Last update: 11:10 PM, March 7, 2025

Acting, Planning, and Learning

Malik Ghallab, Dana Nau, and Paolo Traverso

Chapters 17, 18 Temporal Represention, Acting, Planning

Dana S. Nau University of Maryland

with contributions from

Mark "mak" Roberts

Some Example Applications

• RAX/PS

- Planning/control of Deep Space One spacecraft
- ▶ NASA Ames and JPL, 1999
- CASPER
 - Planning/control of spacecraft
 - ▶ NASA JPL, ≈ 1999–2017
- T-ReX
 - Planning/control of AUVs
 - Monterey Bay Aquarium Research Institute, $\approx 2005-2010$

Temporal Models

- Constraints on state variables and events
 - Reflect predicted actions and events
- Actions have duration
 - preconditions and effects may occur at times other than start and end
- Time constraints on goals
 - relative or absolute

- Exogenous events expected to occur in the future
- Maintenance actions: maintain a property
 - e.g., track a moving target, keep a door closed
- Concurrent actions
 - interacting effects, joint effects
- Delayed commitment
 - instantiation at acting time

Outline

Topic	Section
 Introduction 	17.1
 Representation 	17.2
 Planning (briefly) 	18.2
• Consistency and controllability	y 18.3
• Acting (Part 1: refinement)	17.3.1
• Acting (Part 2: dispatching)	17.3.1

Timelines

- Up to now, we've used a "state-oriented view"
 - Time is a sequence of states *s*₀, *s*₁, *s*₂
 - Instantaneous actions transform each state into the next one
 - No overlapping actions
- Switch to a "time-oriented view"
 - Discrete: time points are integers
 - *t* = 1, 2, 3, ...
 - For each state variable *x*, a *timeline*
 - values of *x* during different time intervals
 - State at time t = {values of all state variables at time t}

different positions on the *y* axis represent qualitative changes, not numeric values

Timeline

• doesn't necessarily specify a value at every timepoint

- A pair (T,C)
 - $T = \{\text{temporal assertions}\}; C = \{\text{constraints}\}$
 - *partially* predicted evolution of one state variable

persistence

- requires $t_1 \le t_2$ $T = \{$ Reminder: qualitative change $(t_1, t_2] \log(r1) = \log 1$ changes, not numeric loc2 requires $t_3 \leq t_4$ – \rightarrow [t₃, t₄] loc(r1): (l, loc2) loc(r1) values loc1 and $l \neq loc2$ $C = \{$ time $t_2 t_3$ t_1 $t_1 < t_2 < t_3 < t_4,$ t_{Δ} temporal constraints - $\rightarrow l \neq loc2$ object constraints
 - If \mathcal{T} contains [t,t']x:(v,v') or [t,t']x=v then C always contains $t \le t'$
 - To simplify the examples, we usually won't write $t \le t'$ explicitly

Consistency

- Let (T, C) be a timeline,
- Let $(\mathcal{T}', \mathcal{C}')$ be a ground instance of $(\mathcal{T}, \mathcal{C})$
 - $(\mathcal{T}', \mathcal{C}')$ is *consistent* if both
 - *T'* satisfies *C'*
 - no state variable in (*T'*, *C'*) has more than one value at a time
- (*T*,*C*) is *consistent* if it has *at least one* consistent ground instance
- Two temporal assertions are *conflicting* if they have at least one inconsistent instance
 - May also have consistent instances, so "possibly conflicting" would be more accurate

• Timeline:

loc(r1)

- $T_1 = \{ [t_1, t_2] | \text{loc}(r) = \text{loc1}, [t_3, t_4] | \text{loc}(r) : (l, \text{loc2}) \}$
- $C_1 = \{t_1 < t_2, t_3 < t_4, l \neq \text{loc2}\}$

Security

- (*T*,*C*) is *secure* if
 - it's consistent (at least one ground instance is consistent)
 - every ground instance that satisfies the constraints is consistent
- In PSP (Chapter 2), analogous to a partial plan that has no threats
- Can make a consistent timeline secure by adding *separation constraints* to *C*
 - additional temporal and object constraints
- Analogous to resolvers in PSP

- Not secure:
 - $T_1 = \{ [t_1, t_2] \ \mathsf{loc}(r) = \mathsf{loc1}, \\ [t_3, t_4] \ \mathsf{loc}(r) : (l, \mathsf{loc2}) \}$

• $C_1 = \{t_1 \le t_2, t_3 \le t_4, l \ne loc2\}$

- Separation constraints:
 - $t_2 < t_3$ or

•
$$t_2 = t_3, l = \text{loc1}$$

Causal support

- Consider the assertion $[t_3, t_4] loc(r) : (l, loc2)$
 - How did r1 get to location *l*?
- Let α be a persistence $[t_1, t_2] x = v_1$ or change $[t_1, t_2] x : (v_1, v_2)$
- *Causal support* for α
 - Information saying α is supported *a priori*
 - Or another assertion that produces $x = v_1$ at time t_1
 - $[t_0, t_1] x = v_1$
 - $[t_0, t_1] x : (v_0, v_1)$
- A timeline $(\mathcal{T}, \mathcal{C})$ is *causally supported* if every assertion α in \mathcal{T} has a causal support
- Three ways to modify a timeline to add causal support ...

- $T_1 = \{ [t_1, t_2] | \text{loc}(r) = \text{loc1}, \\ [t_3, t_4] | \text{loc}(r) : (l, \text{loc2}) \}$
- $C_1 = \{t_1 \le t_2, t_3 \le t_4, l \ne loc2\}$

Establishing causal support

• Add $[t_2, t_3] \log(r1) = \log 2$

- Supported by the first temporal assertion
- Supports the second one

Establishing causal support

• Add
$$t_2 = t_3$$
, $r = r1$, $l = loc2$

Establishing causal support

Add an action that includes
 [t₂,t₃] loc(r1):(loc1,loc3)

Action Schemas

- *Action schema* (book also calls it a *primitive*):
 - a triple (*head*, T, C)
 - *head* is the name and parameters
 - (T,C) is the union of a set of timelines
- Always two additional parameters
 - starting time t_s , ending time t_e
- In each temporal assertion in \mathcal{T} ,
 - left endpoint is like a precondition
 ⇔ need for causal support
 - right endpoint is like an effect

leave(r,d,w)

// robot *r* goes from loading dock *d* to waypoint *w* assertions:

 $\overline{\mathbf{0}}$

 ${\mathcal W}$

 $[t_s,t_e] \log(r)$: (d,w) $[t_s,t_e] \operatorname{occupant}(d)$: (r,empty) constraints:

 $t_e \leq t_s + \delta_1$ adjacent(*d*, *w*)

- Action duration $t_e t_s \leq \delta_1$
 - (I'm not sure why it's \leq)

Action Schemas

enter(r,d,w)

// robot *r* goes from waypoint *w* to loading dock *d* assertions:

 $\begin{bmatrix} t_s, t_e \end{bmatrix} \operatorname{loc}(r): (w, d)$ $\begin{bmatrix} t_s, t_e \end{bmatrix} \operatorname{occupant}(d): (\operatorname{empty}, r)$

constraints:

 $t_e \leq t_s + \delta_2$ adjacent(*d*,*w*)

- Action duration $t_e t_s \leq \delta_2$
- Dock d becomes occupied by r

take(k,c,r,d)

// crane k takes container c from robot r
assertions:

 $[t_{s},t_{e}] \operatorname{pos}(c): (r, k) // \text{ where } c \text{ is}$ $[t_{s},t_{e}] \operatorname{grip}(k): (\operatorname{empty}, c) // \text{ what's in } k' \text{s gripper}$ $[t_{s},t_{e}] \operatorname{freight}(r): (c,\operatorname{empty}) // \text{ what } r \text{ is carrying}$ $[t_{s},t_{e}] \operatorname{loc}(r) = d // \text{ where } r \text{ is}$ constraints:

attached(k,d)

Action Schemas

- leave(r,d,w) robot r leaves dock d to an adjacent waypoint w
- enter(r,d,w) r enters d from an adjacent waypoint w
- take(k,c,r) crane k takes container c from robot r

• put(k,c,r) crane k puts container c onto robot r

- navigate(r,w,w') r navigates from waypoint w to adjacent waypoint w'
 connected(w,w') waypoint w is connected waypoint w'
- stack(k,c,p) crane k stacks container c on top of pile p
- unstack(k,c,p) crane k takes a container c from top of pile p
 - c, c'- containersd, d'- loading docksk, k'- cranesp, p'- pilesr- robotw, w'- waypoints

Tasks and Methods

- Task: move robot *r* to dock *d*
 - $[t_s, t_e] \operatorname{move}(r, d)$

```
Method:
m-move1(r,d,d',w,w')
      task: move(r,d)
      refinement: — tasks and actions
           [t_s, t_1] leave(r, d', w')
           [t_2, t_3] navigate(r, w', w)
           [t_4, t_e] enter(r, d, w)
                        —— need causal establishment
     assertions: <
           [t_s, t_s+1] \log(r) = d'
    constraints: Iike C
           adjacent(d,w),
           adjacent(d',w'), d \neq d',
           connected(w, w'),
           t_1 \le t_2, t_3 \le t_4
```

$[t_s, t_e]$ move(r, d)

Chronicles

- Chronicle $\phi = (\mathcal{A}, \mathcal{S}, \mathcal{T}, \mathcal{C})$
 - A: temporally qualified tasks
 - *S* : *a priori* supported assertions
 - T: temporally qualified assertions
 - C: constraints
- ϕ can include
 - Current state, future predicted events
 - Tasks to perform
 - Assertions and constraints to satisfy
- Can represent

- like partial
 plans in PSP
- a planning problem
- a plan or partial plan

ϕ_0 :

tasks: $[t_0,t_1]$ bring(r,c1,d4)supported: $[t_s]$ loc(r1)=d1 $[t_s]$ loc(r2)=d2 $[t_s+10,t_s+\delta]$ docked(ship1)=d3 $[t_s]$ top(pile-ship1)=c1 $[t_s]$ pos(c1)=palletassertions: $[t_e]$ loc(r1)=d1 $[t_e]$ loc(r2)=d2constraints: $t_s=0 < t_0 < t_1 < t_e, 20 \le \delta \le 30$

Outline

	Topic	Section
•	Introduction	17.1
•	Representation	17.2
•	Planning (briefly)	18.2
•	Consistency and controllability	18.3
•	Acting (Part 1: refinement)	17.3.1
•	Acting (Part 2: dispatching)	17.3.1

Planning

• Planning problem: a chronicle ϕ_0 that has some *flaws*

- Temporal assertions that aren't causally supported
 - like open goals in PSP
- Temporal assertions that are (possibly) conflicting
 - like threats in PSP
- Non-refined tasks
 - like tasks in HTN planning
- Resolvers
 - persistence assertions
 - constraints
 - actions
 - tasks
 - refinement methods

TemPLan(ϕ, Σ):while True doFlaws \leftarrow set of flaws of ϕ if Flaws $= \emptyset$ then return ϕ arbitrarily select $f \in Flaws$ Resolvers \leftarrow set of resolvers of fif Resolvers $=\emptyset$ then return failurenondeterministically choose $\rho \in Resolvers$ $\phi \leftarrow Transform(\phi, \rho)$

- If it's possible to resolve all flaws, then at least one of the nondeterministic execution traces will do so
- The details are intricate and tedious
 - If this interests you, I can point you to some good references

Outline

Topic S	Section
Introduction	17.1
Representation	17.2
Planning (briefly)	18.2
• Consistency and controllability	18.3
Acting (Part 1: refinement)	17.3.1
• Acting (Part 2: dispatching)	17.3.1

Consistency of Constraints

- When TemPlan applies resolvers, it modifies $\phi = (A, S, T, C)$
 - Some resolvers will make ϕ inconsistent
 - No solution in this part of the search space
 - Would like to detect inconsistency, prune that part of the search space
 - Otherwise we'll waste time searching it
- Analogy: PSP checks simple cases of inconsistency
 - E.g., if there's already a constraint c < b, don't resolve a threat by adding a constraint b < c
- But PSP ignores more complicated cases
 - Suppose Range(c) = Containers = {c1, c2, c3}
 - To resolve three different threats, suppose PSP chooses c ≠ c1, c ≠ c2, c ≠ c3
 - No solutions in this part of the search space, but PSP searches it anyway

Consistency of Constraints

- $\phi = (A, S, T, C)$
- At various points, have TemPlan check whether *C* is consistent
 - If it isn't, then ϕ isn't either
 - Can prune this part of the search space
- Doesn't detect every possible inconsistency
 - If C is consistent, \$\phi\$ still may have other inconsistencies
- But if TemPlan can detect some of the inconsistencies, it may prune large parts of the search space

- *C* contains two kinds of constraints
 - Object constraints
 - $loc(r) \neq l_2$, $l \in \{loc3, loc4\}$, $r = r1, o \neq o'$
 - Temporal constraints
 - $t_1 < t_3$, a < t, t < t', $a \le t' t \le b$
- Assume the two kinds of constraints are independent
 - exclude things like t = distance (l, l') / speed(r)
- Then two separate subproblems
 - (1) are the object constraints consistent?
 - (2) are the temporal constraints consistent?
- *C* is consistent iff both are consistent

(1) Object Constraints

- Constraint-satisfaction problem (CSP): NP-hard
- Can write a CSP algorithm that's *complete* but runs in exponential time
 - If there's an inconsistency, always finds it
 - Might enable a lot of pruning
 - But the calls to the CSP algorithm will take lots of time
- Instead, use a technique that's incomplete but takes polynomial time
 - arc consistency, path consistency^{*}
- Detects some inconsistencies but not others
 - Runs much faster, but prunes fewer nodes

*See Russell & Norvig, Artificial Intelligence: A Modern Approach

(2) Time Constraints

To represent time constraints:

- Simple Temporal Networks (STNs)
 - Networks of constraints on time points
- Synthesize incrementally them starting from ϕ_0
 - can check time constraints in time $O(n^3)$
- Instantiate them incrementally during acting
- Keep them consistent throughout planning and acting

Time Constraints

- *Simple Temporal Network* (STN):
- a pair $(\mathcal{V}, \mathcal{E})$, where
 - $\mathcal{V} = \{ a \text{ set of temporal variables } \{t_1, \dots, t_n \}$
 - $\mathcal{E} \subseteq \mathcal{V}^2$ is a set of arcs
- Each arc (t_i, t_j) is labeled with an interval $r_{ij} = [a, b]$
 - Represents constraint $a_{ij} \le t_j t_i \le b_{ij}$
 - Sometimes written: $t_j t_i \in [a, b]$
 - Or equivalently, $t_i t_j \in [-b, -a]$
- To represent unary constraints:
 - Constraint of the form: $a \le t_j \le b$
 - Where a "dummy" variable $t_0 \equiv 0$
 - Then, arc $r_{0j} = [a,b]$ represents $t_j 0 \in [a,b]$

Operations on STNs

Time Constraints

- *Solution* to an STN:
 - any assignment of integer values to the time points
 {t₁, t₂,.., t_n} such that all the constraints are satisfied
- *Consistent* STN: has a solution

- *Minimal* STN:
 - for every arc (t_i, t_j) with label [a, b],
 - for every $t \in [a,b]$,

there's at least one solution such that $t_j - t_i = t$

 If we make any of the time intervals shorter, we'll exclude some solutions

• Solutions:

$t_2 - t_1$	$t_3 - t_2$	$t_3 - t_1$
1	1	2
1	2	3
2	1	3
2	2	4

Two Examples

- $\mathcal{V} = \{t_1, t_2, t_3\}$
- $\mathcal{E} = \{r_{12} = [1,2], r_{23} = [3,4], r_{13} = [2,3]\}$
- Composition:
 - $r'_{13} = r_{12} \bullet r_{23} = [1+3, 2+4] = [4, 6]$
- Thus
 - $r_{13} \cap r'_{13} = [2,3] \cap [4,6] = \emptyset$
- Can't satisfy both r_{13} and r'_{13}
- $(\mathcal{V}, \mathcal{E})$ is inconsistent

6

Time Constraints

- *Solution* to an STN:
 - any assignment of integer values to the time points
 {t₁, t₂,.., t_n} such that all the constraints are satisfied
- *Consistent* STN: has a solution

- *Minimal* STN:
 - for every arc (t_i, t_j) with label [a, b],
 - for every $t \in [a, b]$,

there's at least one solution such that $t_i - t_i = t$

 If we make any of the time intervals shorter, we'll exclude some solutions

Poll: Is this network consistent?

Poll: Is this network minimal?

Path Consistency

PC(V, \mathcal{E}): for $1 \le k \le n$ do for $1 \le i < j \le n, i \ne k, j \ne k$ do $r_{ij} \leftarrow r_{ij} \cap [r_{ik} \bullet r_{kj}]$ if $r_{ij} = \emptyset$ then return inconsistent

- PC (*Path Consistency*) algorithm
- Iterate over each combination of *k*, *i*, *j*

• If an arc has no constraint, use $[-\infty, +\infty]$

- Makes network minimal
 - Reduce each r_{ij} to exclude values that aren't in any solution
- Detects inconsistent networks
 - inconsistent if
 r_{ij} shrinks to Ø
- *i*, *j*, *k* each go \approx from 1 to *n*
 - $O(n^3)$ triples
 - total time $O(n^3)$

 Dashed lines: constraints shrunk from [-∞, ∞]

Pruning TemPlan's search space

- Take the time constraints in *C*
 - Write them as an STN
 - Use Path Consistency to check whether STN is consistent
 - If it's inconsistent, TemPlan can backtrack
- TemPlan needs to add new constraints incrementally
 - Can modify PC to make it incremental
 - Given a consistent, minimal STN, incorporate a new constraint r'_{ii}
 - time $O(n^2)$

Controllability

- Section 18.3.3 of the book
- Suppose TemPlan gives you a chronicle and you want to execute it
 - Constraints on time points
 - Need to reason about these in order to decide when to start each action
- Solid lines: duration constraints
 - Robot will do bring&move, will take 30 to 50 time units
 - Crane will do uncover, will take 5 to 10 time units
- Dashed line: synchronization constraint
 - At most 5 seconds between the two ending times
- Objective
 - Choose starting times that will satisfy the constraints

Controllability

- Suppose we run PC
 - Returns a minimal and consistent network
- There *exist* time points that satisfy all the constraints
- Would work if we could choose all four time points
 - But we can't choose t_2 and t_4

- Actor can control when each action starts
 - t_1 and t_3 are *controllable*
- Can't control how long the actions take
 - t_2 and t_4 are *contingent*
 - random variables that are known to satisfy the duration constraints
 - $t_2 \in [t_1 + 30, t_1 + 50]$
 - $t_4 \in [t_3+5, t_3+10]$
- Want to choose t_1 , t_3 that will work for every t_2 , t_4

Controllability

- Start bring&move at time $t_1 = 0$
- Let d_b = duration of bring&move
 - Then $t_2 = d_b$
- Start uncover at time t_3
- Let d_u = duration of uncover
 - Then $t_4 = t_3 + d_u$

•
$$r_{24}$$
: $-5 \le t_4 - t_2 \le 5$
 $-5 \le t_3 + d_u - d_b \le 5$
 $-5 + (d_b - d_u) \le t_3 \le 5 + (d_b - d_u)$

- Suppose the durations are
 - bring&move 50
 - uncover 5
 - Then $d_b d_u = 45$
 - $40 \le t_3 \le 50$
- Suppose the durations are
 - bring&move 30
 - uncover 10
 - Then $d_b d_u = 20$
 - $15 \le t_3 \le 25$
- There's no t_3 that works in both cases

STNUs

- *STNU (Simple Temporal Network with Uncertainty):*
 - A 4-tuple $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$
 - $V = \{ controllable \text{ time points} \}, e.g., starting times of actions$
 - $\tilde{V} = \{ contingent \text{ time points} \}, e.g., ending times of actions$
 - $\mathcal{E} = \{ controllable \text{ constraints} \},$
 - $\tilde{E} = \{ contingent constraints \},$
 - Synchronization between starting times of two actions: *controllable*
 - Synchronization between ending times of two actions: *contingent*
 - Synchronization between end of action a_1 and start of action a_2
 - If a_2 starts after a_1 ends, *controllable*
 - If a_2 starts before a_1 ends, *contingent*
- Want a way for the actor to choose time points in V (starting times) that guarantee that the constraints are satisfied

Three kinds of controllability

- $(V, \tilde{V}, \mathcal{E}, \tilde{E})$ is *strongly controllable* if the actor can choose values for V that satisfy \mathcal{E} , such that success occurs for all values of \tilde{V} that satisfy \tilde{E}
 - Actor can choose the values for \mathcal{V} offline
 - The right choice works regardless of \tilde{V}
- (V, V, E, E) is *weakly controllable* if the actor can choose values for V that satisfy E, such that success occurs for *at least one* combination of values for V that satisfy E
 - To make the right choice, the actor needs to know in advance what the values of V will be
- Dynamic execution strategy: procedure the actor calls at each time point t, to assign the value t to zero or more unassigned variables in V.
 - Input: t and a list of previous assignments to some variables in V and V.
 Previous assignments will always be values in [0, t-1] that satisfy E and E.
- $(V, \tilde{V}, \mathcal{E}, \tilde{E})$ is *dynamically controllable* if there exists a dynamic execution strategy for it that can guarantee that the constraints in \mathcal{E} are satisfied.

Poll. Is the above STNU strongly controllable?

Poll. Is it weakly controllable?

Poll. Is it dynamically controllable?

Game-Theoretic Model

- Can model dynamic execution as a zero-sum game between actor and environment For *t* = 0, 1, 2, ...
 - 1. Actor chooses an unassigned set of variables $V_t \subseteq V$ that all can be assigned the value *t* without violating any constraints in \mathcal{E}
 - \approx actions the actor chooses to start at time *t*
 - 2. Simultaneously, environment chooses an unassigned set of variables $\tilde{V}_t \subseteq \tilde{V}$ that all can be assigned the value *t* without violating any constraints in \tilde{E}
 - \approx actions that finish at time *t*
 - 3. Each chosen time point v is assigned $v \leftarrow t$
 - 4. Failure if any of the constraints in $\mathcal{E} \cup \tilde{E}$ are violated
 - There might be violations that neither V_t nor \tilde{V}_t caused individually
 - 5. Success if all variables in $\mathcal{V} \cup \tilde{\mathcal{V}}$ have values and no constraints are violated
- *Dynamic execution strategy* σ_A for actor, σ_E for environment
 - $\sigma_A(h_{t-1}) = \{ \text{what events in } \mathcal{V} \text{ to trigger at time } t, \text{ given } h_{t-1} \}$
 - $\sigma_E(h_{t-1}) = \{ \text{what events in } \tilde{V} \text{ to trigger at time } t, \text{ given } h_{t-1} \}$
 - $h_t = h_{t-1} \cdot (\sigma_A(h_{t-1}) \cup \sigma_E(h_{t-1}))$
 - $(V, \tilde{V}, \mathcal{E}, \tilde{E})$ is *dynamically controllable* if $\exists \sigma_A$ that will guarantee success $\forall \sigma_E$

 $r_{ij} = [l,u]$ is *violated* if t_i and t_j have values such that $t_j - t_i \notin [l,u]$

Example

- Instead of a single bring&move task, two separate bring and move tasks
 - Then it's dynamically controllable
- Actor's dynamic execution strategy
 - trigger t_1 at whatever time you want
 - wait and observe *t*
 - trigger t' at any time from t to t + 5
 - trigger $t_3 = t' + 10$
 - ▶ $t_2 \in [t' + 15, t' + 20]$
 - $t_4 \in [t_3 + 5, t_3 + 10] = [t' + 15, t' + 20]$
 - $t_4 t_2 \le \max$ value for $t_4 \min$ value for t_2 = (t' + 20) - (t' + 15) = 5
 - ► $t_4 t_2 \ge \min$ value for $t_4 \max$ value for t_2 = (t' + 15) - (t' + 20) = -5
 - ▶ so $t_4 t_2 \in [-5, 5]$
 - The constraints are satisfied

Dynamic Controllability Checking

- For a chronicle $\phi = (A, S\tau, T, C)$
 - Temporal constraints in *C* correspond to an STNU
 - Put code into TemPlan to keep the STNU dynamically controllable
- If we detect cases where it isn't dynamically controllable, then backtrack
- If PC(V ∪ V, E ∪ E) reduces a contingent constraint then (V, V, E, E) isn't dynamically controllable
 - \Rightarrow can prune this branch
- If it *doesn't* reduce any contingent contraints, we don't know whether $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ is dynamically controllable
- Two options
 - Either continue down this branch and backtrack later if necessary, or
 - Extend PC to detect more cases where $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ isn't dynamically controllable
 - additional constraint propagation rules
 - I'll skip the details

PC(V, \mathcal{E}): for $1 \le i \le n, 1 \le j \le n, 1 \le k \le n$, $i \ne j, i \ne k, j \ne k$ do $r_{ij} \leftarrow r_{ij} \cap [r_{ik} \bullet r_{kj}]$ if $r_{ij} = \emptyset$ then return inconsistent

Outline

Topic	Section
• Introduction	17.1
• Representation	17.2
• Planning (briefly)	18.2
• Consistency and controllability	18.3
• Acting (Part 1: refinement)	17.3.1
• Acting (Part 2: dispatching)	17.3.1

Atemporal Refinement of Actions

- Templan's actions may correspond to compound tasks
 - In RAE, use refinement methods to refine them into commands

```
leave(r, d, w)
                                                                                                 unstack(k,c,p)
Templan's
                                 assertions: [t_s, t_e] \log(r): (d, w)
                                                                                                   assertions:
                                              [t_s, t_e]occupant(d):(r, empty)
action schema
                                constraints: t_e \leq t_s + \delta_1
(descriptive model)
                                                                                                   constraints: ...
                                              adjacent(d, w)
                                                                                   m-unstack(k, c, p)
                             m-leave(r, d, w, e)
                                                                                      task: unstack(k, c, p)
RAE's
                                task: leave(r, d, w)
                                                                                       pre: pos(c) = p, top(p) = c, grip(k) = empty
refinement method
                                 pre: loc(r) = d, adjacent(d, w), exit(e, d, w)
                                                                                            attached(k, d), attached(p, d)
(operational model)
                               body: until empty(e) wait(1)
                                                                                     body: locate-grasp-position(k, c, p)
                                      goto(r, e)
                                                                                            move-to-grasp-position(k, c, p)
                                                                                            grasp(k, c, p)
                                                                                            until firm-grasp(k, c, p) ensure-grasp(k, c, p)
```

lift-vertically(k, c, p)

move-to-neutral-position(k, c, p)

Discussion

- Atemporal Refinement of Actions
 - Advantages
 - Simple online refinement with RAE
 - Can be augmented to include some temporal monitoring functions in RAE
 - Disadvantages
 - Does not handle temporal requirements at the command level,
 - e.g., synchronize two robots that must act concurrently

Outline

Topic	Section
Introduction	17.1
Representation	17.2
Planning (briefly)	18.2
• Consistency and controllability	18.3
Acting (Part 1: refinement)	17.3.1
Acting (Part 2: dispatching)	17.3.1

Dispatching

- Dispatching procedure: a dynamic execution strategy
 - Controls when to start each action
 - Given a dynamically controllable plan with executable primitives, triggers actions from online observations

Dispatching

- Let $(V, \tilde{V}, \mathcal{E}, \tilde{\mathcal{E}})$ be a *grounded* controllable STNU
- Different from a grounded expression in logic
 - At least one time point in $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ is instantiated
- Bounds every time point t_i within an interval $[l_i, u_i]$

Controllable time point *t* in the future:

- t_i is *alive* if current time $now \in [l_i, u_i]$
- t_i is enabled if
 - it's alive
 - every precedence constraint $t' < t_i$ has occurred
 - for every wait constraint $\langle t_e, \alpha \rangle$,
 - t_e has occurred or α has expired

- Let $t_1 = 0$. Then:
 - ▶ $t_2 \in [15,25]$
 - ▶ $t_3 \in [t_2, t_2+5]$
 - ▶ $t_4 \in [t_3 + 15, t_3 + 20]$
 - ▶ $t_5 \in [t_3 + 10, t_3 + 10]$
 - ▶ $t_6 \in [t_5+5, t_5+10] \cap [t_4-5, t_4+5]$
- Suppose bring finishes at *t*₂=20
 - t_3 is enabled during [20, 25]
- Suppose we start move at $t_3 = 22$
 - t_5 is enabled during [32,32]

Dispatching

- Let $(V, \tilde{V}, \mathcal{E}, \tilde{\mathcal{E}})$ be a *grounded* controllable STNU
- Different from a grounded expression in logic
 - At least one time point in $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ is instantiated
- Bounds every time point t_i within an interval $[l_i, u_i]$

Controllable time point *t* in the future:

- t_i is *alive* if current time $now \in [l_i, u_i]$
- t_i is enabled if
 - it's alive
 - every precedence constraint $t' < t_i$ has occurred
 - for every wait constraint $\langle t_e, \alpha \rangle$,
 - t_e has occurred or α has expired

Dispatch($V, \tilde{V}, \mathcal{E}, \tilde{E}$)

- initialize the network
- while there are time points in V that haven't been triggered, do
 - 1. update *now*
 - 2. update the time points in \tilde{V} that were triggered since the last iteration
 - 3. update *enabled*
 - trigger every $t_i \in enabled$ such that $now = u_i$
 - 5. arbitrarily choose other time points in *enabled*, and trigger them
 - 6. propagate values of triggered timepoints (change $[l_j, u_j]$ for each future timepoint t_j)

 t_i is bounded

by $[l_i, u_i]$

Example

• Initially:

 $t_2 \in [t_1+15, t_1+25], \quad t_3 \in [t_2, t_2+5], \quad t_4 \in [t_3+15, t_3+20],$

- $t_5 \in [t_3+10, t_3+10], \quad t_6 \in [t_5+5, t_5+10] \cap [t_4-5, t_4+5]$
- now = 0: trigger t_1
 - ▶ propagate $[l_i, u_i]$ values: $t_1 = 0, t_2 \in [15, 25]$
- now = 20: bring finishes, update $t_2 \leftarrow 20$, add t_3 to *enabled*
 - propagate $[l_i, u_i]$ values:
 - $t_2 = 20, t_3 = [20, 25]$
- now = 22: trigger t_3 , propagate $[l_i, u_i]$ values:
 - $t_3 = 22, t_4 \in [37, 42], t_5 \in [32, 32]$
- now = 32: add t_5 to *enabled*; $now = u_5$ so we must trigger t_5
 - propagate values:
 - $t_5 = 32, t_6 \in [37, 42] \cap [t_4 5, t_4 + 5]$
- now = 37: move finishes, update $t_4 \leftarrow 37$
 - propagate values:
 - $t_4 = 37, t_6 \in [37, 42] \cap [32, 42]$
- now = 42: uncover finishes, update $t_6 \leftarrow 42$

- initialize the network
- while there are time points in V that haven't been triggered, do
 - 1. update *now*
 - 2. update the time points in \tilde{V} that were t_i is bounded triggered since the last iteration

by $[l_i, u_i]$

- 3. update *enabled*
- 4. trigger every $t_i \in enabled$ such that $now = u_i$
- 5. arbitrarily choose other time points in enabled, and trigger them
- propagate values of triggered timepoints (change $[l_j, u_j]$ for each future timepoint t_j)

Deadline Failures

- Suppose something makes it impossible to start an action on time
- Do one of the following:
 - stop the delayed action, and look for new plan
 - let the delayed action finish; try to repair the plan by resolving violated constraints at the STNU propagation level
 - e.g., accommodate a delay in bring by delaying the whole plan
 - Iet the delayed action finish; try to repair the plan some other way

Partial Observability

- Tacit assumption: all occurrences of contingent events are observable
 - Observation needed for dynamic controllability
- In general, not all events are observable
- POSTNU (Partially Observable STNU)

• Dynamically controllable?

Observation Actions

Dynamic Controllability

- A POSTNU is dynamically controllable if
 - there exists an execution strategy that chooses future controllable points to meet all the constraints, given the observation of past visible points to
- Observable \neq visible
- Observable means it will be known when observed
- It can be temporarily hidden

Summary

- Representation
 - Time-oriented view
 - Timelines
 - Temporal assertions, object constraints, temporal constraints
 - Causal support
 - Action schemas, Methods
 - Chronicles
- Material from Chapter 18
 - Flaws, resolvers, TemPlan
 - Temporal constraints: STNs, PC algorithm (path consistency)
- Acting
 - Dynamic controllability
 - STNUs
 - RAE and eRAE
 - Dispatching