
1Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Last update: 10:55 AM, March 8, 2025

Acting, Planning,
and Learning

Malik Ghallab, Dana Nau,
and Paolo TraversoChapter 2

Deterministic Representation and Acting

Dana S. Nau
University of Maryland

with contributions from
Mark “mak” Roberts

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://scholar.google.com/citations?user=vlbX4J8AAAAJ

2Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Motivation Outline
● How to model a complex environment?

▸ Generally need simplifying assumptions

● Classical planning
• Finite, static world, just one actor
• No concurrent actions, no explicit time
• Determinism, no uncertainty, no exogeneous events
• Full observability
• Unit-cost actions

▸ Sequence of states and actions ⟨s0, a1, s1, a2, s2, …⟩

● Avoids many complications

● Most real-world environments don’t satisfy the assumptions
⇒ Errors in prediction

● OK if they’re infrequent and don’t have severe consequences

2.2. State-Transition Systems

 2.3. State-Variable Representation

 2.6. Acting

 2.4. Classical Representation

 2.5. Computational Complexity

Chapter 2 of Haslum et al. (2019)*
▸ Classical fragment of PDDL
▸ Planning domains and problems
▸ untyped, typed

* Haslum, Lipovetzky, Magazzini, & Muise.
 An Introduction to the Planning Domain
 Definition Language. Morgan Claypool, 2019.

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

3Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Section 2.1. State-Transition Systems
State-transition system or classical planning domain:
● Σ = (S,A,γ,cost) or (S,A,γ)

▸ S - finite set of states
▸ A - finite set of actions
▸ γ: S×A → S

prediction (or state-transition) function
• partial function: γ(s,a) is not necessarily

defined for every (s,a)
▸ a is applicable in s iff γ(s,a) is defined
▸ Domain(a) = {s ∈ S | a is applicable in

s}
▸ Range(a) = {γ(s,a) | s ∈ Domain(a)}

▸ cost: S×A → ℝ+ or cost: A → ℝ+

• optional; default is cost(a) ≡ 1
• money, time, something else

● plan:
▸ a sequence of actions π = ⟨a1, …, an⟩

● π is applicable in s0 if the actions are applicable in
the order given

γ(s0, a1) = s1

γ(s1, a2) = s2

…
γ(sn–1, an) = sn

▸ In this case define γ(s0, π) = sn

● Classical planning problem:
▸ P = (Σ, s0, Sg)
▸ planning domain, initial state, set of goal states

● Solution for P:
▸ a plan π such that that γ(s0,π) ∈ Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

4Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Planning Problems
● π = ⟨a1, …, an⟩ is applicable in s0 if

the actions are applicable in the order
given

γ(s0, a1) = s1

γ(s1, a2) = s2

…
γ(sn–1, an) = sn

▸ In this case we define
• γ(s0, π) = sn

• $γ(s0,π) = ⟨s0,…, s𝑛⟩

● Classical planning problem:
▸ P = (Σ, s0, Sg)
▸ planning domain, initial state, set

of goal states

● Solution for P: a plan π such that that γ(s0,π) ∈ Sg

▸ Minimal solution: no subsequence is also a solution
▸ Shortest solution: no solution has fewer actions
▸ Optimal solution: no solution has lower cost

● Example: Suppose P has three solutions
• π1 = ⟨a1⟩
• π2 = ⟨a2, a3, a4, a5⟩
• π3 = ⟨a2, a3, a1⟩

▸ Then π1 is both shortest and optimal
● Poll: Which solutions are minimal?
 A. π1 B. π2 C. π3

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

5Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Acting with a Plan

● A simple procedure for running a plan

● To test whether π has achieved a desired goal Sg
▸ add Sg as a third argument
▸ before line 2, insert this:

if s ∉ Sg then return failure

● Ideally, Run-Plan(Σ, ⟨a1, …, an⟩) will take Σ
through through the sequence of states

• $γ(s0,π) = ⟨s1,…, s𝑛⟩
then return success

● But recall that Σ is unlikely to be a perfect
model of the actor’s environment
▸ Later we’ll discuss some things that can go

wrong

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

6Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Section 2.2. Representation
● We write Run-Plan(Σ, π)

▸ But what Run-Plan really needs is data
structures that represent Σ and π

● If S and A are small enough
▸ Give each state and action a name
▸ For each s and a, store γ(s,a) in a lookup table

● In larger domains, don’t represent all states
explicitly
▸ Language for describing properties of states
▸ Language for describing how each action

changes those properties
▸ Start with initial state, use actions to

produce other states

loc1

loc3

loc2

loc6

loc5
loc4 loc7

loc8

loc0

x

y

4

3

2

1

1 2 3 4 5 60

loc9

a1′

…
s0

a1 s1 = γ(s0,a1)

s1′ = γ(s0,a1′) …

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

7Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Kinds of Representations

● Domain-specific representation:
▸ tailor-made for a specific environment

● State: arbitrary data structure
● Action: (head, preconditions, effects, cost)

▸ head: name and parameter list
• Get actions by instantiating the parameters

▸ preconditions:
• Computational tests to predict whether an

action can be performed
• Should be necessary/sufficient for the action

to run without error
▸ effects:

• Procedures that modify the current state
▸ cost: procedure that returns a number

• Can be omitted, default is cost ≡ 1

● Advantage: can use whatever works best for that
particular domain

● Disadvantage: for each new domain, need new
representation, new algorithms

● Alternative: domain-independent representation
▸ A “standard format” that can be used for many

different planning domains
▸ Limited representational capability, but easy to

compute
▸ Domain-independent algorithms that work for

anything in this format

▸ We’ll use a state-variable representation …

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

8Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example
● Drilling holes in a metal workpiece

▸ A state
• geometric model of the workpiece

▸ annotated with dimensions, tolerances, etc.
• capabilities and status of

drilling machine and drill bit
▸ Several actions

• clamp the workpiece onto the drilling machine
• load a drill bit into the machine
• drill a hole

● Name: drill-hole
● Arguments:

▸ ID codes for the machine and drill bit
▸ annotated geometric model of the workpiece
▸ description of the hole to be drilled

● Preconditions
▸ Capabilities: can the machine and drill bit

produce the desired hole?
▸ Current state: Is the drill bit installed? Is the

workpiece clamped onto the table? Etc.
● Effects

▸ annotated geometric model of modified
workpiece

● Cost
▸ estimate of time or monetary cost

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

9Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Discussion

● Advantage of domain-specific representation:
▸ use whatever works best for that particular

domain
● Disadvantage:

▸ for each new domain, need new
representation and deliberation algorithms

● Alternative: domain-independent representation
▸ Try to create a “standard format” that can be

used for many different planning domains
▸ Deliberation algorithms that work for

anything in this format

● State-variable representation
▸ Simple formats for describing states and

actions
▸ Limited representational capability

• But easy to compute, easy to reason
about

▸ Domain-independent search algorithms and
heuristic functions that can be used in all
state-variable planning problems

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

10Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

State-Variable Representation

● Objects = {names of objects in the environment}
● Organized into an typed ontology

▸ sets of object types

● Objects = Robots ∪ Containers ∪ Locs ∪ {nil}
▸ Robots = {r1}
▸ Containers = {c1, c2}
▸ Locs = {d1, d2, d3}

● Objects only needs to include objects that matter at the current level of
abstraction

● Can omit lots of details
▸ physical characteristics of robots, containers, loading docks, roads, …

d2d1

d3

r1
c1 c2

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

11Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

d2d1

d3

r1
c1 c2

Rigid Properties
● Objects have two kinds of properties

▸ rigid and varying
● Rigid: stays the same in every state

▸ Can be described as a mathematical relation
adjacent = {(d1,d2), (d2,d1), (d1,d3),
(d3,d1)}

▸ Or equivalently, a set of ground atoms
adjacent(d1,d2), adjacent(d2,d1),
adjacent(d1,d3), adjacent(d3,d1)

▸ I’ll use the two notations interchangeably

Terminology from first-order logic:
● atom ≡ atomic formula ≡ positive literal

≡ predicate symbol with list of arguments
▸ e.g., adjacent(x,d2), where x is unbound

● negative literal ≡ negated atom ≡ atom with negation
sign in front of it
▸ e.g., ¬ adjacent(x,d2)

● an atom that contains no variable symbols is ground (or
fully instantiated)
▸ e.g., adjacent(d1,d2)

● an atom that contains no constant symbols is lifted
▸ e.g., adjacent(x,y)

● an atom that contains both is partially instantiated
▸ e.g., adjacent(x,d2)

● ground instance of any expression: replace every
variable with a value in its range
▸ e.g., adjacent(d1,d2) is a ground instance of both

adjacent(x,d2) and adjacent(x,y)

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

12Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

d2d1

d3

r1
c1 c2

Varying Properties
● Varying property (or fluent):

• a property that may differ in different states
● Represent it using a state variable

▸ a term that we can assign a value to
• e.g., loc(r1)

● Let X = {all state variables in the environment}
e.g., X = {loc(r1), loc(c1), loc(c2), cargo(r1)}

● Each state variable x ∈ X has a range
= {all values that can be assigned to x}

• Range(loc(r1)) = Locs
• Range(loc(c1)) = Range(loc(c2)) = Robots ∪ Locs
• Range(cargo(r1)) = Containers ∪ {nil}

● To abbreviate the “range” notation often I’ll just say things like
▸ loc(r1) ∈ Locs
▸ loc(c1), loc(c2) ∈ Robots ∪ Locs

Instead of “domain”,
to avoid confusion
with planning domains

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

13Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

d2d1

d3

r1
c1 c2

States as Functions
● Represent each state s as a function that assigns values to state variables

▸ For each state variable x, s(x) is one x’s possible values

s1(loc(r1)) = d1, s1(cargo(r1)) = nil,
s1(loc(c1)) = d1, s1(loc(c2)) = d2

● Mathematically, a function is a set of ordered pairs
s1 = {(loc(r1), d1), (cargo(r1), nil), (loc(c1), d1) , (loc(c2), d2)}

● Equivalently, write it as a set of ground positive literals (or ground atoms):
 s1 = {loc(r1)=d1, cargo(r1)=nil, loc(c1)=d1, loc(c2)=d2}
▸ Here, we’re using ‘=’ as a predicate symbol

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

14Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

d2d1

d3

r1
c1 c2

Action Schemas
● Action schema (or template): parameterized set

of actions
α = (head, pre, eff, cost)
▸ head: name, parameters
▸ pre: precondition literals
▸ eff: effect literals
▸ cost: a number (optional, default is 1)

● e.g.,
▸ head = take(r,l,c)
▸ pre = {cargo(r)=nil, loc(r)=l, loc(c)=l}
▸ eff = {cargo(r)=c, loc(c)=r}

● Each parameter has a range of possible values:

▸ Range(r) = Robots = {r1}
▸ Range(l) = Locs = {d1,d2,d3}
▸ Range(l) = Range(m) = Locs = {d1,d2,d3}
▸ Range(c) = Containers = {c1,c2}

move(r,l,m)
 pre: loc(r)=l, adjacent(l,m)
 eff: loc(r) ← m

take(r,l,c)
pre: cargo(r)=nil, loc(r)=l, loc(c)=l
eff: cargo(r) ← c, loc(c) ← r

put(r,l,c)
pre: loc(r)=l, loc(c)=r
eff: cargo(r) ← nil, loc(c) ← l

r ∈ Robots = {r1}
l,m ∈ Locs = {d1,d2,d3}
c ∈ Containers = {c1,c2}

the target
of the
assignment

We’ll usually write it
more like pseudocode:

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

15Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Actions
● A = set of action schemas

move(r,l,m)
 pre: loc(r)=l, adjacent(l, m)
 eff: loc(r) ← m

take(r,l,c)
pre: cargo(r)=nil, loc(r)=l, loc(c)=l
eff: cargo(r) ← c, loc(c) ← r

put(r,l,c)
pre: loc(r)=l, loc(c)=r
eff: cargo(r) ← nil, loc(c) ← l

r ∈ Robots = {r1}
l,m ∈ Locs = {d1,d2,d3}
c ∈ Containers = {c1,c2}

● Action: ground instance of an α ∈ A

▸ replace each parameter with something in its range
● A = {all actions we can get from A}

 = {all ground instances of members of A}

move(r1,d1,d2)
 pre: loc(r1)=d1, adjacent(d1,d2)
 eff: loc(r1) ← d2

d2d1

d3

r1
c1 c2

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

16Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Actions
● A = set of action schemas

move(r,l,m)
 pre: loc(r)=l, adjacent(l, m)
 eff: loc(r) ← m

take(r,l,c)
pre: cargo(r)=nil, loc(r)=l, loc(c)=l
eff: cargo(r) ← c, loc(c) ← r

put(r,l,c)
pre: loc(r)=l, loc(c)=r
eff: cargo(r) ← nil, loc(c) ← l

r ∈ Robots = {r1}
l,m ∈ Locs = {d1,d2,d3}
c ∈ Containers = {c1,c2}

● Action: ground instance a of an action schema α ∈ A
such that no state variable is a target of more than one
effect eff(a)

● A = {all actions we can derive from A}
 = {all ground instances of members of A}
move(r1,d1,d2)
 pre: loc(r1)=d1, adjacent(d1,d2)
 eff: loc(r1) ← d2

● We’ll normally refer to an action by writing its head
▸ move(r1,d1,d2)

Poll. Let:
 A = {the action schemas on this page}
 A = {all ground instances of members of A}
How many move actions in A?

Answers:
 A. 1 F. 6
 B. 2 G. 7
 C. 3 H. 8
 D. 4 I. 9
 E. 5 J. other

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

17Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Applicability

● a is applicable in s if
▸ for every positive literal l ∈ pre(a),

l ∈ s or l is in one of the rigid relations
▸ for every negative literal ¬l ∈ pre(a),

l ∉ s and l isn’t in any of the rigid relations

● Rigid relation
adjacent = {(d1,d2), (d2,d1), (d1,d3), (d3,d1)}

● State
s1 = {loc(r1)=d1, cargo(r1)=nil, loc(c1)=d1,
loc(c2)=d2}

● Action schema
move(r,l,m)
 pre: loc(r)=l, adjacent(l, m)
 eff: loc(r) ← m
r ∈ Robots = {r1}
l,m ∈ Locs = {d1,d2,d3}

● Applicable:
move(r1,d1,d2)
 pre: loc(r1)=d1, adjacent(d1,d2)
 eff: loc(r1) ← d2

● Not applicable:
move(r1,d2,d1)
 pre: loc(r1)=d2, adjacent(d2,d1)
 eff: loc(r1) ← d1

Poll: How many
move actions are
applicable in s1?
 A. 1 F. 6
 B. 2 G. 7
 C. 3 H. 8
 D. 4 I. 9
 E. 5 J. other

d2d1

d3

r1
c1 c2

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

18Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Applying an Action
● If a is applicable in s:

▸ γ(s,a) = {x = w | eff(a) contains x←w}
 ∪ {x = w | x isn’t a target in eff(a)}

● s2 = {loc(r1)=d2, cargo(r1)=nil, loc(c1)=d1, loc(c2)=d2}

● a = take(r1,c2,d2)
 pre: cargo(r1)=nil, loc(r1)=d2, loc(c2)=d2
 eff: cargo(r1) ← c2, loc(c2) ← r1

● γ(s2, take(r1,c2,d2)) =
 {loc(r1)=d2, loc(c1)=d1, cargo(r1)=c2, loc(c2)=r1}
 ⌊__________________________⌋ ⌊____________________________⌋

 from s2 from eff(a)
d2d1

d3

c1
r1 c2

d2d1

d3

c1
r1

c2

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

19Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

s2 = {loc(r1)=d1,
 cargo(r1)=c1,
 loc(c1)=r1,
 loc(c2)=d2}

Applying a Plan
● A plan π is applicable in a state s if we can apply

the actions in the order that they appear in π
● This produces a sequence of states
● γ(s,π) = the last state in the sequence

▸ π = ámove(r1,d3,d1), take(r1,c1,d1), move(r1,d1,d3)ñ
▸ γ(s0,π) = s3

▸ !γ = ⟨s0, s1, s2, s3⟩

s0 = {loc(r1)=d3,
 cargo(r1)=nil,
 loc(c1)=d1,
 loc(c2)=d2}

s3 = {loc(r1)=d3,
 cargo(r1)=c1,
 loc(c1)=r1,
 loc(c2)=d2}

s1 = {loc(r1)=d1,
 cargo(r1)=nil,
 loc(c1)=d1,
 loc(c2)=d2}

d2d1

d3

c1
r1

c2

take(r1,c1,d1)

d2d1

d3
r1

c2

c1

d2d1

d3

r1
c2

c1
move(r1,d1,d3)

d2d1

d3

c1

r1

c2

move(r1,d3,d1)

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

20Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

State-Variable Planning Domain
● Let

▸ O = ontology of typed objects
▸ R = set of rigid relations
▸ X = set of lifted state variables, including

 specifications of their ranges
▸ A = finite set of action schemas

● (O, R, X, A) represents Σ = (S, A, γ, cost), where

▸ A = {all actions induced by A}

▸ γ(s,a) = {x=w | eff(a) contains x←w}
 ∪ {x=w | x isn’t a target in eff(a)}

▸ cost(.) is as specified in the action schemas

▸ S = all states {x1 = v1, …, xn = vn}, where
• {x1, …, xn} = {all of the ground instances

 of members of X}
• each vi is an object in Range(xi)

Objects = Robots ∪ Containers
 ∪ Locs ∪ {nil}
Robots = {r1}
Containers = {c1, c2}
Locs = {d1, d2, d3}
adjacent = {(d1,d2), (d2,d1),
 (d1,d3), (d3,d1)}
loc(c) ∈ Locs ∪ Robots,
loc(r) ∈ Locs,
cargo(r) ∈ Containers ∪ {nil}
where c ∈ Containers, r ∈ Robots

move(r,l,m)
 pre: loc(r)=l, adjacent(l, m)
 eff: loc(r) ← m
take(r,c,l)

pre: cargo(r)=nil,
 loc(r)=l, loc(c)=l

eff: cargo(r) ← c, loc(c) ← r
put(r,c,l)

pre: loc(r)=l, loc(c)=r
eff: cargo(r) ← nil, loc(c) ← l

O:

R:

X:

A:d2d1

d3

r1
c2

c1

s0 = {loc(r1)=d2,
 cargo(r1)=c1,
 loc(c1)=r1,
 loc(c2)=d2}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

21Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

State-Variable Planning Domain

● S = all states {x1 = v1, …, xn = vn}, where
▸ {x1, …, xn} = {all of the ground instances of

 members of &𝑋}
▸ each vi is an object in Range(!𝑥i)

● S may contain some nonsensical states
▸ e.g., states in which both loc(c1)=r1

and cargo(r1)=nil

● But if s0 and A are defined properly,
applying a plan in s0 will never generate
a nonsensical state

Objects = Robots ∪ Containers
 ∪ Locs ∪ {nil}
Robots = {r1}
Containers = {c1, c2}
Locs = {d1, d2, d3}
adjacent = {(d1,d2), (d2,d1),
 (d1,d3), (d3,d1)}
loc(c) ∈ Locs ∪ Robots,
loc(r) ∈ Locs,
cargo(r) ∈ Containers ∪ {nil}
where c ∈ Containers, r ∈ Robots

move(r,l,m)
 pre: loc(r)=l, adjacent(l, m)
 eff: loc(r) ← m
take(r,c,l)

pre: cargo(r)=nil,
 loc(r)=l, loc(c)=l

eff: cargo(r) ← c, loc(c) ← r
put(r,c,l)

pre: loc(r)=l, loc(c)=r
eff: cargo(r) ← nil, loc(c) ← l

O:

R:

X:

A:d2d1

d3

r1
c2

c1

s0 = {loc(r1)=d2,
 cargo(r1)=c1,
 loc(c1)=r1,
 loc(c2)=d2}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

22Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

State-Variable Planning Problem

● P = (Σ, s0, g), where
▸Σ = is a state-variable planning domain
▸ s0 ∈ S is the initial state
▸ g is a set of ground literals called the goal

● Sg = {all states in S that satisfy g}
 = {s ∈ S | s ∪ R contains every positive literal
 in g, and none of the negative literals in g}

● π is a solution for P if g(s0,π) satisfies g

ámove(r1,d2,d1), put(r1,c1,d1)ñ
 is a solution of length 2

Poll: How many solutions
of length 3?
 A. 1 B. 2 C. 3
 D. 4 E. 5 F. 6
 G. 7 H. 8 I. 9
 J. other

d1c1

g = {loc(c1)=d1}

Objects = Robots ∪ Containers
 ∪ Locs ∪ {nil}
Robots = {r1}
Containers = {c1, c2}
Locs = {d1, d2, d3}
adjacent = {(d1,d2), (d2,d1),
 (d1,d3), (d3,d1)}
loc(c) ∈ Locs ∪ Robots,
loc(r) ∈ Locs,
cargo(r) ∈ Containers ∪ {nil}
where c ∈ Containers, r ∈ Robots

move(r,l,m)
 pre: loc(r)=l, adjacent(l, m)
 eff: loc(r) ← m
take(r,c,l)

pre: cargo(r)=nil,
 loc(r)=l, loc(c)=l

eff: cargo(r) ← c, loc(c) ← r
put(r,c,l)

pre: loc(r)=l, loc(c)=r
eff: cargo(r) ← nil, loc(c) ← l

O:

R:

X:

A:d2d1

d3

r1
c2

c1

s0 = {loc(r1)=d2,
 cargo(r1)=c1,
 loc(c1)=r1,
 loc(c2)=d2}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

23Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Deliberation
components

Execution platform

Commands Percepts

Other
actors

Objectives

Messages

External World

SignalsActuations

Actor
Deliberation components

Execution platform

Planning

Acting
Queries

Plans

Learning

Models

Section 2.3. Acting
● For classical planning problems we assumed

• Finite, static world, just one actor
• No concurrent actions, no explicit time
• Determinism, no uncertainty, no exogeneous

events
• Full observability
• Unit-cost actions

▸ Sequence of states and actions ⟨s0, a1, s1, a2, s2, …⟩
● Most real-world environments don’t satisfy the

assumptions because of errors in prediction
● This can usually be fine if

▸ errors occur infrequently, and
▸ they don’t have severe consequences

● What to do if an error does occur?

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

24Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

ignores how to get from l
to m, e.g., opening the door

Service Robot

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… … bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

a1 a2 a3 a4 a5

π = ⟨a1,a2,a3,a4,a5⟩
a1 = go(r1,room3,hall)
a2 = navigate(r1,hall,room1)
a3 = take(r1,o7,room1)
a4 = navigate(r1,room1,room2)
a5 = put(r1,o7,room2)⟩

ignores how do navigation,
localization

ignores how to grasp o, lift
it, put it down

go(r,l,m)
pre: adjacent(l,m), loc(r)=l
eff: loc(r) ← m

navigate(r,l,m)
pre: ¬adjacent(l, m), loc(r)=l
eff: loc(r) ← m

take(r,o,l)
pre: loc(r)=l, loc(o)=l,

cargo(r)=nil
eff: loc(o) ← r, cargo(r) ← o

room3

room2

room1
o7

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

25Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

● Some things that can go wrong:
▸ Execution failures

• robot gripper slips on doorknob
• door is locked or broken

▸ Sensor errors
• navigation error causes robot to

go to wrong room
▸ Incorrect or partial information

• where is o7 ?
▸ Events that make actions inapplicable

• someone puts object o6 onto r1
▸ Events that make actions unnecessary

• someone puts object o7 onto r1

● How to detect and recover?

go(r,l,m)
pre: adjacent(l,m), loc(r)=l
eff: loc(r) ← m

navigate(r,l,m)
pre: ¬adjacent(l, m), loc(r)=l
eff: loc(r) ← m

take(r,o,l)
pre: loc(r)=l, loc(o)=l,

cargo(r)=nil
eff: loc(o) ← r, cargo(r) ← o

Service Robot
π = ⟨a1,a2,a3,a4,a5⟩

a1 = go(r1,room3,hall)
a2 = navigate(r1,hall,room1)
a3 = take(r1,o7,room1)
a4 = navigate(r1,room1,room2)
a5 = put(r1,o7,room2)⟩

room3

room2

room1
o7

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

26Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Acting with Lookahead

Run-Lookahead(Σ, g)
s ← abstraction of observed state ξ
while s ⊭ g do

π ← Lookahead(Σ, s, g)
if π = failure then return failure
a ← pop-first-action(π); perform(a)
s ← abstraction of observed state ξ

● Call Lookahead, obtain π, perform 1st action, call
Lookahead again …

● Useful when unpredictable things are likely to
happen
▸ Replans immediately

● Also useful with receding horizon search (e.g., as in
chess programs):
▸ Lookahead looks a limited distance ahead

● Potential problem:
▸ Lookahead needs to return quickly
▸ Otherwise, may pause repeatedly while waiting

for Lookahead to return
▸ What if ξ changes during the wait?

8

Planning stage
Acting stage

the
planner

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

27Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Acting with Lookahead

Run-Lazy-Lookahead(Σ, g)
π ← ⟨ ⟩
while True do

s ← abstraction of observed state ξ
if s ⊨ g then return success
if π = ⟨ ⟩ or Simulate(Σ, s, g, π) = failure then

π ← Lookahead(Σ, s, g)
if π = failure then return failure

a ← pop-first-action(π)
perform(a)

● Call Lookahead, execute the plan as far as possible,
don’t call Lookahead again unless necessary

● Simulate tests whether the plan will execute correctly
▸ Could do lower-level refinement, physics-based simulation
▸ Could just test whether γ(s,π) ⊨ g
▸ Or just test whether s = γ(s′, a), where s′ is the previous state

● Potential problems
▸ Simulate needs to return quickly

• otherwise, may pause repeatedly, ξ may change
▸ May might miss opportunities to replace π with a better planPlanning Stage

Acting Stage
Poll: Assuming no action failures during acting,
which approach does more work, in terms of
planning: Run-Lazy-Lookahead or Run-Lookahead?
A. Run-Lazy-Lookahead C. Equal amounts
B. Run-Lookahead D. Unsure

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

28Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Acting with Plan Repair

● We may want to repair π rather than get a new plan
▸ e.g., if we’ve already made commitments or

resource allocations
● Modify Run-Lazy-Lookahead

Run-Lazy-Lookahead(Σ, g)
π ← ⟨ ⟩
while True do

s ← abstraction of observed state ξ
if s ⊨ g then return success
if π = ⟨ ⟩ or Simulate(Σ, s, g, π) = failure then

π ← Lookahead-Repair(Σ, s, g,π)
if π = failure then return failure

a ← pop-first-action(π)
perform(a)Planning Stage

Acting Stage

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

29Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0
8

Planning stage
Acting stage

How to do Lookahead
Some possibilities (can also combine these)
● Full planning (if the planner can solve the planning problem quickly enough)
● Receding horizon

▸ Modify Lookahead to search just part of the way to g
▸ E.g., cut off search when one of the following

exceeds a maximum threshold:
• plan length, plan cost, computation time

● Sampling
▸ Modify Lookahead to do a Monte Carlo rollout

• Depth-first search with random node selection and no backtracking
▸ Call Lookahead several times, choose the plan that looks best
▸ Best-known example of this: the UCT algorithm (see Chapter 9)

● Subgoaling
▸ Tell Lookahead to plan for some subgoal g1, rather than g itself (see next page)
▸ Once the actor has achieved g1, tell Lookahead to plan for the next subgoal g2

▸ And so forth until the actor reaches g

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

30Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Subgoaling Example
● Killzone 2

▸ “First-person shooter” game, ≈ 2009
▸ widely acclaimed at the time

● Special-purpose AI planner
▸ Plans enemy actions at the squad level

• Subproblems; plans are maybe 4–6 actions long
▸ Different planning algorithm from

what we’ve discussed so far
▸ HTN planning (see Part II)

• Quickly generates a plan for a subgoal
• Replans several times per second as the world changes

● Why it worked:
▸ Don’t want to get the best possible plan
▸ Need actions that appear believable and consistent to human users
▸ Need them very quickly

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

31Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Classical Representation

● Motivation
▸ The field of AI planning started out as automated theorem

proving
▸ It still uses a lot of that notation

● Classical representation is equivalent to state-variable
representation
▸ No distinction between rigid and varying properties
▸ Both represented as logical predicates
▸ Both are in the current state

 adjacent(l,m) - location l is adjacent to m
 loc(r) = l ⟶ loc(r,l) - robot r is at location l
 loc(c) = r ⟶ loc(c,r) - container c is on robot r
cargo(r) = c ⟶ loaded(r) - there’s a container on r

● State s = a set of ground atoms
▸ Atom a is true in s iff a ∈ s

s0 = {adjacent(d1,d2), adjacent(d2,d1),
 adjacent(d1,d3), adjacent(d3,d1),
 loc(c1,d1), loc(r1,d2)}

d2d1

d3

r1

c1

Poll: Should s0 also contain
 ¬ loaded(r1) ?
 A: yes B: no
 C: unsure

why not loaded(r,c)?

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

32Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Classical planning operators
● action schemas

move(r,l,m)
 pre: loc(r)=l, adjacent(l, m)
 eff: loc(r) ← m

take(r,c,l)
pre: cargo(r)=nil, loc(r)=l, loc(c)=l
eff: cargo(r) ← c, loc(c) ← r

put(r,c,l)
pre: loc(r)=l, loc(c)=r
eff: cargo(r) ← nil, loc(c) ← l

Range(r) = Robots = {r1}
Range(l) = Range(m) = Locs = {d1,d2,d3}
Range(c) = Containers = {c1,c2}

● Classical planning operators

move(r,l,m)
 pre: loc(r,l), adjacent(l, m)
 eff: ¬loc(r,l), loc(r,m)

take(r,c,l)
pre: ¬loaded(r), loc(r,l), loc(c,l)
eff: loaded(r), ¬loc(c,l), loc(c,r)

put(r,c,l)
pre: loc(r,l), loc(c,r)
eff: ¬loaded(r), loc(c,l), ¬loc(c,r)

d2d1

d3

r1

c1

Poll: Does move
really need to
include ¬loc(r,l) ?
 A: yes B: no
 C: unsure

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

33Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Classical Actions

● Planning operator:
o: move(r,l,m)
 pre: loc(r,l), adjacent(l,m)
 eff: ¬loc(r,l), loc(r,m)

● Action:
a1: move(r1,d2,d1)
 pre: loc(r1,d2), adjacent(d2,d1)
 eff: ¬loc(r1,d2), loc(r1,d1)

● Let
▸ pre –(a) = {a’s negated preconditions}
▸ pre+(a) = {a’s non-negated preconditions}

● a is applicable in state s iff
s ∩ pre –(a) = ∅ and pre+(a) ⊆ s

● If a is applicable in s then
▸ γ(s,a) = (s ∖ eff –(a)) ∪ eff +(a)

d2d1

d3

r1

c1

s0 = {adjacent(d1,d2),
 adjacent(d2,d1),
 adjacent(d1,d3),
 adjacent(d3,d1),
 loc(c1,d1),
 loc(r1,d2)}

γ(s0, a1) = {adjacent(d1,d2),
 adjacent(d2,d1),
 adjacent(d1,d3),
 adjacent(d3,d1),
 loc(c1,d1),
 loc(r1,d1)}

d2d1

d3

r1

c1

meaning?

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

34Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Discussion

● Equivalent expressive power
▸ Each can be converted to the other in linear time and space

● Classical representation
▸ More natural for logicians
▸ Don’t require single-valued functions

● State variables
▸ More natural for engineers and computer programmers
▸ When changing a value, don’t have to explicitly delete the old one

● Historically, classical representation has been more widely used
▸ That’s starting to change

State-variable
rep.

Classical
rep.xP(b1,…,bk)=1 ⇐ P(b1,…,bk)

x(b1,…,bn–1)=bn ⇒ Px(b1,…,bn–1,bn)

Poll: Could we instead use
xP(b1,…,bk–1)=bk ?

 A: yes B: no
 C: unsure

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

35Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

PDDL

● Language for defining planning domains
and problems

● Original version of PDDL ≈ 1996
▸ Just classical planning

● Multiple revisions and extensions
▸ Different subsets accommodate

different kinds of planning

● We’ll discuss the classical-planning subset
▸ Chapter 2 of the PDDL book

Series Editors: Ronald J. Brachman, Jacobs Technion-Cornell Institute at Cornell Tech
 Francesca Rossi, AI Ethics Global Leader, IBM Research AI
 Peter Stone, University of Texas at Austin

An Introduction to the Planning Domain Definition Language
Patrik Haslum, Australian National University
Nir Lipovetzky, University of Melbourne
Daniele Magazzeni, King’s College London
Christian Muise, IBM Research
Planning is the branch of Artificial Intelligence (AI) that seeks to automate reasoning about plans, most
importantly the reasoning that goes into formulating a plan to achieve a given goal in a given situation. AI
planning is model-based: a planning system takes as input a description (or model) of the initial situation,
the actions available to change it, and the goal condition to output a plan composed of those actions that will
accomplish the goal when executed from the initial situation.
 The Planning Domain Definition Language (PDDL) is a formal knowledge representation
language designed to express planning models. Developed by the planning research community as a means of
facilitating systems comparison, it has become a de-facto standard input language of many planning systems,
although it is not the only modelling language for planning. Several variants of PDDL have emerged that
capture planning problems of different natures and complexities, with a focus on deterministic problems.
 The purpose of this book is two-fold. First, we present a unified and current account of PDDL,
covering the subsets of PDDL that express discrete, numeric, temporal, and hybrid planning. Second, we
want to introduce readers to the art of modelling planning problems in this language, through educational
examples that demonstrate how PDDL is used to model realistic planning problems. The book is intended
for advanced students and researchers in AI who want to dive into the mechanics of AI planning, as well as
those who want to be able to use AI planning systems without an in-depth explanation of the algorithms and
implementation techniques they use.

store.morganclaypool.com

About SYNTHESIS

This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis
books provide concise, original presentations of important research and
development topics, published quickly, in digital and print formats.

HASLUM
 • ET AL

 AN INTRODUCTION TO THE PLANNING DOM
AIN DEFINITION LANGUAGE

 M
O

R
G

A
N

 &
 C

LAY
PO

O
L

Series ISSN: 1939-4608

Ronald J. Brachman, Francesca Rossi, and Peter Stone, Series Editors

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

36Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

(define (problem example-problem-1)
 (:domain example-domain-1))

 (:init
 (adjacent d1 d2)
 (adjacent d2 d1)
 (adjacent d1 d3)
 (adjacent d3 d1)
 (loc c1 d1)
 (loc r1 d2)

 (:goal (loc c1 r1)))

(define (domain example-domain-1)
 (requirements :negative-preconditions)

 (:action move
 :parameters (?r ?l ?m)
 :precondition (and (loc ?r ?l)
 (adjacent ?l ?m))
 :effect (and (not (loc ?r ?l))
 (loc ?r ?m)))

 (:action take
 :parameters (?r ?l ?c)
 :precondition (and (loc ?r ?l)
 (loc ?c ?l)
 (not (loaded ?r)))
 :effect (and (not (loc ?c ?l))
 (loc ?c ?r)
 (loaded ?r)))

 (:action put
 :parameters (?r ?l ?c)
 :precondition (and (loc ?r ?l)
 (loc ?c ?r))
 :effect (and (loc ?c ?l)
 (not (loc ?c ?r))
 (not (loaded ?r)))))

Example domain

r1 c1Goal:

d2d1

d3

r1

c1

Initial state:

These are untyped
parameters.

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

37Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example problem

● Classical representation: (define (problem example-problem-1)

 (:domain example-domain-1))

 (:init

 (adjacent d1 d2)
 (adjacent d2 d1)

 (adjacent d1 d3)

 (adjacent d3 d1)

 (loc c1 d1)

 (loc r1 d2)

 (:goal (loc c1 r1)))

r1 c1

g = {loc(c1,r1)}

d2d1

d3

r1

c1

s0 = {adjacent(d1,d2), adjacent(d2,d1),
 adjacent(d1,d3), adjacent(d3,d1),
 loc(c1,d1), loc(r1,d2)}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

38Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

State-variable representation:
▸Objects = Movable_objects ∪ Locs
▸Movable_objects = Robots ∪ Containers
▸Robots = {r1}
▸Containers = {c1}
▸ Locs = {d1, d2, d3}

▸ r ∈ Robots, l,m ∈ Locs, c ∈ Containers

Typed domain

(define (domain example-domain-2)
 (:requirements
 :negative-preconditions
 :typing)
 (:types
 location movable-obj - object
 robot container - movable-obj)

 (:predicates
 (loc ?r - movable-obj
 ?l - location)
 (loaded ?r - robot)
 (adjacent ?l ?m - location))

(:action move
 :parameters (?r - robot
 ?l ?m - location)
 :precondition (and (loc ?r ?l)
 (adjacent ?l ?m))
 :effect (and (not (loc ?r ?l))
 (loc ?r ?m)))

 (:action take
 :parameters (?r - robot
 ?l - location
 ?c - container)
 :precondition (and (loc ?r ?l)
 (loc ?c ?l)
 (not (loaded ?r)))
 :effect (and (not (loc ?r ?l))
 (loc ?r ?m)))

 (:action put
 :parameters (?r - robot
 ?l - location
 ?c - container)
 :precondition (and (loc ?r ?l)
 (loc ?c ?r))
 :effect (and (loc ?c ?l)
 (not (loc ?c ?r))
 (not (loaded ?r)))))

d2d1

d3

r1
c1

Locations, Movable_objects ⊆ Objects
Robots, Containers ⊆ Movable_objects

r ∈ Robots,
l ∈ Locs,
c ∈ Containers

r ∈ Movable_objects
l ∈ Locs
r ∈ Robots

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

39Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Typed problem
(define (problem example-problem-2)
 (:domain example-domain-2))

 (:objects
 r1 - robot
 c1 - container
 d1 d2 d3 - location)

 (:init
 (adjacent d1 d2)
 (adjacent d2 d1)
 (adjacent d1 d3)
 (adjacent d3 d1)
 (loc c1 d1)
 (loc r1 d2)

 (:goal (loc c1 r1)))

r1 c1g = {loc(c1,r1)}

d2d1

d3

r1

c1

s0 = {adjacent(d1,d2), adjacent(d2,d1),
 adjacent(d1,d3), adjacent(d3,d1),
 loc(c1,d1), loc(r1,d2)}

State-variable representation:
▸Objects = Movable_objects ∪ Locs
▸Movable_objects = Robots ∪ Containers
▸Robots = {r1}
▸Containers = {c1}
▸ Locs = {d1, d2, d3}

▸ r ∈ Robots,
l,m ∈ Locs,
c ∈ Containers

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

40Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Computational Complexity Refresher

● Computational complexity results are normally
given for decision problems
▸ each decision problem is an infinite set of

questions with yes/no answers
Two decision problems in which P may be
any classical planning problem:

▸ PLAN EXISTENCE: does P have a solution?
▸ PLAN LENGTH: does P have a solution of

length ≤ 𝑘?

Prof. Gabriel Robins, UVA
https://www.cs.virginia.edu/~robins/cs6160/
Lectures 19-21 cover the key concepts

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://www.cs.virginia.edu/~robins/cs6160/
https://www.youtube.com/playlist?list=PL7yS_81K9Sey0zq1qwoLp2OreNYPlk8TF

41Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Section 2.5. Computational Complexity

● Suppose P is given in state-variable
representation (rather than enumerating S and
A explicitly):

▸ PLAN EXISTENCE is EXPSPACE-complete
▸ PLAN LENGTH is NEXPTIME-complete

● If we restrict P to be in a fixed planning domain
Σ that is known in advance :
▸ Both problems are in PSPACE

▸ PSPACE-complete for some planning
domains

● These are worst-case results, average case is
often much lower (e.g., polynomial)

Poll. What is the complexity of PLAN EXISTENCE if P is
given by enumerating S and A explicitly?

 A. PSPACE-complete B. NP-complete
 C. Polynomial D. something else

As a reminder: P Í NP Í PSPACE Í EXPTIME Í NEXPTIME Í EXPSPACE

Need a refresher on complexity? See:
• UVA CS 4102 PSPACE and beyond (Bloomfield, 2011)
• MIT OpenCourseWare 6.006 Computational Complexity Lecture
• MIT OpenCourseWare 6.045 Course, specifically lectures 12, 15, & 16
• UVA CS 6160 (Robins, 2022)

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://www.slideserve.com/jaxon/pspace-and-beyond-powerpoint-ppt-presentation
https://ocw.mit.edu/courses/6-006-introduction-to-algorithms-fall-2011/resources/lecture-23-computational-complexity/
https://ocw.mit.edu/courses/6-045j-automata-computability-and-complexity-spring-2011/pages/lecture-notes/
https://ocw.mit.edu/courses/6-006-introduction-to-algorithms-fall-2011/resources/lecture-23-computational-complexity/
https://ocw.mit.edu/courses/6-045j-automata-computability-and-complexity-spring-2011/pages/lecture-notes/
https://www.cs.virginia.edu/~robins/cs6160/

42Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Summary

● Section 2.2. State-transition systems
▸ Classical planning assumptions
▸ States, actions, transition function
▸ Plans, planning problems, solutions
▸ Run-Plan

● Section 2.3. State-Variable Representation
▸ Objects, rigid properties
▸ Varying properties, state variables, states
▸ Action schemas, actions, applicability, γ
▸ Plans, problems, solutions

● Section 2.4. Classical Representation

● Section 2.5. Computational Complexity

● Section 2.6. Acting
▸ Things that can go wrong while acting
▸ Run-Lookahead, Run-Lazy-Lookahead
▸ Plan repair
▸ Interacting with an online planner

• subgoaling, limited horizon, sampling

● Chapter 2 of Haslum et al. (2019)
▸ Classical fragment of PDDL
▸ Planning domains, planning problems
▸ untyped, typed

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

