Last update: 10:55 AM, March 8, 2025

Acting, Planning, and Learning

Malik Ghallab, Dana Nau, and Paolo Traverso

Chapter 2 Deterministic Representation and Acting

Dana S. Nau University of Maryland

with contributions from

Mark "mak" Roberts

Motivation

- How to model a complex environment?
 - Generally need simplifying assumptions
- Classical planning
 - Finite, static world, just one actor
 - No concurrent actions, no explicit time
 - Determinism, no uncertainty, no exogeneous events
 - Full observability
 - Unit-cost actions
 - Sequence of states and actions $\langle s_0, a_1, s_1, a_2, s_2, \ldots \rangle$
- Avoids many complications
- Most real-world environments don't satisfy the assumptions
 ⇒ Errors in prediction
- OK if they're infrequent and don't have severe consequences

Outline

2.2. State-Transition Systems2.3. State-Variable Representation

2.6. Acting

- 2.4. Classical Representation
- 2.5. Computational Complexity

Chapter 2 of Haslum et al. (2019)*

- Classical fragment of PDDL
- Planning domains and problems
- untyped, typed

^{*} Haslum, Lipovetzky, Magazzini, & Muise. An Introduction to the Planning Domain Definition Language. Morgan Claypool, 2019.

Section 2.1. State-Transition Systems

State-transition system or *classical planning domain*:

- $\Sigma = (S, A, \gamma, \text{cost})$ or (S, A, γ)
 - ► S finite set of *states*
 - A finite set of *actions*
 - $\flat \ \gamma : S \times A \to S$

prediction (or state-transition) function

- *partial* function: γ(s,a) is not necessarily defined for every (s,a)
 - *a* is *applicable* in *s* iff $\gamma(s,a)$ is defined
 - Domain(a) = { $s \in S | a$ is applicable in s}
 - Range(a) = { $\gamma(s,a) | s \in \text{Domain}(a)$ }
- cost: $S \times A \to \mathbb{R}^+$ or cost: $A \to \mathbb{R}^+$
 - optional; default is $cost(a) \equiv 1$
 - money, time, something else

- plan:
 - a sequence of actions $\pi = \langle a_1, ..., a_n \rangle$
- π is *applicable* in s_0 if the actions are applicable in the order given

$$\gamma(s_0, a_1) = s_1$$

 $\gamma(s_1, a_2) = s_2$

- $\gamma(s_{n-1}, a_n) = s_n$
- In this case define $\gamma(s_0, \pi) = s_n$
- *Classical planning problem:*
 - $\blacktriangleright P = (\Sigma, s_0, S_g)$

. . .

- planning domain, initial state, set of goal states
- *Solution* for *P*:
 - a plan π such that that $\gamma(s_0, \pi) \in S_g$

Planning Problems

 π = ⟨a₁, ..., a_n⟩ is *applicable* in s₀ if the actions are applicable in the order given

> $\gamma(s_0, a_1) = s_1$ $\gamma(s_1, a_2) = s_2$

- $\gamma(s_{n-1}, a_n) = s_n$
- In this case we define
 - $\gamma(s_0, \pi) = s_n$

. . .

- $\hat{\gamma}(s_0,\pi) = \langle s_0,\ldots,s_n \rangle$
- Classical planning problem:
 - $\blacktriangleright P = (\Sigma, s_0, S_g)$
 - planning domain, initial state, set of goal states

- *Solution* for *P*: a plan π such that that $\gamma(s_0, \pi) \in S_g$
 - Minimal solution: no subsequence is also a solution
 - Shortest solution: no solution has fewer actions
 - *Optimal solution:* no solution has lower cost
- **Example:** Suppose *P* has three solutions
 - $\pi_1 = \langle a_1 \rangle$

•
$$\pi_2 = \langle a_2, a_3, a_4, a_5 \rangle$$

- $\pi_3 = \langle a_2, a_3, a_1 \rangle$
- Then π_1 is both shortest and optimal
- **Poll:** Which solutions are minimal?

A. π_1 B. π_2 C. π_3

Acting with a Plan

- A simple procedure for running a plan
 - Run-Plan(Σ, π):
while True do1 $s \leftarrow$ observe current state1 $s \leftarrow$ observe current state2if $\pi = \langle \rangle$ then2 \lfloor return success $a \leftarrow pop(\pi)$ 3if $a \notin Applicable(s)$ then return failure
perform action a
- To test whether π has achieved a desired goal S_g
 - add S_g as a third argument
 - before line 2, insert this:
 - if $s \notin S_g$ then return failure

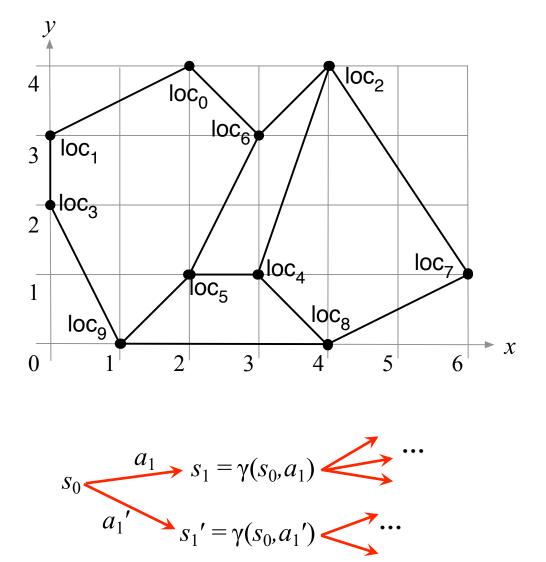
- Ideally, Run-Plan(Σ, (a₁, ..., a_n)) will take Σ through through the sequence of states
 - $\hat{\gamma}(s_0,\pi) = \langle s_1,\ldots,s_n \rangle$

then return success

- But recall that Σ is unlikely to be a perfect model of the actor's environment
 - Later we'll discuss some things that can go wrong

Section 2.2. Representation

- We write Run-Plan(Σ, π)
 - But what Run-Plan really needs is data structures that represent Σ and π
- If *S* and *A* are small enough
 - Give each state and action a name
 - For each *s* and *a*, store $\gamma(s,a)$ in a lookup table
- In larger domains, don't represent all states explicitly
 - Language for describing properties of states
 - Language for describing how each action changes those properties
 - Start with initial state, use actions to produce other states



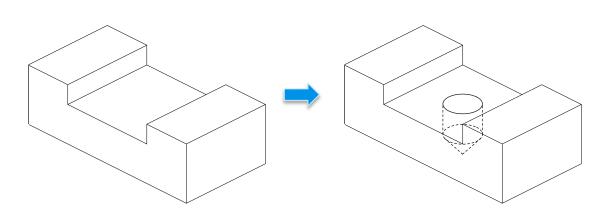
Kinds of Representations

- *Domain-specific* representation:
 - tailor-made for a specific environment
- State: arbitrary data structure
- Action: (head, preconditions, effects, cost)
 - *head*: name and parameter list
 - Get actions by instantiating the parameters
 - preconditions:
 - Computational tests to predict whether an action can be performed
 - Should be necessary/sufficient for the action to run without error
 - effects:
 - Procedures that modify the current state
 - *cost*: procedure that returns a number
 - Can be omitted, default is $cost \equiv 1$

- Advantage: can use whatever works best for that particular domain
- Disadvantage: for each new domain, need new representation, new algorithms
- Alternative: *domain-independent* representation
 - A "standard format" that can be used for many different planning domains
 - Limited representational capability, but easy to compute
 - Domain-independent algorithms that work for anything in this format
 - We'll use a *state-variable* representation ...

Example

- Drilling holes in a metal workpiece
 - A state
 - geometric model of the workpiece
 - *annotated* with dimensions, tolerances, etc.
 - capabilities and status of drilling machine and drill bit
 - Several actions
 - clamp the workpiece onto the drilling machine
 - load a drill bit into the machine
 - drill a hole



- Name: drill-hole
- Arguments:
 - ID codes for the machine and drill bit
 - annotated geometric model of the workpiece
 - description of the hole to be drilled
- Preconditions
 - *Capabilities*: can the machine and drill bit produce the desired hole?
 - *Current state*: Is the drill bit installed? Is the workpiece clamped onto the table? Etc.
- Effects
 - annotated geometric model of modified workpiece
- Cost
 - estimate of time or monetary cost

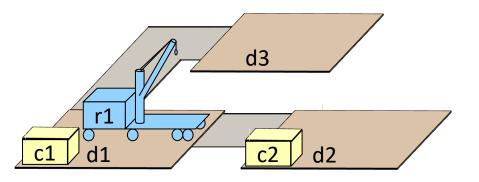
Discussion

- Advantage of domain-specific representation:
 - use whatever works best for that particular domain
- Disadvantage:
 - for each new domain, need new representation and deliberation algorithms
- Alternative: *domain-independent* representation
 - Try to create a "standard format" that can be used for many different planning domains
 - Deliberation algorithms that work for anything in this format

- *State-variable* representation
 - Simple formats for describing states and actions
 - Limited representational capability
 - But easy to compute, easy to reason about
 - Domain-independent search algorithms and heuristic functions that can be used in all state-variable planning problems

State-Variable Representation

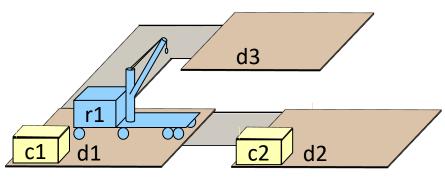
- *Objects* = {names of objects in the environment}
- Organized into an *typed ontology*
 - sets of object types
- *Objects* = *Robots* U *Containers* U *Locs* U {nil}
 - $Robots = \{r1\}$
 - *Containers* = {c1, c2}
 - ► *Locs* = {d1, d2, d3}



- *Objects* only needs to include objects that matter at the current level of abstraction
- Can omit lots of details
 - physical characteristics of robots, containers, loading docks, roads, ...

Rigid Properties

- Objects have two kinds of properties
 - rigid and varying
- *Rigid*: stays the same in every state
 - Can be described as a mathematical relation adjacent = {(d1,d2), (d2,d1), (d1,d3), (d3,d1)}
 - Or equivalently, a set of ground atoms adjacent(d1,d2), adjacent(d2,d1), adjacent(d1,d3), adjacent(d3,d1)
 - I'll use the two notations interchangeably



Terminology from first-order logic:

- atom ≡ atomic formula ≡ positive literal
 ≡ predicate symbol with list of arguments
 - *e.g.*, adjacent(*x*,d2), where *x* is unbound
- *negative literal* ≡ *negated atom* ≡ atom with negation sign in front of it
 - ▶ e.g., ¬ adjacent(x,d2)
- an atom that contains no variable symbols is *ground* (or *fully instantiated*)
 - e.g., adjacent(d1,d2)
- an atom that contains no constant symbols is *lifted*
 - e.g., adjacent(x,y)
- an atom that contains both is *partially instantiated*
 - e.g., adjacent(x,d2)
- *ground instance* of any expression: replace every variable with a value in its range
 - *e.g.*, adjacent(d1,d2) is a ground instance of both adjacent(x,d2) and adjacent(x,y)

Varying Properties

- *Varying* property (or *fluent*):
 - a property that may differ in different states
- Represent it using a *state variable*
 - a term that we can assign a value to
 - *e.g.*, loc(r1)
- Let X = {all state variables in the environment}
 e.g., X = {loc(r1), loc(c1), loc(c2), cargo(r1)}
- Each state variable $x \in X$ has a *range*
 - = {all values that can be assigned to x}
 - Range(loc(r1)) = Locs
 - Range(loc(c1)) = Range(loc(c2)) = Robots \cup Locs
 - Range(cargo(r1)) = *Containers* U {nil}
- To abbreviate the "range" notation often I'll just say things like
 - ▶ $loc(r1) \in Locs$
 - ► loc(c1), $loc(c2) \in Robots \cup Locs$

r1 d1 c2 d2

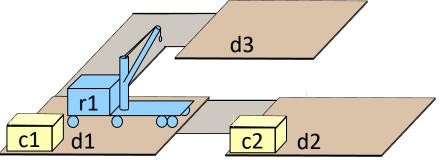
d3

Instead of "domain", to avoid confusion with planning domains

States as Functions

- Represent each state *s* as a function that assigns values to state variables
 - For each state variable x, s(x) is one x's possible values

 $s_1(loc(r1)) = d1,$ $s_1(cargo(r1)) = nil,$ $s_1(loc(c1)) = d1,$ $s_1(loc(c2)) = d2$



- Mathematically, a function is a set of ordered pairs
 s₁ = {(loc(r1), d1), (cargo(r1), nil), (loc(c1), d1), (loc(c2), d2)}
- Equivalently, write it as a set of *ground positive literals* (or *ground atoms*):

 $s_1 = \{ loc(r1)=d1, cargo(r1)=nil, loc(c1)=d1, loc(c2)=d2 \}$

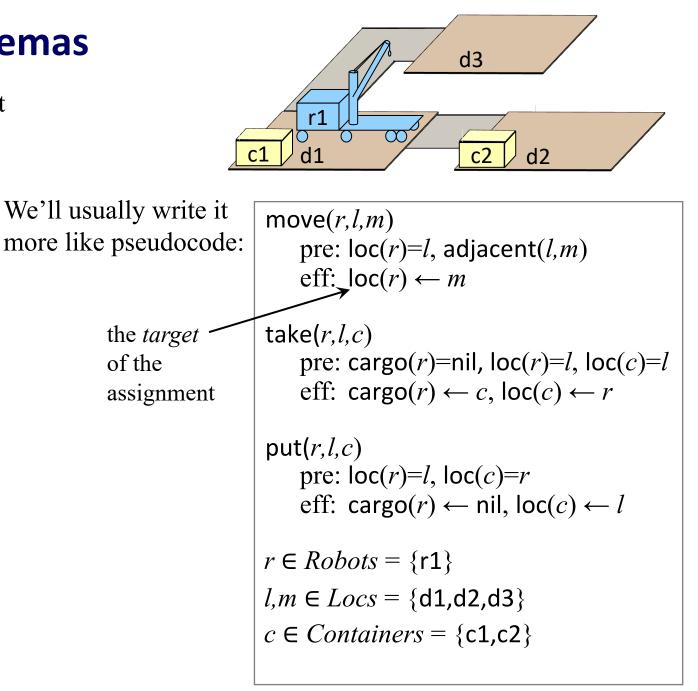
Here, we're using '=' as a predicate symbol

Action Schemas

• Action *schema* (or *template*): parameterized set of actions

 $\alpha =$ (head, pre, eff, cost)

- ▶ head: *name*, *parameters*
- pre: precondition literals
- eff: *effect* literals
- cost: *a number* (optional, default is 1)
- e.g.,
 - head = take(r, l, c)
 - pre = {cargo(r)=nil, loc(r)=l, loc(c)=l}
 - eff = {cargo(r)=c, loc(c)=r}
- Each parameter has a range of possible values:
 - Range(r) = Robots = {r1}
 - Range(l) = Locs = {d1,d2,d3}
 - Range(l) = Range(m) = Locs = {d1,d2,d3}
 - Range(c) = Containers = {c1,c2}



Actions

• $\mathcal{A} = \text{set of action schemas}$

```
move(r, l, m)

pre: loc(r)=l, adjacent(l, m)

eff: loc(r) \leftarrow m
```

```
take(r, l, c)

pre: cargo(r)=nil, loc(r)=l, loc(c)=l

eff: cargo(r) \leftarrow c, loc(c) \leftarrow r
```

```
put(r, l, c)

pre: loc(r)=l, loc(c)=r

eff: cargo(r) \leftarrow nil, loc(c) \leftarrow l
```

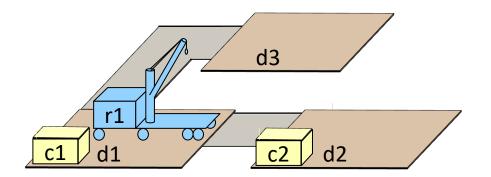
```
r \in Robots = \{r1\}l,m \in Locs = \{d1,d2,d3\}c \in Containers = \{c1,c2\}
```

```
• Action: ground instance of an \alpha \in \mathcal{A}
```

```
replace each parameter with something in its range
```

A = {all actions we can get from A}
 = {all ground instances of members of A}

```
move(r1,d1,d2)
pre: loc(r1)=d1, adjacent(d1,d2)
eff: loc(r1) \leftarrow d2
```



Actions

• $\mathcal{A} = \text{set of action schemas}$

move(r, l, m)pre: loc(r) = l, adjacent(l, m)eff: $loc(r) \leftarrow m$

```
take(r,l,c)
   pre: cargo(r)=nil, loc(r)=l, loc(c)=l
   eff: cargo(r) \leftarrow c, loc(c) \leftarrow r
                                                d3
put(r,l,c)
                                                 c2 d2
   pre: loc(r) = l, loc(c) = r
```

```
eff: cargo(r) \leftarrow nil, loc(c) \leftarrow l
```

 $r \in Robots = \{r1\}$ $l,m \in Locs = \{d1, d2, d3\}$ $c \in Containers = \{c1, c2\}$ Action: ground instance a of an action schema $\alpha \in \mathcal{A}$ such that no state variable is a target of more than one effect eff(a)

• $A = \{ all actions we can derive from \mathcal{A} \}$ = {all ground instances of members of \mathcal{A} } move(r1,d1,d2)

```
pre: loc(r1)=d1, adjacent(d1,d2)
```

```
eff: loc(r1) \leftarrow d2
```

We'll normally refer to an action by writing its head

```
move(r1,d1,d2)
```

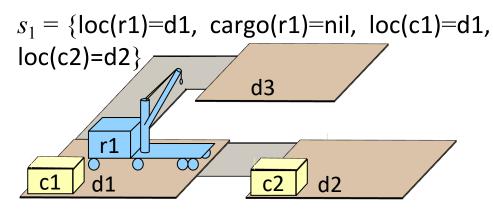
	Answers:	
	A. 1	F. 6
Poll. Let:	B. 2	G. 7
$\mathcal{A} = \{$ the action schemas on this page $\}$	C. 3	H. 8
$A = \{ all ground instances of members of \mathcal{A} \}$	D. 4	I. 9
How many move actions in <i>A</i> ?	E. 5	J. other

Applicability

- *a* is *applicable* in *s* if
 - for every positive literal *l* ∈ pre(*a*),
 l ∈ *s* or *l* is in one of the rigid relations
 - for every negative literal ¬l ∈ pre(a),
 l ∉ s and *l* isn't in any of the rigid relations
- Rigid relation

 $adjacent = \{(d1,d2), (d2,d1), (d1,d3), (d3,d1)\}$

• State



- Action schema
 move(r,l,m)
 pre: loc(r)=l, adjacent(l, m)
 eff: loc(r) ← m
 r ∈ Robots = {r1}
 l,m ∈ Locs = {d1,d2,d3}
- Applicable:

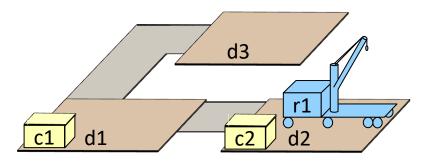
move(r1,d1,d2) pre: loc(r1)=d1, adjacent(d1,d2) eff: loc(r1) \leftarrow d2

 Not applicable: move(r1,d2,d1) pre: loc(r1)=d2, adjacent(d2,d1) eff: loc(r1) ← d1

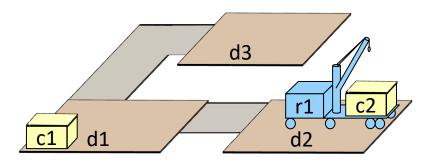
Poll: H	Iow many	
move actions are		
applicable in s_1 ?		
A. 1	F. 6	
B. 2	G. 7	
C. 3	H. 8	
D. 4	I. 9	
E. 5	J. other	

Applying an Action

- If *a* is applicable in *s*:
 - $\gamma(s,a) = \{x = w \mid \text{eff}(a) \text{ contains } x \leftarrow w\}$ $\cup \{x = w \mid x \text{ isn't a target in eff}(a)\}$
- $s_2 = \{ loc(r1) = d2, cargo(r1) = nil, loc(c1) = d1, loc(c2) = d2 \}$
- *a* = take(r1,c2,d2) pre: cargo(r1)=nil, loc(r1)=d2, loc(c2)=d2 eff: cargo(r1) ← c2, loc(c2) ← r1



γ(s₂, take(r1,c2,d2)) =
 {loc(r1)=d2, loc(c1)=d1, cargo(r1)=c2, loc(c2)=r1}
 from s₂
 from eff(a)



Applying a Plan

- A plan π is applicable in a state s if we can apply the actions in the order that they appear in π
- This produces a sequence of states
- $\gamma(s,\pi)$ = the last state in the sequence

• $\pi = (move(r1,d3,d1), take(r1,c1,d1), move(r1,d1,d3))$

$$\gamma(s_0,\pi) = s_3$$

$$\hat{\gamma} = \langle s_0, s_1, s_2, s_3 \rangle$$

$$r1 \quad (00, 01, 02, 03)$$

$$r1 \quad c1$$

$$d3 \quad move(r1, d3, d1)$$

$$d3 \quad take(r1, c1, d1)$$

$$r1 \quad c1$$

$$d3 \quad move(r1, d1, d3)$$

$$d1 \quad c2 \quad d2$$

$$d1 \quad c2 \quad d2$$

$$d1 \quad c2 \quad d2$$

 $s_0 = \{loc(r1)=d3, \\ cargo(r1)=nil, \\ loc(c1)=d1, \\ loc(c2)=d2\}$

 $s_1 = \{loc(r1)=d1, \\ cargo(r1)=nil, \\ loc(c1)=d1, \\ loc(c2)=d2\}$

 $s_2 = \{loc(r1)=d1,$ cargo(r1)=c1,loc(c1)=r1, $loc(c2)=d2\}$

 $s_3 = \{loc(r1)=d3,$ cargo(r1)=c1,loc(c1)=r1, $loc(c2)=d2\}$

State-Variable Planning Domain

- Let
 - *O* = ontology of typed objects
 - R = set of rigid relations
 - X = set of lifted state variables, including specifications of their ranges
 - \mathcal{A} = finite set of action schemas
- (O, R, X, A) represents $\Sigma = (S, A, \gamma, \text{cost})$, where
 - $A = \{ all actions induced by \mathcal{A} \}$
 - γ(s,a) = {x=w | eff(a) contains x←w}
 U {x=w | x isn't a target in eff(a)}
 - cost(.) is as specified in the action schemas
 - $S = \text{all states } \{x_1 = v_1, ..., x_n = v_n\}, \text{ where }$
 - $\{x_1, ..., x_n\} = \{\text{all of the ground instances}$ of members of $X\}$
 - each v_i is an object in $Range(x_i)$

Objects = *Robots* U *Containers* \cup Locs \cup {nil} *Robots* = {r1} $O: \prec$ *Containers* = $\{c1, c2\}$ $Locs = \{d1, d2, d3\}$ $R: \begin{cases} adjacent = \{(d1,d2), (d2,d1), \\ (d1,d3), (d3,d1)\} \end{cases}$ $loc(c) \in Locs \cup Robots,$ $loc(r) \in Locs$, $X: \downarrow$ $cargo(r) \in Containers \cup {nil}$ where $c \in Containers$, $r \in Robots$ move(r,l,m)pre: loc(r) = l, adjacent(l, m)eff: $loc(r) \leftarrow m$ take(r,c,l)pre: cargo(r)=nil, A: loc(r)=l, loc(c)=leff: cargo(r) $\leftarrow c$, loc(c) $\leftarrow r$ put(r,c,l)pre: loc(r) = l, loc(c) = reff: cargo(r) \leftarrow nil, loc(c) $\leftarrow l$

 $s_0 = \{ loc(r1) = d2, \}$

d3

d1

cargo(r1)=c1,

loc(c1)=r1,

loc(c2)=d2

d2

State-Variable Planning Domain

- $S = \text{ all states } \{x_1 = v_1, ..., x_n = v_n\}, \text{ where }$
 - $\{x_1, ..., x_n\} = \{\text{all of the ground instances of }\}$ members of \hat{X}
 - each v_i is an object in $Range(\hat{x}_i)$
- *S* may contain some nonsensical states
 - e.g., states in which both loc(c1)=r1 and cargo(r1)=nil
- But if s_0 and \mathcal{A} are defined properly, applying a plan in s_0 will never generate a nonsensical state

ain

$$O: \begin{cases} Objects = Robots \cup Containers \\ \cup Locs \cup \{nil\} \\ Robots = \{r1\} \\ Containers = \{c1, c2\} \\ Locs = \{d1, d2, d3\} \\ R: \begin{cases} adjacent = \{(d1,d2), (d2,d1), \\ (d1,d3), (d3,d1)\} \end{cases}$$

$$s_0 = \{loc(r1)=d2, \\ cargo(r1)=c1, \\ loc(c1)=r1, \\ loc(c2)=d2 \} \end{cases}$$

$$K: \begin{cases} loc(c) \in Locs \cup Robots, \\ loc(r) \in Locs, \\ cargo(r) \in Containers \cup \{nil\} \\ where \ c \in Containers, \ r \in Robots \end{cases}$$

$$loc(r)=l, adjacent(l, m) \\ eff: \ loc(r) \leftarrow m \\ take(r,c,l) \\ pre: \ cargo(r) = l, loc(c)=l \\ eff: \ cargo(r) \leftarrow c, loc(c) \leftarrow r \\ put(r,c,l) \\ pre: \ loc(r)=l, loc(c)=r \\ eff: \ cargo(r) \leftarrow nil, loc(c) \leftarrow l \end{cases}$$

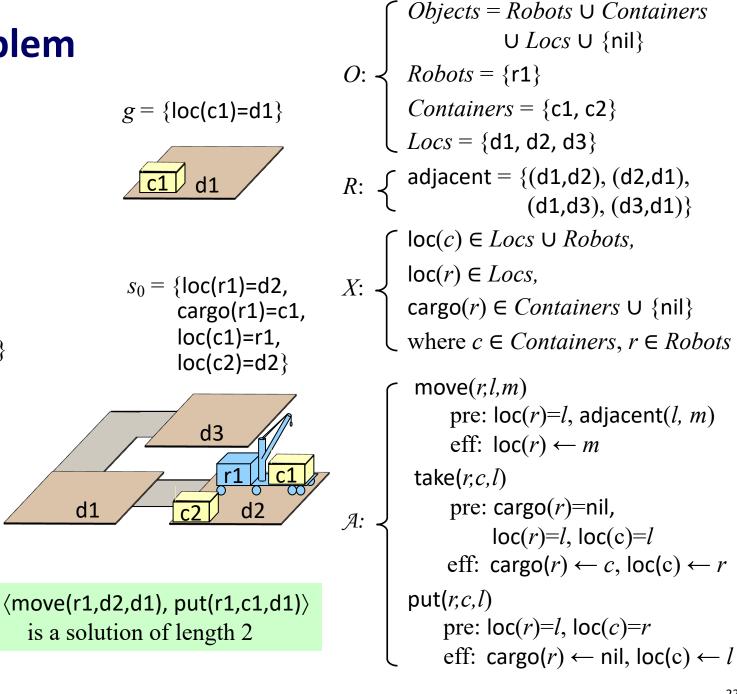
d3

d1

State-Variable Planning Problem

- $P = (\Sigma, s_0, g)$, where
 - Σ = is a state-variable planning domain
 - $s_0 \in S$ is the initial state
 - g is a set of ground literals called the *goal*
- S_g = {all states in S that satisfy g}
 = {s ∈ S | s ∪ R contains every positive literal in g, and none of the negative literals in g}
- π is a *solution* for *P* if $\gamma(s_0, \pi)$ satisfies *g*

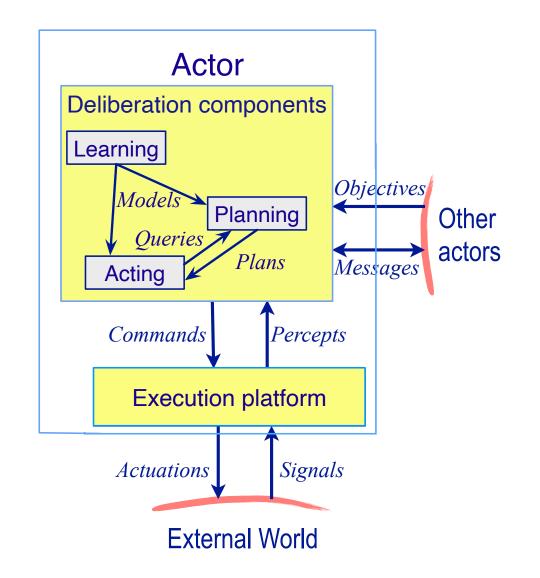
Poll: How many solutions of length 3?			
A. 1	B. 2	C. 3	
D. 4	E. 5	F. 6	
G. 7	H. 8	I. 9	
J. other			

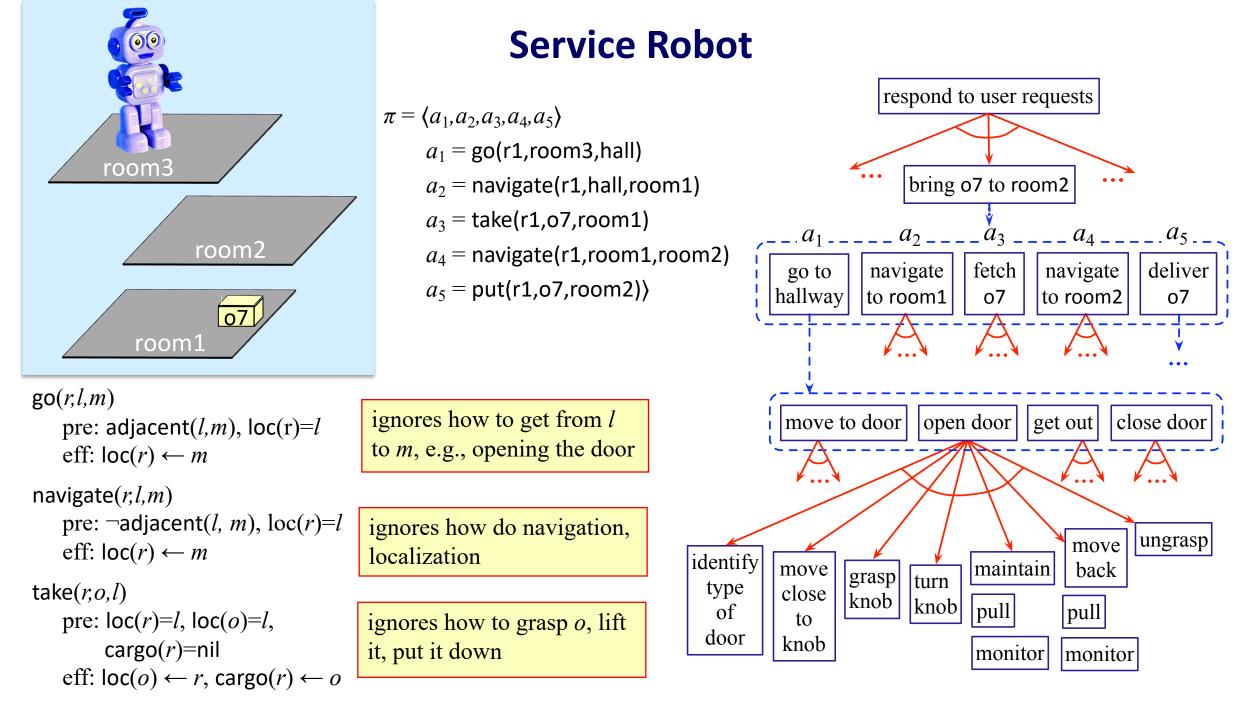


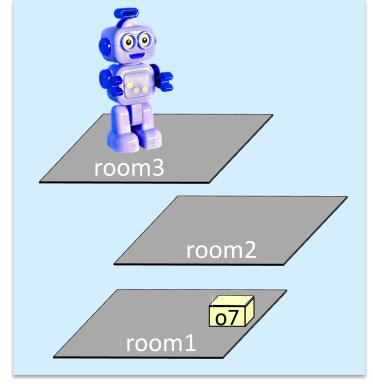
Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Section 2.3. Acting

- For classical planning problems we assumed
 - Finite, static world, just one actor
 - No concurrent actions, no explicit time
 - Determinism, no uncertainty, no exogeneous events
 - Full observability
 - Unit-cost actions
 - Sequence of states and actions $\langle s_0, a_1, s_1, a_2, s_2, \ldots \rangle$
- Most real-world environments don't satisfy the assumptions because of errors in prediction
- This can usually be fine if
 - errors occur infrequently, and
 - they don't have severe consequences
- What to do if an error *does* occur?







go(r,l,m)pre: adjacent(l,m), loc(r)=l eff: loc(r) $\leftarrow m$ navigate(r,l,m) pre: \neg adjacent(l, m), loc(r)=l eff: loc(r) $\leftarrow m$

```
take(r, o, l)

pre: loc(r)=l, loc(o)=l,

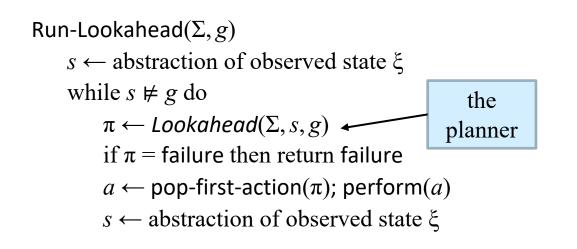
cargo(r)=nil

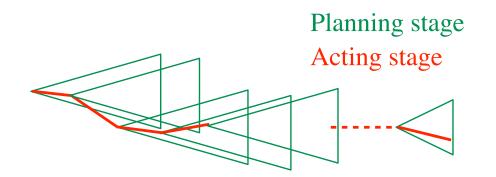
eff: loc(o) \leftarrow r, cargo(r) \leftarrow o
```

Service Robot

- $\pi = \langle a_1, a_2, a_3, a_4, a_5 \rangle$ $a_1 = \text{go}(r1, room3, hall)$ $a_2 = \text{navigate}(r1, hall, room1)$ $a_3 = \text{take}(r1, o7, room1)$ $a_4 = \text{navigate}(r1, room1, room2)$ $a_5 = \text{put}(r1, o7, room2) \rangle$
- Some things that can go wrong:
 - Execution failures
 - robot gripper slips on doorknob
 - door is locked or broken
 - Sensor errors
 - navigation error causes robot to go to wrong room
 - Incorrect or partial information
 - where is **o7**?
 - Events that make actions inapplicable
 - someone puts object o6 onto r1
 - Events that make actions unnecessary
 - someone puts object 07 onto r1
- How to detect and recover?

Acting with Lookahead





- Call *Lookahead*, obtain π , perform 1st action, call *Lookahead* again ...
- Useful when unpredictable things are likely to happen
 - Replans immediately
- Also useful with *receding horizon* search (e.g., as in chess programs):
 - Lookahead looks a limited distance ahead
- Potential problem:
 - Lookahead needs to return quickly
 - Otherwise, may pause repeatedly while waiting for Lookahead to return
 - What if ξ changes during the wait?

Acting with Lookahead

Run-Lazy-Lookahead(Σ, g)

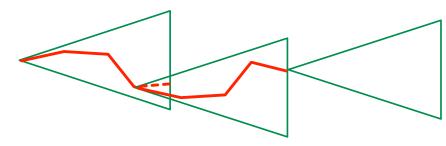
 $\pi \leftarrow \langle \, \rangle$

while True do

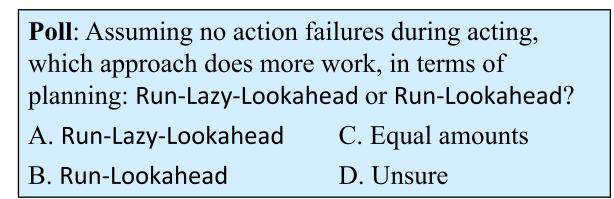
- $s \leftarrow abstraction of observed state \xi$
- **if** $s \models g$ **then return** success
- if $\pi = \langle \rangle$ or *Simulate*(Σ, s, g, π) = failure then
 - $\pi \leftarrow \textit{Lookahead}(\Sigma, s, g)$
 - if $\pi =$ failure then return failure
- $a \leftarrow \mathsf{pop-first-action}(\pi)$

perform(*a*)

Planning Stage Acting Stage



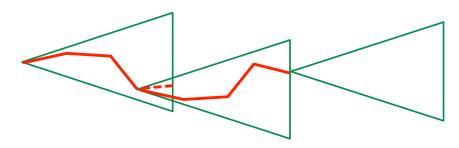
- Call *Lookahead*, execute the plan as far as possible, don't call *Lookahead* again unless necessary
- *Simulate* tests whether the plan will execute correctly
 - Could do lower-level refinement, physics-based simulation
 - Could just test whether $\gamma(s,\pi) \vDash g$
 - Or just test whether $s = \gamma(s', a)$, where s' is the previous state
- Potential problems
 - Simulate needs to return quickly
 - otherwise, may pause repeatedly, ξ may change
 - May might miss opportunities to replace π with a better plan



Acting with Plan Repair

- We may want to repair π rather than get a new plan
 - e.g., if we've already made commitments or resource allocations
- Modify Run-Lazy-Lookahead

Planning Stage Acting Stage



```
Run-Lazy-Lookahead(\Sigma, g)

\pi \leftarrow \langle \rangle

while True do

s \leftarrow abstraction of observed state \xi

if s \vDash g then return success

if \pi = \langle \rangle or Simulate(\Sigma, s, g, \pi) = failure then

\pi \leftarrow Lookahead-Repair(\Sigma, s, g, \pi)

if \pi = failure then return failure

a \leftarrow pop-first-action(\pi)

perform(a)
```

How to do Lookahead

Some possibilities (can also combine these)

- Full planning (if the planner can solve the planning problem quickly enough)
- Receding horizon
 - Modify Lookahead to search just part of the way to g
 - E.g., cut off search when one of the following exceeds a maximum threshold:
 - plan length, plan cost, computation time

• Sampling

- Modify Lookahead to do a Monte Carlo rollout
 - Depth-first search with random node selection and no backtracking
- Call Lookahead several times, choose the plan that looks best
- Best-known example of this: the UCT algorithm (see Chapter 9)
- Subgoaling
 - Tell Lookahead to plan for some subgoal g_1 , rather than g itself (see next page)
 - Once the actor has achieved g_1 , tell Lookahead to plan for the next subgoal g_2
 - And so forth until the actor reaches g

Planning stage

Acting stage

Subgoaling Example

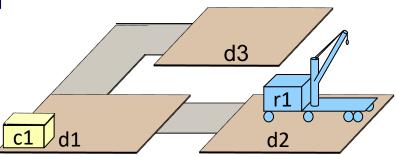
• Killzone 2

- "First-person shooter" game, ≈ 2009
- widely acclaimed at the time
- Special-purpose AI planner
 - Plans enemy actions at the squad level
 - Subproblems; plans are maybe 4–6 actions long
 - Different planning algorithm from what we've discussed so far
 - HTN planning (see Part II)
 - Quickly generates a plan for a subgoal
 - Replans several times per second as the world changes
- Why it worked:
 - Don't want to get the best possible plan
 - Need actions that appear believable and consistent to human users
 - Need them very quickly

Classical Representation

- Motivation
 - The field of AI planning started out as automated theorem proving
 - It still uses a lot of that notation
- Classical representation is equivalent to state-variable representation
 - No distinction between rigid and varying properties
 - Both represented as logical predicates
 - Both are in the current state

adjacent(l,m) - location l is adjacent to m $loc(r) = l \rightarrow loc(r,l)$ - robot r is at location l $loc(c) = r \rightarrow loc(c,r)$ - container c is on robot r $cargo(r) = c \rightarrow loaded(r)$ - there's a container on rwhy not loaded(r,c)?



- State *s* = a set of ground atoms
 - Atom *a* is true in *s* iff $a \in s$
- $s_0 = \{ adjacent(d1,d2), adjacent(d2,d1), \\ adjacent(d1,d3), adjacent(d3,d1), \\ loc(c1,d1), loc(r1,d2) \}$

Poll: Should s₀ also contain ¬ loaded(r1)?
A: yes B: no
C: unsure

Classical planning operators

• action schemas

```
move(r, l, m)

pre: loc(r)=l, adjacent(l, m)

eff: loc(r) \leftarrow m
```

```
take(r, c, l)

pre: cargo(r)=nil, loc(r)=l, loc(c)=l

eff: cargo(r) \leftarrow c, loc(c) \leftarrow r
```

```
\begin{array}{l} \mathsf{put}(r,c,l) \\ \mathsf{pre:} \ \mathsf{loc}(r) = l, \ \mathsf{loc}(c) = r \\ \mathsf{eff:} \ \mathsf{cargo}(r) \leftarrow \mathsf{nil}, \ \mathsf{loc}(c) \leftarrow l \end{array}
```

```
Range(r) = Robots = {r1}
Range(l) = Range(m) = Locs = {d1,d2,d3}
Range(c) = Containers = {c1,c2}
```

• Classical planning operators

move(r, l, m)pre: loc(r, l), adjacent(l, m)eff: $\neg loc(r, l)$, loc(r, m)

```
take(r,c,l)

pre: \negloaded(r), loc(r,l), loc(c,l)

eff: loaded(r), \negloc(c,l), loc(c,r)

put(r,c,l)

pre: loc(r,l), loc(c,r)

eff: \negloaded(r), loc(c,l), \negloc(c,r)
```

Poll: Does move really need to include $\neg loc(r, l)$? A: yes B: no C: unsure

```
d3
r1
c1 d1
d2
```

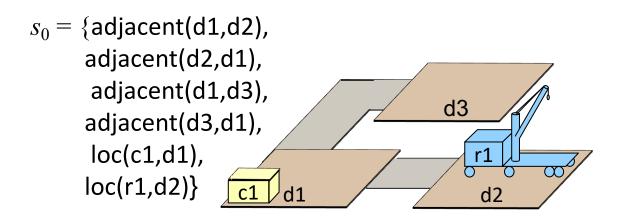
Classical Actions

• Let

- Planning operator:
 - o: move(r,l,m)
 pre: loc(r,l), adjacent(l,m)
 eff: ¬loc(r,l), loc(r,m)

• Action:

 a_1 : move(r1,d2,d1) pre: loc(r1,d2), adjacent(d2,d1) eff: \neg loc(r1,d2), loc(r1,d1)



- pre -(a) = {a's negated preconditions}
- pre+(a) = {a's non-negated preconditions}
- *a* is applicable in state *s* iff
 s ∩ pre⁻(*a*) = Ø and pre⁺(*a*) ⊆ *s*
- If *a* is applicable in *s* then
 - $\gamma(s,a) = (s \setminus \text{eff}^{-}(a)) \cup \text{eff}^{+}(a)$

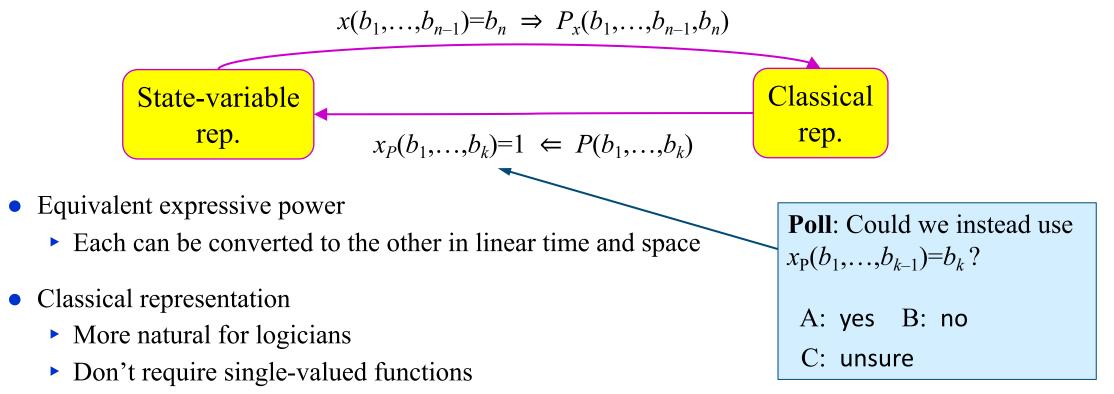
 α

d3

d2

$$\begin{split} \gamma(s_0, a_1) &= \{ \texttt{adjacent(d1,d2)}, \\ &= \texttt{adjacent(d2,d1)}, \\ &= \texttt{adjacent(d1,d3)}, \\ &= \texttt{adjacent(d1,d3)}, \\ &= \texttt{adjacent(d3,d1)}, \\ &= \texttt{adjacent(d3,d1)}, \\ &= \texttt{adjacent(d3,d1)}, \\ &= \texttt{adjacent(d3,d1)}, \\ &= \texttt{adjacent(d1,d2)}, \\ &= \texttt{adjacent(d1,d2)}, \\ &= \texttt{adjacent(d2,d1)}, \\ &= \texttt{adjacent(d1,d2)}, \\ &=$$

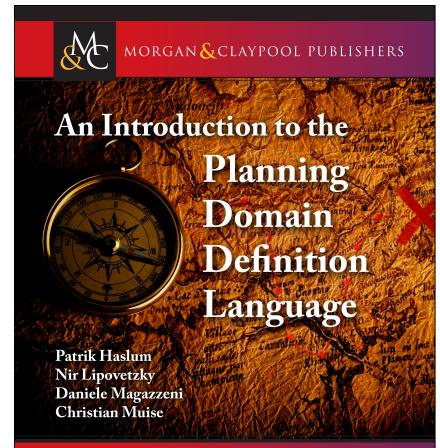
Discussion



- State variables
 - More natural for engineers and computer programmers
 - When changing a value, don't have to explicitly delete the old one
- Historically, classical representation has been more widely used
 - That's starting to change

PDDL

- Language for defining planning domains and problems
- Original version of PDDL \approx 1996
 - Just classical planning
- Multiple revisions and extensions
 - Different subsets accommodate different kinds of planning
- We'll discuss the classical-planning subset
 - Chapter 2 of the PDDL book



Synthesis Lectures on Artificial Intelligence and Machine Learning

Ronald J. Brachman, Francesca Rossi, and Peter Stone, Series Editors

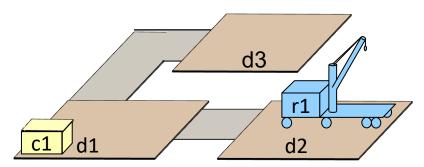
Example domain

Initial state: (define (domain example-domain-1) (requirements :negative-preconditions) d3 These are untyped (:action move r1 :parameters (?r ?l ?m) parameters. 5 c1 / d1 d2 :precondition (and (loc ?r ?l) (adjacent ?l ?m)) :effect (and (not (loc ?r ?l)) (loc ?r ?m))) Goal: (:action take :parameters (?r ?l ?c) :precondition (and (loc ?r ?l) (loc ?c ?l) (define (problem example-problem-1) (not (loaded ?r))) (:domain example-domain-1)) :effect (and (not (loc ?c ?l)) (loc ?c ?r) (:init (loaded ?r))) (adjacent d1 d2) (adjacent d2 d1) (:action put (adjacent d1 d3) :parameters (?r ?l ?c) (adjacent d3 d1) :precondition (and (loc ?r ?l) (loc c1 d1) (loc ?c ?r)) (loc r1 d2) :effect (and (loc ?c ?l) (not (loc ?c ?r)) (:qoal (loc c1 r1))) (not (loaded ?r)))))

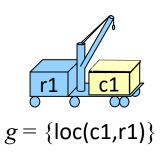
Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example problem

• Classical representation:



 $s_0 = \{ adjacent(d1,d2), adjacent(d2,d1), adjacent(d1,d3), adjacent(d3,d1), loc(c1,d1), loc(r1,d2) \}$



(define (problem example-problem-1)
 (:domain example-domain-1))

(:init

- (adjacent d1 d2)
- (adjacent d2 d1)
- (adjacent d1 d3)
- (adjacent d3 d1)
- (loc c1 d1)
- (loc r1 d2)

(:goal (loc c1 r1)))

Typed domain

d3

d1

Robots, Containers \subseteq *Movable objects*

r1

d2

 α

State-variable representation:

- Objects = Movable_objects U Locs
- Movable_objects = Robots U Containers
- $Robots = \{r1\}$
- ► *Containers* = {c1}
- ► *Locs* = {d1, d2, d3}
- ▶ $r \in Robots, l,m \in Locs, c \in Containers$

```
(define (domain example-domain-2)
   (:requirements
```

:negative-preconditions
 typing) Locations, Movable_objects ⊆ Objects

(:types

(.cypes

```
location movable-obj - object
robot container - movable-obj)
```

```
(:action move
:parameters (?r - robot
                ?1 ?m - location)
:precondition (and (loc ?r ?l)
                    (adjacent ?l ?m))
:effect (and (not (loc ?r ?l))
                    (loc ?r ?m)))
(:action take
:parameters (?r - robot
                    ?l - location
                   ?c - container)
```

:precondition (and (loc ?r ?l)

:effect (and (not (loc ?r ?l))

```
(loc ?r ?m)))
(:action put r \in Robots,

:parameters (?r - robot \ l \in Locs,

?1 - location c \in Containers

?c - container)

:precondition (and (loc ?r ?l)

(loc ?c ?r))

:effect (and (loc ?c ?l)

(not (loc ?c ?r))
```

```
(not (loaded ?r)))))
```

(loc ?c ?l)

(not (loaded ?r)))

Typed problem

State-variable representation:

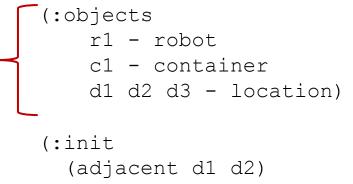
- Objects = Movable_objects U Locs
- Movable_objects = Robots U Containers
- $Robots = \{r1\}$
- *Containers* = {c1}
- Locs = {d1, d2, d3}
- ▶ $r \in Robots,$ $l,m \in Locs,$ $c \in Containers$

d3 r1 c1 d1 d2

 $s_0 = \{ adjacent(d1,d2), adjacent(d2,d1), adjacent(d1,d3), adjacent(d3,d1), loc(c1,d1), loc(r1,d2) \}$

$$g = \{ loc(c1,r1) \}$$
 r1 c1

(define (problem example-problem-2)
 (:domain example-domain-2))



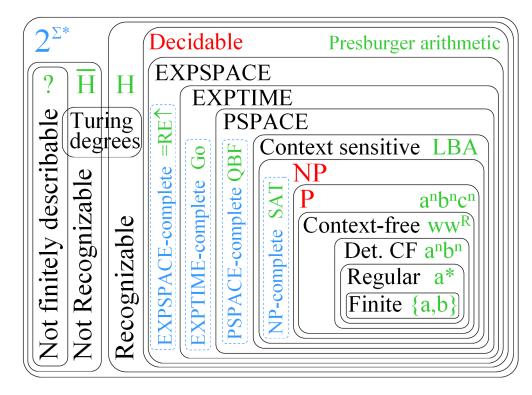
- (adjacent d2 d1)
- (adjacent d1 d3)
- (adjacent d3 d1)
- (loc c1 d1) (loc r1 d2)

(:goal (loc c1 r1)))

Computational Complexity Refresher

- Computational complexity results are normally given for *decision problems*
 - each decision problem is an infinite set of questions with *yes/no* answers Two decision problems in which *P* may be any classical planning problem:
 - PLAN EXISTENCE: does P have a solution?
 - ► PLAN LENGTH: does P have a solution of length ≤ k?

The Extended Chomsky Hierarchy



Prof. Gabriel Robins, UVA https://www.cs.virginia.edu/~robins/cs6160/ Lectures 19-21 cover the key concepts

Section 2.5. Computational Complexity

- Suppose *P* is given in state-variable representation (rather than enumerating *S* and *A* explicitly):
- PLAN EXISTENCE is EXPSPACE-complete
- PLAN LENGTH is NEXPTIME-complete

- If we restrict *P* to be in a fixed planning domain
 Σ that is known in advance :
 - Both problems are in PSPACE
 - PSPACE-complete for some planning domains
- These are *worst-case* results, average case is often much lower (e.g., polynomial)

As a reminder: $P \subseteq NP \subseteq PSPACE \subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE$

Need a refresher on complexity? See:

- UVA CS 4102 PSPACE and beyond (Bloomfield, 2011)
- <u>MIT OpenCourseWare 6.006 Computational Complexity Lecture</u>
- MIT OpenCourseWare 6.045 Course, specifically lectures 12, 15, & 16
- UVA CS 6160 (Robins, 2022)

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Poll. What is the complexity of PLAN EXISTENCE if *P* is given by enumerating *S* and *A* explicitly?

A. PSPACE-complete C. Polynomial B. NP-completeD. something else

Summary

- Section 2.2. State-transition systems
 - Classical planning assumptions
 - States, actions, transition function
 - Plans, planning problems, solutions
 - Run-Plan
- Section 2.3. State-Variable Representation
 - Objects, rigid properties
 - Varying properties, state variables, states
 - Action schemas, actions, applicability, γ
 - Plans, problems, solutions
- Section 2.4. Classical Representation

- Section 2.5. Computational Complexity
- Section 2.6. Acting
 - Things that can go wrong while acting
 - Run-Lookahead, Run-Lazy-Lookahead
 - Plan repair
 - Interacting with an online planner
 - subgoaling, limited horizon, sampling

- Chapter 2 of Haslum *et al.* (2019)
 - Classical fragment of PDDL
 - Planning domains, planning problems
 - untyped, typed