
1Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Last update: 11:10 PM, March 7, 2025

Acting, Planning,
and Learning

Malik Ghallab, Dana Nau,
and Paolo TraversoChapters 17, 18

Temporal Represention, Acting, Planning

Dana S. Nau
University of Maryland

with contributions from
Mark “mak” Roberts

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://scholar.google.com/citations?user=vlbX4J8AAAAJ

2Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Some Example Applications

● RAX/PS
▸ Planning/control of Deep Space One spacecraft
▸ NASA Ames and JPL, 1999

● CASPER
▸ Planning/control of spacecraft
▸ NASA JPL, ≈ 1999–2017

● T-ReX
▸ Planning/control of AUVs
▸ Monterey Bay Aquarium Research Institute, ≈ 2005-2010

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

3Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Temporal Models

● Constraints on state variables and events
▸ Reflect predicted actions and events

● Actions have duration
▸ preconditions and effects may occur at times

other than start and end
● Time constraints on goals

▸ relative or absolute

● Exogenous events expected to occur in the future
● Maintenance actions: maintain a property

▸ e.g., track a moving target, keep a door closed
● Concurrent actions

▸ interacting effects, joint effects
● Delayed commitment

▸ instantiation at acting time

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

4Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Outline

Topic Section

● Introduction 17.1

● Representation 17.2

● Planning (briefly) 18.2

● Consistency and controllability 18.3

● Acting (Part 1: refinement) 17.3.1

● Acting (Part 2: dispatching) 17.3.1

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

5Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Timelines

● Up to now, we’ve used a “state-oriented view”
• Time is a sequence of states s0, s1, s2

• Instantaneous actions transform each state into the next one
• No overlapping actions

● Switch to a “time-oriented view”
▸ Discrete: time points are integers

• t = 1, 2, 3, …
▸ For each state variable x, a timeline

• values of x during different time intervals
▸ State at time t = {values of all state variables at time t}

t + 1
timet

x

y

st
at

e
va

ria
bl

es

different positions on the y
axis represent qualitative
changes, not numeric values

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

6Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

persistence
requires t1 ≤ t2

Timeline
● A pair (T,C)

▸ T = {temporal assertions}; C = {constraints}
▸ partially predicted evolution of one state variable

• doesn’t necessarily specify a value at every timepoint

T = {
 [t1, t2] loc(r1) = loc1
 [t3, t4] loc(r1) : (l, loc2)
}

C = {
 t1 < t2 < t3 < t4,
 l ≠ loc2
}

● If T contains [t,t′] x : (v,v′) or [t,t′] x = v then C always contains t ≤ t′
▸ To simplify the examples, we usually won’t write t ≤ t′ explicitly

change
requires t3 ≤ t4

 and l ≠ loc2

lo
c(

r1
)

loc1
loc2

l

t1 t3t2 t4
time

temporal constraints

object constraints

Reminder: qualitative
changes, not numeric
values

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

7Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Consistency

● Let (T,C) be a timeline,

● Let (T ′,C′) be a ground instance of (T,C)
▸ (T ′,C′) is consistent if both

• T ′ satisfies C′
• no state variable in (T′,C′) has

more than one value at a time

● (T,C) is consistent if it has at least one
consistent ground instance

● Two temporal assertions are conflicting
if they have at least one inconsistent
instance
▸ May also have consistent instances,

so “possibly conflicting” would be
more accurate

Poll 1: Is (T1 , C1)
consistent?
Poll 2: are the two
temporal assertions
conflicting?

A. Yes
B. No
C. don’t know

lo
c(

r1
)

loc1
loc2

loc1

1 43 9
time

lo
c(

r) loc1
loc2

l

t1 t3t2 t4
time

● Timeline:
▸ T1 = {[t1,t2] loc(r) = loc1,

 [t3,t4] loc(r) : (l, loc2)}
▸ C1 = {t1< t2, t3< t4, l ≠ loc2}

lo
c(

r2
)

loc1

loc3

1 3 4 9
time

loc2

a consistent ground instance an inconsistent ground instance

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

8Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Security
● (T,C) is secure if

▸ it’s consistent (at least one ground
instance is consistent)

▸ every ground instance that satisfies
the constraints is consistent

● In PSP (Chapter 2), analogous to a partial
plan that has no threats

● Can make a consistent timeline secure
by adding separation constraints to C
▸ additional temporal and object

constraints
● Analogous to resolvers in PSP

● Separation constraints:
▸ t2 < t3

or
▸ t2 = t3, l = loc1

lo
c(

r1
)

loc1
loc2

loc1

1 43 9
time

lo
c(

r) loc1
loc2

l

t1 t3t2 t4
time

● Not secure:
▸ T1 = {[t1,t2] loc(r) = loc1,

 [t3,t4] loc(r) : (l, loc2)}
▸ C1 = {t1< t2, t3< t4, l ≠ loc2}

lo
c(

r2
)

loc1

loc3

1 3 4 9
time

loc2

a consistent ground instance an inconsistent ground instance

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

9Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Causal support
● Consider the assertion [t3,t4] loc(r) : (l, loc2)

▸ How did r1 get to location l?

● Let α be a persistence [t1,t2] x = v1 or change [t1,t2] x : (v1, v2)
● Causal support for α

▸ Information saying α is supported a priori
▸ Or another assertion that produces x = v1 at time t1

▸ [t0,t1] x = v1

▸ [t0,t1] x : (v0, v1)

● A timeline (T,C) is causally supported if every assertion α in T has a
causal support

● Three ways to modify a timeline to add causal support …

lo
c(

r) loc1
loc2

l

t1 t3t2 t4
time

● T1 = {[t1,t2] loc(r) = loc1,
 [t3,t4] loc(r) : (l, loc2)}

● C1 = {t1< t2, t3< t4, l ≠ loc2}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

10Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Establishing causal support

● Add [t2,t3] loc(r1) = loc2
▸ Supported by the first

temporal assertion
▸ Supports the second one

time

lo
c(

r1
)

loc1

loc3

t1 t2 t3 t4

Change

Persistence
loc2 loc2

time
lo

c(
r1

)

loc1

loc2

t1 t2 t3 t4

Change

Persistence
loc2

(1) Add a persistence assertion

T = {[t1,t2] loc(r1):(loc1,loc2),
 [t3,t4] loc(r1):(loc2,loc3)}

C = {t1< t2 < t3< t4}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

11Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Establishing causal support

● Add t2 = t3, r = r1, l = loc2

time

loc(r)

loc1
loc2

l
loc(r1)

time

loc(r1)loc1
loc2 loc2

loc(r1)

(2) Add constraints

T = {[t1,t2] loc(r1):(loc1,loc2),
 [t3,t4] loc(r) = l}

C = {t1< t2, t3< t4}

t1 t2 = t3 t4

t1 t2 t3 t4

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

12Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Establishing causal support

● Add an action that includes
[t2,t3] loc(r1):(loc1,loc3)

loc4

time
lo

c(
r1

)

loc3

t1 t2 t3 t4

loc1

loc4

time

lo
c(

r1
)

loc3

t1 t2 t3 t4

loc1(3) Add an action

T = {[t1,t2] loc(r1) = loc1,
 [t3,t4] loc(r1):(loc3,loc4)}

C = {t1< t2 < t3< t4}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

13Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

d
w r

Action Schemas

leave(r,d,w)
// robot r goes from loading dock d to waypoint w
assertions:

[ts,te] loc(r): (d,w)
[ts,te] occupant(d): (r,empty)

constraints:
te ≤ ts + δ1
adjacent(d,w)

▸ Action duration te – ts ≤ δ1

• (I’m not sure why it’s ≤)

● Action schema (book also calls it a primitive):
▸ a triple (head,T,C)

• head is the name and parameters
• (T,C) is the union of a set of timelines

● Always two additional parameters
▸ starting time ts , ending time te

● In each temporal assertion in T,
• left endpoint is like a precondition

ó need for causal support
• right endpoint is like an effect

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

14Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Action Schemas

enter(r,d,w)
// robot r goes from waypoint w to loading dock d
assertions:

 [ts,te] loc(r): (w,d)
[ts,te] occupant(d): (empty,r)

 constraints:
 te ≤ ts + δ2

adjacent(d,w)

▸ Action duration te – ts ≤ δ2

▸ Dock d becomes occupied by r

d
w r

take(k,c,r,d)
// crane k takes container c from robot r
assertions:

 [ts,te] pos(c): (r, k) // where c is
 [ts,te] grip(k): (empty, c) // what’s in k’s gripper
 [ts,te] freight(r): (c,empty) // what r is carrying
 [ts,te] loc(r) = d // where r is

constraints:
attached(k,d)

c

d

r

k

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

15Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

d

r

p

c

k

Action Schemas
● leave(r,d,w) robot r leaves dock d to an adjacent waypoint w
● enter(r,d,w) r enters d from an adjacent waypoint w

● take(k,c,r) crane k takes container c from robot r
● put(k,c,r) crane k puts container c onto robot r

● navigate(r,w,w′) r navigates from waypoint w to adjacent waypoint w′
● connected(w,w′) waypoint w is connected waypoint w′

● stack(k,c,p) crane k stacks container c on top of pile p
● unstack(k,c,p) crane k takes a container c from top of pile p

• w′

• w

d′

k′

p′

c, c′ - containers
d, d′ - loading docks
k, k′ - cranes
p, p′ - piles
r - robot
w, w′ - waypoints

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

16Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Tasks and Methods
● Task: move robot r to dock d

▸ [ts ,te] move(r,d)

● Method:
m-move1(r,d,d′,w,w′)
 task: move(r,d)
 refinement:
 [ts,t1] leave(r,d′,w′)
 [t2,t3] navigate(r,w′,w)
 [t4,te] enter(r,d,w)
 assertions:
 [ts,ts+1] loc(r) = d′
 constraints:
 adjacent(d,w),
 adjacent(d′,w′), d ≠ d′,
 connected(w,w′),
 t1 ≤ t2, t3 ≤ t4

d′d •w′
r

•w

need causal establishment

tasks and actions

like C

d′d •w′
r

•w

d′d •w′
r
•w

d′d •w′
r

•w

ts

leave
navigate

t1 t3t2 t4 te

enter

ts t1 t2 t3 t4 te

[ts ,te] move(r,d)

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

17Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Chronicles

● Chronicle ϕ = (A,S,T,C)
▸A: temporally qualified tasks
▸ S : a priori supported assertions
▸ T: temporally qualified assertions
▸ C: constraints

● ϕ can include
▸ Current state, future predicted events
▸ Tasks to perform
▸ Assertions and constraints to satisfy

● Can represent
▸ a planning problem
▸ a plan or partial plan

docked(ship1)=d3

[ts , te] bring(r,c1,d4)

loc(r1)=d1

 ts t0 ts+10 ts+ δ t1 te

loc(r1)=d1
top(pile-ship1)=c1

ϕ0:
tasks: [t0,t1] bring(r,c1,d4)
supported: [ts] loc(r1)=d1

[ts] loc(r2)=d2
[ts+10,ts+δ] docked(ship1)=d3
[ts] top(pile-ship1)=c1
[ts] pos(c1)=pallet

assertions: [te] loc(r1)=d1
[te] loc(r2)=d2

constraints: ts = 0 < t0 < t1 < te , 20 ≤ δ ≤ 30

like partial
plans in PSP

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

18Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Outline

Topic Section

● Introduction 17.1

● Representation 17.2

● Planning (briefly) 18.2

● Consistency and controllability 18.3

● Acting (Part 1: refinement) 17.3.1

● Acting (Part 2: dispatching) 17.3.1

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

19Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Planning

● Planning problem: a chronicle ϕ0 that has some flaws
▸ Temporal assertions that aren’t causally supported

▸ like open goals in PSP
▸ Temporal assertions that are (possibly) conflicting

• like threats in PSP
▸ Non-refined tasks

• like tasks in HTN planning
● Resolvers

▸ persistence assertions
▸ constraints
▸ actions
▸ tasks
▸ refinement methods

● If it’s possible to resolve all flaws, then
at least one of the nondeterministic
execution traces will do so

● The details are intricate and tedious
▸ If this interests you, I can point you to

some good references

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

20Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Outline

Topic Section

● Introduction 17.1

● Representation 17.2

● Planning (briefly) 18.2

● Consistency and controllability 18.3

● Acting (Part 1: refinement) 17.3.1

● Acting (Part 2: dispatching) 17.3.1

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

21Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Consistency of Constraints
● When TemPlan applies resolvers, it modifies ϕ = (A,S,T,C)

▸ Some resolvers will make ϕ inconsistent
▸ No solution in this part of the search space

▸ Would like to detect inconsistency, prune that part of the search space
• Otherwise we’ll waste time searching it

● Analogy: PSP checks simple cases of inconsistency
▸ E.g., if there’s already a constraint c ≺ b,

don’t resolve a threat by adding a constraint b ≺ c

● But PSP ignores more complicated cases
▸ Suppose Range(c) = Containers = {c1, c2, c3}
▸ To resolve three different threats, suppose PSP chooses

c ≠ c1 , c ≠ c2 , c ≠ c3
• No solutions in this part of the search

space, but PSP searches it anyway

c: move(r, d2, y)

loc(r1) = x

a: move(r1, d1, x) b: move(r1, x, d2)

loc(r1) = x

loc(r) = y
threat

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

22Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Consistency of Constraints

● ϕ = (A,S,T,C)
● At various points, have TemPlan check

whether C is consistent
▸ If it isn’t, then ϕ isn’t either
▸ Can prune this part of the search space

● Doesn’t detect every possible inconsistency
▸ If C is consistent, ϕ still may have other

inconsistencies
● But if TemPlan can detect some of the

inconsistencies, it may prune large parts of
the search space

● C contains two kinds of constraints
▸ Object constraints

• loc(r) ≠ l2 , l ∈ {loc3, loc4}, r = r1, o ≠ o′
▸ Temporal constraints

• t1 < t3 , a < t, t < t′, a ≤ t′ − t ≤ b

● Assume the two kinds of constraints are
independent
▸ exclude things like t = distance (l,l′) / speed(r)

● Then two separate subproblems
▸ (1) are the object constraints consistent?
▸ (2) are the temporal constraints consistent?

● C is consistent iff both are consistent

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

23Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

(1) Object Constraints

● Constraint-satisfaction problem (CSP): NP-hard
● Can write a CSP algorithm that’s complete but runs in exponential time

• If there’s an inconsistency, always finds it
• Might enable a lot of pruning
• But the calls to the CSP algorithm will take lots of time

● Instead, use a technique that’s incomplete but takes polynomial time
• arc consistency, path consistency*

● Detects some inconsistencies but not others
▸ Runs much faster, but prunes fewer nodes

*See Russell & Norvig, Artificial Intelligence: A Modern Approach

…

… …

…

…
…

…

…

…

…

…

… …

…

… …

……… …… … … … … … ……

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

24Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

t5

t4

t3

t2

t1

(2) Time Constraints

To represent time constraints:
● Simple Temporal Networks (STNs)

▸ Networks of constraints on time points

● Synthesize incrementally them starting from ϕ0

▸ can check time constraints in time O(n3)

● Instantiate them incrementally during acting
● Keep them consistent throughout planning and acting

[1, 2]

[1, 2]

[3, 4]

[6, 7] [4, 5]

[1, 7]

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

25Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

t1

t2

t3

[1,2] [3,4]

[3,7]

Time Constraints
● Simple Temporal Network (STN):
● a pair (V,E), where

• V = {a set of temporal variables {t1, …, tn}
• E ⊆ V 2 is a set of arcs

● Each arc (ti,tj) is labeled with an interval rij = [a,b]
• Represents constraint 𝑎!" ≤ 𝑡" − 𝑡! ≤ 𝑏!"
• Sometimes written: tj − ti ∈ [a, b]
• Or equivalently, ti − tj ∈ [–b, –a]

● To represent unary constraints:
▸ Constraint of the form: 𝑎 ≤ 𝑡" ≤ 𝑏	
▸ Where a “dummy” variable t0 ≡ 0
▸ Then, arc r0j = [a,b] represents tj – 0 ∈ [a,b]

t1

t2

t3

[1,2] [3,4]

[–7,–3]

t0

t2

t3

[1,2] [3,4]

[3,7]

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

26Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Operations on STNs
● Intersection, ∩

 tj – ti ∈ rij = [aij , bij]
 tj – ti ∈ r′ij = [a′ij , b′ij]

▸ Infer tj – ti ∈ rij ∩ r′ij = [max(aij,a′ij), min(bij,b′ij)]

● Composition, •
 tk – ti ∈ rik = [aik,bik]
 tj – tk ∈ rkj = [akj,bkj]

▸ Infer tj – ti ∈ rik • rkj = [aik +akj, bik +bkj]
▸ Reason: shortest and longest times for the two intervals

● Consistency checking
▸ rik , rkj , rij are consistent iff rij ∩ (rik • rkj) ≠ ∅

ti
tj

rij

rij ∩ r′ij

r′ij

ti

tk

tj

rik
rkj

rik • rkj

ti

tk

tj

rik rkj

rij

rij ∩ (rik • rkj)
rik • rkj

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

27Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Time Constraints

● Solution to an STN:
▸ any assignment of integer values to the time points

	𝑡#, 𝑡$, . . , 𝑡% such that all the constraints are satisfied
● Consistent STN: has a solution

● Minimal STN:
for every arc (ti,tj) with label [a,b],

for every t ∈ [a,b],
there’s at least one solution such that tj − ti = t

▸ If we make any of the time intervals shorter,
we’ll exclude some solutions

● Solutions:

t1

t2

t3

[1,2] [1,2]

[0,100]

t1

t2

t3

[1,2] [1,2]

[2,4]

t2 – t1 t3 – t2 t3 – t1

1 1 2
1 2 3
2 1 3
2 2 4

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

28Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Two Examples

▸ V = {t1, t2, t3}
▸ E = {r12=[1,2], r23=[3,4], r13=[2,3]}

● Composition:
▸ r′13 = r12 • r23 = [1+3, 2+4] = [4,6]

● Thus
▸ r13 ∩ r′13 = [2,3] ∩ [4,6] = ∅

● Can’t satisfy both r13 and r′13

● (V,E) is inconsistent

▸ V = {t1, t2, t3}
▸ E = {r12=[1,2], r23=[3,4], r13=[2,5]}

● As before, r′13 = r12 • r23 = [4,6]
▸ r13 ∩ r′13 = [2,5] ∩ [4,6] = [4,5]

● (V,E) is consistent
▸ r13 ← [4,5] will make it minimal

t1

t2

t3

[1,2] [3,4]

[2,3]
t1

t2

t3

[1,2] [3,4]

[2,5]
t1

t2

t3

[1,2] [3,4]

[4,5]

Same set of solutions:

t2–t1 t3–t2 t3–t1

1 3 4
1 4 5
2 3 5
2 4 6

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

29Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Time Constraints

● Solution to an STN:
▸ any assignment of integer values to the time points

	𝑡#, 𝑡$, . . , 𝑡% such that all the constraints are satisfied
● Consistent STN: has a solution

● Minimal STN:
for every arc (ti,tj) with label [a,b],

for every t ∈ [a,b],
there’s at least one solution such that tj − ti = t

▸ If we make any of the time intervals shorter,
we’ll exclude some solutions

t1

t2

t3

[1,2] [3,4]

[1,7]

Poll: Is this network minimal?

Poll: Is this network consistent?

t1

t2

t3

[1,2] [3,4]

[2,3]

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

30Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Path Consistency

● Makes network minimal
▸ Reduce each rij to exclude

values that aren’t in any
solution

● Detects inconsistent networks
▸ inconsistent if

rij shrinks to ∅

● i, j, k each go ≈ from 1 to n
▸ O(n3) triples
▸ total time O(n3)

● PC (Path Consistency) algorithm
● Iterate over each combination of k, i, j

● If an arc has no constraint, use [−∞, +∞]

PC(V,E):
 for 1 ≤ k ≤ n do
 for 1 ≤ i < j ≤ n, i ≠ k, j ≠ k do

rij ← rij ∩ [rik • rkj]
if rij = ∅ then

return inconsistent

● Dashed lines: constraints
shrunk from [–∞, ∞]

3

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

[15, 50] [0
, 1

5]

[25,55]

3

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

[15, 50] [0
, 1

5]

[25,55]

i

k

j

rik
rkj

rij ∩ [rik • rkj]

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

31Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Pruning TemPlan’s search space

● Take the time constraints in C
▸ Write them as an STN
▸ Use Path Consistency to check whether STN is consistent
▸ If it’s inconsistent, TemPlan can backtrack

● TemPlan needs to add new constraints incrementally
▸ Can modify PC to make it incremental
▸ Given a consistent, minimal STN,

incorporate a new constraint r′ij
• time O(n2)

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

32Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Controllability

● Section 18.3.3 of the book
● Suppose TemPlan gives you a chronicle and you want to execute it

▸ Constraints on time points
▸ Need to reason about these in order to decide when to start each action

● Solid lines: duration constraints
▸ Robot will do bring&move, will take 30 to 50 time units
▸ Crane will do uncover, will take 5 to 10 time units

● Dashed line: synchronization constraint
▸ At most 5 seconds between the two ending times

= Objective
▸ Choose starting times that will satisfy the constraints

2

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

bring&move

uncover

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

33Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

2

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

bring&move

uncover

3

t1

t3

t2

t4

[30, 50]

[5, 10]
[-5, 5]

[15, 50] [0
, 1

5]

[25,55]

bring&move

uncover

Controllability

● Suppose we run PC
▸ Returns a minimal and consistent network

● There exist time points that satisfy all the
constraints

● Would work if we could choose all four time
points
▸ But we can’t choose t2 and t4

● Actor can control when each action starts
▸ t1 and t3 are controllable

● Can’t control how long the actions take
▸ t2 and t4 are contingent
▸ random variables that are known

to satisfy the duration constraints
• t2 ∈ [t1+30, t1+50]
• t4 ∈ [t3+5, t3+10]

● Want to choose t1, t3 that will work for every t2, t4

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

34Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Controllability

● Start bring&move at time t1 = 0
● Let db = duration of bring&move

▸ Then t2 = db

● Start uncover at time t3

● Let du = duration of uncover
▸ Then t4 = t3 + du

● r24: –5 ≤ t4 – t2 ≤ 5
 –5 ≤ t3 + du – db ≤ 5

–5 + (db – du) ≤ t3 ≤ 5 + (db – du)

● Suppose the durations are
• bring&move 50
• uncover 5

▸ Then db – du = 45
• 40 ≤ t3 ≤ 50

● Suppose the durations are
• bring&move 30
• uncover 10

▸ Then db – du = 20
• 15 ≤ t3 ≤ 25

● There’s no t3 that works in both cases

3

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

[15, 50] [0
, 1

5]

[25,55]

bring&move

uncover

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

35Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

STNUs
● STNU (Simple Temporal Network with Uncertainty):

▸ A 4-tuple (V,Ṽ,E,Ẽ)
• V ={controllable time points}, e.g., starting times of actions
• Ṽ ={contingent time points}, e.g., ending times of actions
• E ={controllable constraints},
• Ẽ ={contingent constraints},

▸ Synchronization between starting times of two actions: controllable
▸ Synchronization between ending times of two actions: contingent
▸ Synchronization between end of action a1 and start of action a2

• If a2 starts after a1 ends, controllable
• If a2 starts before a1 ends, contingent

● Want a way for the actor to choose time points in V (starting times)
that guarantee that the constraints are satisfied

3

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

[15, 50] [0
, 1

5]

[25,55]

bring&move

uncover

Poll. is r32 controllable?

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

36Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

3

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

[15, 50] [0
, 1

5]

[25,55]

bring&move

uncover

Three kinds of controllability
● (V,Ṽ,E,Ẽ) is strongly controllable if the actor can choose values for V that

satisfy E, such that success occurs for all values of Ṽ that satisfy Ẽ
▸ Actor can choose the values for V offline
▸ The right choice works regardless of Ṽ

● (V,Ṽ,E,Ẽ) is weakly controllable if the actor can choose values for V that
satisfy E, such that success occurs for at least one combination of values for
Ṽ that satisfy Ẽ
▸ To make the right choice, the actor needs to know in advance what the

values of Ṽ will be

● Dynamic execution strategy: procedure the actor calls at each time point t, to
assign the value t to zero or more unassigned variables in V.
▸ Input: t and a list of previous assignments to some variables in V and Ṽ.

Previous assignments will always be values in [0, t–1] that satisfy E and Ẽ.
● (V,Ṽ,E,Ẽ) is dynamically controllable if there exists a dynamic execution

strategy for it that can guarantee that the constraints in E are satisfied.

Poll. Is the above STNU
strongly controllable?

Poll. Is it weakly
controllable?

Poll. Is it dynamically
controllable?

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

37Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Game-Theoretic Model
● Can model dynamic execution as a zero-sum game between actor and environment

For t = 0, 1, 2, …
1. Actor chooses an unassigned set of variables Vt ⊆ V that all can be assigned the

value t without violating any constraints in E
▸ ≈ actions the actor chooses to start at time t

2. Simultaneously, environment chooses an unassigned set of variables Ṽt ⊆ Ṽ that
all can be assigned the value t without violating any constraints in Ẽ
▸ ≈ actions that finish at time t

3. Each chosen time point v is assigned v ← t
4. Failure if any of the constraints in E ∪ Ẽ are violated

• There might be violations that neither Vt nor Ṽt caused individually
5. Success if all variables in V ∪ Ṽ have values and no constraints are violated

● Dynamic execution strategy σA for actor, σE for environment
▸ σA(ht–1) = {what events in V to trigger at time t, given ht–1}
▸ σE(ht–1) = {what events in Ṽ to trigger at time t, given ht–1}

• ht = ht–1 . (σA(ht–1) ∪ σE(ht–1))
▸ (V,Ṽ,E,Ẽ) is dynamically controllable if ∃ σA that will guarantee success ∀ σE

rij = [l,u] is violated if ti and tj
have values such that tj – ti ∉ [l,u]

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

38Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

● Instead of a single bring&move task, two separate bring and move tasks
▸ Then it’s dynamically controllable

● Actor’s dynamic execution strategy
▸ trigger t1 at whatever time you want
▸ wait and observe t
▸ trigger t′ at any time from t to t + 5
▸ trigger t3 = t′ + 10
▸ t2 ∈ [t′ + 15, t′ + 20]
▸ t4 ∈ [t3 + 5, t3 + 10] = [t′ + 15, t′ + 20]

▸ t4 – t2 ≤ max value for t4 – min value for t2

= (t′ + 20) – (t′ + 15) = 5
▸ t4 – t2 ≥ min value for t4 – max value for t2

= (t′ + 15) – (t′ + 20) = –5
▸ so t4 – t2 ∈ [–5, 5]

▸ The constraints are satisfied

t′

t3

t2

t4

[15, 20]

[5, 10]

[-5, 5]

t1 t[15, 25] [0, 5]
move

uncover

bring

V = {t1, t′, t3}
Ṽ = {t, t2, t4}
E = {t′ – t}
Ẽ = {t4 – t3}

2

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]
bring&move

uncover

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

39Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Dynamic Controllability Checking
● For a chronicle ϕ = (A, ST, T, C)

▸ Temporal constraints in C correspond to an STNU
▸ Put code into TemPlan to keep the STNU dynamically controllable

● If we detect cases where it isn’t dynamically controllable, then backtrack
● If PC(V ∪ Ṽ, E ∪ Ẽ) reduces a contingent constraint

then (V, Ṽ, E, Ẽ) isn’t dynamically controllable
 ⇒ can prune this branch

● If it doesn’t reduce any contingent contraints,
we don’t know whether (V, Ṽ, E, Ẽ) is dynamically controllable

● Two options
▸ Either continue down this branch and backtrack later if necessary, or
▸ Extend PC to detect more cases where (V, Ṽ, E, Ẽ) isn’t dynamically controllable

• additional constraint propagation rules
• I’ll skip the details

PC(V,E):
 for 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ k ≤ n,
 i ≠ j, i ≠ k, j ≠ k do

rij ← rij ∩ [rik • rkj]
if rij = ∅ then

return inconsistent

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

40Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Outline

Topic Section

● Introduction 17.1

● Representation 17.2

● Planning (briefly) 18.2

● Consistency and controllability 18.3

● Acting (Part 1: refinement) 17.3.1

● Acting (Part 2: dispatching) 17.3.1

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

41Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Atemporal Refinement of Actions
● Templan’s actions may correspond to compound tasks

▸ In RAE, use refinement methods to refine them into commands

● Templan’s
action schema
(descriptive model)

● RAE’s
refinement method
(operational model)

unstack(k,c,p)
assertions: …
constraints: …

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

42Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Discussion

● Atemporal Refinement of Actions
▸ Advantages

• Simple online refinement with RAE
• Can be augmented to include some temporal monitoring functions in RAE

▸ Disadvantages
• Does not handle temporal requirements at the command level,

▸ e.g., synchronize two robots that must act concurrently

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

43Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Outline

Topic Section

● Introduction 17.1

● Representation 17.2

● Planning (briefly) 18.2

● Consistency and controllability 18.3

● Acting (Part 1: refinement) 17.3.1

● Acting (Part 2: dispatching) 17.3.1

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

44Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Dispatching

● Dispatching procedure: a dynamic execution strategy
▸ Controls when to start each action
▸ Given a dynamically controllable plan with executable primitives, triggers

actions from online observations

t3

t5

t4

t6

[15, 20]

[5, 10]

[-5, 5]

t1 t2[15, 25] [0, 5]
move

uncover

bring

[10,10]

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

45Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Dispatching

● Let (V,Ṽ,E,Ẽ) be a grounded controllable STNU
● Different from a grounded expression in logic

▸ At least one time point in (V,Ṽ,E,Ẽ) is instantiated
● Bounds every time point ti within an interval [li,ui]

Controllable time point t in the future:
● ti is alive if current time now ∈ [li , ui]
● ti is enabled if
▸it’s alive
▸every precedence constraint t′ < ti has occurred
▸for every wait constraint ⟨te, α⟩,

• te has occurred or α has expired

● Let t1 = 0. Then:
▸ t2 ∈ [15,25]
▸ t3 ∈ [t2, t2+5]
▸ t4 ∈ [t3+15, t3+20]
▸ t5 ∈ [t3+10, t3+10]
▸ t6 ∈ [t5+5, t5+10] ∩ [t4–5, t4+5]

● Suppose bring finishes at t2=20
▸ t3 is enabled during [20, 25]

● Suppose we start move at t3 = 22
▸ t5 is enabled during [32,32]

t3

t5

t4

t6

[15, 20]

[5, 10]

[-5, 5]

t1 t2[15, 25] [0, 5]
move

uncover

bring

[10,10]

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

46Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Dispatching

● Let (V,Ṽ,E,Ẽ) be a grounded controllable STNU
● Different from a grounded expression in logic

▸ At least one time point in (V,Ṽ,E,Ẽ) is instantiated
● Bounds every time point ti within an interval [li,ui]

Controllable time point t in the future:
● ti is alive if current time now ∈ [li , ui]
● ti is enabled if
▸it’s alive
▸every precedence constraint t′ < ti has occurred
▸for every wait constraint ⟨te, α⟩,

• te has occurred or α has expired

t3

t5

t4

t6

[15, 20]

[5, 10]

[-5, 5]

t1 t2[15, 25] [0, 5]
move

uncover

bring

[10,10]

Dispatch(V,Ṽ,E,Ẽ)
● initialize the network
● while there are time points in V that

haven’t been triggered, do
1. update now
2. update the time points in Ṽ that were

triggered since the last iteration
3. update enabled
4. trigger every ti ∈ enabled such that now = ui

5. arbitrarily choose other time points in
enabled, and trigger them

6. propagate values of triggered timepoints
(change [lj,uj] for each future timepoint tj)

ti is bounded
by [li , ui]

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

47Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example
● Initially:

t2 ∈ [t1+15, t1+25], t3 ∈ [t2, t2+5], t4 ∈ [t3+15, t3+20],
t5 ∈ [t3+10, t3+10], t6 ∈ [t5+5, t5+10] ∩ [t4–5, t4+5]

● now = 0: trigger t1

▸ propagate [lj,uj] values: t1 = 0, t2 ∈ [15,25]
● now = 20: bring finishes, update t2 ← 20, add t3 to enabled

▸ propagate [lj,uj] values:
• t2 = 20, t3 = [20, 25]

● now = 22: trigger t3, propagate [lj,uj] values:
• t3 = 22, t4 ∈ [37, 42], t5 ∈ [32, 32]

● now = 32: add t5 to enabled; now = u5 so we must trigger t5
▸ propagate values:

• t5 = 32, t6 ∈ [37, 42] ∩ [t4–5, t4+5]
● now = 37: move finishes, update t4 ← 37

▸ propagate values:
• t4 = 37, t6 ∈ [37, 42] ∩ [32, 42]

● now = 42: uncover finishes, update t6 ← 42

Dispatch(V,Ṽ,E,Ẽ)
● initialize the network
● while there are time points in V that

haven’t been triggered, do
1. update now
2. update the time points in Ṽ that were

triggered since the last iteration
3. update enabled
4. trigger every ti ∈ enabled such that now = ui

5. arbitrarily choose other time points in
enabled, and trigger them

6. propagate values of triggered timepoints
(change [lj,uj] for each future timepoint tj)

ti is bounded
by [li , ui]

t3

t5

t4

t6

[15, 20]

[5, 10]

[-5, 5]

t1 t2[15, 25] [0, 5]
move

uncover

bring

[10,10]

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

48Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Deadline Failures
● Suppose something makes it impossible to start an action on time
● Do one of the following:

▸ stop the delayed action, and look for new plan
▸ let the delayed action finish; try to repair the plan by resolving violated

constraints at the STNU propagation level
• e.g., accommodate a delay in bring by delaying the whole plan

▸ let the delayed action finish; try to repair the plan some other way

t3

t5

t4

t6

[15, 20]

[5, 10]

[-5, 5]

t1 t2[15, 25] [0, 5]
move

uncover

bring

[10,10]

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

49Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Partial Observability

● Tacit assumption: all occurrences of contingent events are observable
▸ Observation needed for dynamic controllability

● In general, not all events are observable
● POSTNU (Partially Observable STNU)

● Dynamically controllable?

Controllable
Timepoints Invisible

Contingent
Observable

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

tʹ

t3

t2

t4

[20, 25]

[25, 30]

[-5, 10]

t1 t [1, 2]
driving

cooking

working

t0
[19:00, 19:30]

Observation Actions

Controllable

Contingent
Invisible

observable

51Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Dynamic Controllability

● A POSTNU is dynamically controllable if
▸ there exists an execution strategy that chooses future controllable points to meet all the constraints,

given the observation of past visible points
● Observable ≠ visible
● Observable means it will be known when observed
● It can be temporarily hidden

Controllable
Timepoints Invisible

Contingent Visible
Observable

 Hidden

tʹ

t3

t2

t4

[20, 25]

[25, 30]

[-5, 10]

t1 t [1, 2]
driving

cooking

working

t0
[19:00, 19:30]

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

52Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Summary
● Representation

▸ Time-oriented view
▸ Timelines

• Temporal assertions, object constraints, temporal constraints
▸ Causal support
▸ Action schemas, Methods
▸ Chronicles

● Material from Chapter 18
▸ Flaws, resolvers, TemPlan
▸ Temporal constraints: STNs, PC algorithm (path consistency)

● Acting
▸ Dynamic controllability
▸ STNUs
▸ RAE and eRAE
▸ Dispatching

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

