications
 - 4.2.2 Online Action Learning

- Classical planning assumptions:
 - Finite, static world, just one actor
 - No concurrent actions, no explicit time
 - Determinism, no uncertainty
 - Sequence of states and actions $\langle s_0, a_1, s_1, a_2, s_2, \ldots \rangle$

4.1. Learning Heuristics

LRTA*(Σ , s_0 , S_g , h_0) $s \leftarrow s_0$; $\pi \leftarrow \langle \rangle$ // initialize current state and plan $h(s) \leftarrow h_0(s)$ for every $s \in S$ // initialize the heuristic while $s \notin S_g$ do for each a in Applicable(s) do

 $Q(s,a) \leftarrow \cos(s,a) + h(\gamma(s,a))$ $h(s) \leftarrow \min_a Q(s,a)$ $a \leftarrow \operatorname{argmin}_a Q(s,a)$ $\pi \leftarrow \pi \cdot a$

$$s \leftarrow \gamma(s,a)$$

- Assume the domain is *safely explorable*
 - At every state *s* there is a path to S_g
- In each state *s*, *Q*(*s*,*a*) is the estimated cost of getting to *S_g* if we start with action *a*
- LRTA* finds a path from s_0 to S_g
 - ► Updates *h*(*s*) for every *s* along the path
- Call it again, it finds another path, updates *h* along that path
- After enough calls, it will find an optimal path
 - Along that path, $h(s) = h^*(s)$
 - But not along other paths
- Other algorithms to find a heuristic *h* that is close to *h** at every state
 - Based on *value iteration*

4.2. Learning Action Specifications

- Action trace: a triple (s, head(a), s') such that $\gamma(s, a) = s'$
 - ({loc(r1) = d3, cargo(r1) = nil, loc(c1) = d1}, move(r1,d3,d1), {loc(r1) = d1, cargo(r1) = nil, loc(c1) = d1})
- Let Σ be a state-transition system,
 T_Σ = {all possible action traces for Σ}
- Action model learning problem:
 - Given a set of action traces $T \subseteq T_{\Sigma}$
 - examples of what the actions do
 - Create an action model AM = (Xsym, Asym, Schema)
 - *Xsym* and *Asym* are sets of state-variable names and action names (without arguments)
 - *Schema* is a function that maps each action name $\alpha \in Asym$ into an action schema

- \mathcal{AM} defines a state-transition system Σ'
- Let T_{Σ'} = {all possible action traces for Σ'}
- \mathcal{AM} is sound if $T_{\Sigma'} \subseteq T_{\Sigma}$
 - $T_{\Sigma'}$ doesn't include any incorrect action traces
- \mathcal{AM} is complete if $T_{\Sigma} \subseteq T_{\Sigma'}$
 - $T_{\Sigma'}$ includes every correct action trace
- Three ways to get the traces in *T*:
 - offline
 - online
 - from "informative states"

Three Kinds of Learning

- Offline learning:
 - Given a fixed set of action traces $T \subseteq T_{\Sigma}$
 - Advantage: quick access to examples
 - Disadvantage: The examples might not show you conclusively what each action does
- Online learning: learner generates T by acting in Σ
 - Observe current state, choose action *a*, send it to the execution platform, see what state it produces, ...
 - Advantage: If you're unsure what a does in the current state, you can try it and see
 - Disadvantage: Each action execution takes time. Collecting enough observations may take lots of time.

- Learning from informative states:
 - Suppose the learner has an oracle for Σ
 - e.g., a quick simulator
 - Given (s,a), it either returns γ(s,a) or says that a isn't applicable
 - Advantage: Learner can try a in many different states until it's sure what a does
 - Disadvantage: Not feasible unless you have a simulator that's both fast and accurate
- In all three cases, observations give information about *actions*
 - To get action schemas, must generalize
 - Use techniques based on lifting

Lifted Preconditions and Effects

- Recall what an action schema looks like
 - head: $name(z_1, ..., z_n)$
 - pre: atoms in which every object variable is one of z₁, ..., z_n
 - eff: assignments in which every object variable is one of z₁, ..., z_n
- Assume the action schemas contain no constants
 - Then the action schemas are fully lifted
 - In pre and eff,
 - every state variable contains only $z_1, ..., z_n$ as parameters
 - every state variable's value is one of $z_1, ..., z_n$

- Suppose we're given an action trace

 ({loc(r1) = d3}, move(r1,d3,d1), {loc(r1) = d1})
- We want to figure out the preconditions and effects of move(z₁, z₂, z₃)
- For pre and eff, consider atoms such as loc(z₁) = z₂, loc(z₁) = z₃

```
This restriction can exclude useful action schemas, e.g.

load(r, c, l)
pre: cargo(r)=nil, loc(c)=l, loc(r)=l

eff: cargo(r)\leftarrow c, loc(c)\leftarrow r
```

Offline Learning (Basic Idea)

- Given $T \subseteq T_{\Sigma}$ a set of triples $(s, \alpha(c_1, ..., c_k), s')$
- For each α , begin with action schema (*head*, *pre*, *eff*)
 - *head* = $\alpha(z_1, \ldots, z_k)$
 - $pre = \{atoms of the form x(z'_1,...,z'_n) = z'_{n+1}$ where $x \in Xsym$ and each z'_i is one of $z_1,...,z_k\}$
 - $eff = \emptyset$
- for every $(s, \alpha(c_1, \dots, c_k), s') \in T$ do
 - for every atom x(z'₁,..., z'_n) = z'_{n+1} in pre(α(z₁,...,z_k)) that doesn't have a ground instance in s do
 - remove it from $pre(\alpha(z_1,...,z_k))$
 - For every atom x(z₁,..., z_n) = z_{n+1} that has a ground instance in s' \ s do
 - add $x(z_1,...,z_n) \leftarrow z_{n+1}$ to eff $(\alpha(z_1,...,z_k))$

- Need to fill in some additional details
- Can prove it produces a sound action model
 - $T_{\Sigma'} \subseteq T_{\Sigma}$
- Completeness depends on whether *T* contains enough action traces
- Can enhance the algorithm by allowing action traces of the form
 - (*s*, α (c₁,...,c_k), *inapplicable*)
- As given, the algorithm is very inefficient
 - each action schema starts with huge number of preconditions, must remove most of them
- Paolo will revise it to make it more efficient

4.2.2 Online Learning

- Learning actions by queries
 - Access to an oracle, e.g., a quick simulator
 - Informative state
 - A state *s* such that $\gamma(s,a)$ will provide needed information about *a*
 - Generate queries about such states
 - Can write an algorithm that is both correct and complete

- Online action learning
 - Observe current state, choose action a, send it to the execution platform, see what state it produces, …
 - Try to generate plans that will lead to informative states