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Some Example Applications

● RAX/PS
▸ Planning/control of Deep Space One spacecraft
▸ NASA Ames and JPL, 1999

● CASPER
▸ Planning/control of spacecraft
▸ NASA JPL, ≈ 1999–2017

● T-ReX
▸ Planning/control of AUVs
▸ Monterey Bay Aquarium Research Institute, ≈ 2005-2010

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Temporal Models

● Constraints on state variables and events
▸ Reflect predicted actions and events

● Actions have duration
▸ preconditions and effects may occur at times 

other than start and end
● Time constraints on goals

▸ relative or absolute

● Exogenous events expected to occur in the future
● Maintenance actions: maintain a property

▸ e.g., track a moving target, keep a door closed
● Concurrent actions

▸ interacting effects, joint effects
● Delayed commitment 

▸ instantiation at acting time

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Outline

Topic   Section

● Introduction       17.1

● Representation      17.2

● Planning (briefly)      18.2

● Consistency and controllability     18.3

● Acting (Part 1: refinement)     17.3.1

● Acting (Part 2: dispatching)     17.3.1

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en


5Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Timelines

● Up to now, we’ve used a “state-oriented view”
• Time is a sequence of states s0, s1, s2

• Instantaneous actions transform each state into the next one
• No overlapping actions

● Switch to a “time-oriented view”
▸ Discrete: time points are integers

• t = 1, 2, 3, …
▸ For each state variable x, a timeline

• values of x during different time intervals
▸ State at time t = {values of all state variables at time t}

t + 1
timet

x

y
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es

different positions on the y 
axis represent qualitative 
changes, not numeric values

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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persistence
requires t1 ≤ t2

Timeline
● A pair  (T,C )

▸ T = {temporal assertions}; C = {constraints}
▸ partially predicted evolution of one state variable

• doesn’t necessarily specify a value at every timepoint

T = {
  [t1, t2] loc(r1) = loc1 
  [t3, t4] loc(r1) : (l, loc2)
}

C = {
  t1 < t2 < t3 < t4,
  l ≠ loc2
}

● If T contains  [t,t′] x : (v,v′)  or  [t,t′] x = v  then C always contains t ≤ t′ 
▸ To simplify the examples, we usually won’t write t ≤ t′ explicitly

change
requires t3 ≤ t4  

  and  l ≠ loc2

lo
c(

r1
)

loc1
loc2

l

t1 t3t2 t4
time

temporal constraints

object constraints

Reminder: qualitative 
changes, not numeric 
values

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Consistency

● Let (T,C) be a timeline, 

● Let (T ′,C′) be a ground instance of (T,C)
▸ (T ′,C′) is consistent if both

• T ′ satisfies C′ 
• no state variable in (T′,C′) has 

more than one value at a time

● (T,C) is consistent if it has at least one
consistent ground instance

● Two temporal assertions are conflicting
if they have at least one inconsistent 
instance
▸ May also have consistent instances, 

so “possibly conflicting” would be 
more accurate

Poll 1: Is (T1 , C1) 
consistent?
Poll 2: are the two 
temporal assertions 
conflicting?

A. Yes    
B. No
C. don’t know

lo
c(

r1
)

loc1
loc2

loc1

1 43 9
time

lo
c(

r) loc1
loc2

l

t1 t3t2 t4
time

● Timeline:
▸ T1 = {[t1,t2] loc(r) = loc1,

          [t3,t4] loc(r) : (l, loc2)}
▸ C1 = {t1< t2, t3< t4, l ≠ loc2}

lo
c(

r2
)

loc1

loc3

1 3 4 9
time

loc2

a consistent ground instance        an inconsistent ground instance

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en


8Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Security
● (T,C) is secure if

▸ it’s consistent (at least one ground
instance is consistent)

▸ every ground instance that satisfies 
the constraints is consistent

● In PSP (Chapter 2), analogous to a partial 
plan that has no threats

● Can make a consistent timeline secure 
by adding separation constraints to C 
▸ additional temporal and object 

constraints
● Analogous to resolvers in PSP

● Separation constraints:
▸ t2 < t3

or
▸ t2 = t3, l = loc1

lo
c(

r1
)

loc1
loc2

loc1

1 43 9
time

lo
c(

r) loc1
loc2

l

t1 t3t2 t4
time

● Not secure:
▸ T1 = {[t1,t2] loc(r) = loc1,

          [t3,t4] loc(r) : (l, loc2)}
▸ C1 = {t1< t2, t3< t4, l ≠ loc2}

lo
c(

r2
)

loc1

loc3

1 3 4 9
time

loc2

a consistent ground instance        an inconsistent ground instance

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Causal support
● Consider the assertion [t3,t4] loc(r) : (l, loc2)

▸ How did r1 get to location l?

● Let α be a persistence [t1,t2] x = v1 or change   [t1,t2] x : (v1, v2)
● Causal support for α

▸ Information saying α is supported a priori
▸ Or another assertion that produces x = v1 at time t1

▸ [t0,t1] x = v1

▸ [t0,t1] x : (v0, v1)

● A timeline (T,C)  is causally supported if every assertion α in T  has a 
causal support

● Three ways to modify a timeline to add causal support …

lo
c(

r) loc1
loc2

l

t1 t3t2 t4
time

● T1 = {[t1,t2] loc(r) = loc1,
          [t3,t4] loc(r) : (l, loc2)}

● C1 = {t1< t2, t3< t4, l ≠ loc2}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Establishing causal support

● Add [t2,t3] loc(r1) = loc2
▸ Supported by the first 

temporal assertion
▸ Supports the second one

time

lo
c(

r1
)

loc1

loc3

t1 t2 t3 t4

Change

Persistence
loc2 loc2

time
lo

c(
r1

)

loc1

loc2

t1 t2 t3 t4

Change

Persistence
loc2

(1) Add a persistence assertion

T = {[t1,t2] loc(r1):(loc1,loc2),  
         [t3,t4] loc(r1):(loc2,loc3)}

C = {t1< t2 < t3< t4}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en


11Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Establishing causal support

● Add t2 = t3, r = r1, l = loc2 

time

loc(r)

loc1
loc2

l
loc(r1)

time

loc(r1)loc1
loc2 loc2

loc(r1)

(2) Add constraints

T = {[t1,t2] loc(r1):(loc1,loc2),  
         [t3,t4] loc(r) = l}

C = {t1< t2, t3< t4}

t1            t2 = t3             t4

t1            t2       t3        t4

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Establishing causal support

● Add an action that includes
[t2,t3] loc(r1):(loc1,loc3)

 

loc4

time
lo

c(
r1

)

loc3

t1 t2 t3 t4

loc1

loc4

time

lo
c(

r1
)

loc3

t1 t2 t3 t4

loc1(3) Add an action

T = {[t1,t2] loc(r1) = loc1,  
         [t3,t4] loc(r1):(loc3,loc4)}

C = {t1< t2 < t3< t4}

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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d
w r

Action Schemas

leave(r,d,w)
// robot r goes from loading dock d to waypoint w
assertions:

[ts,te] loc(r): (d,w)
[ts,te] occupant(d): (r,empty) 

constraints:
te ≤ ts + δ1
adjacent(d,w) 

▸ Action duration te – ts ≤ δ1

• (I’m not sure why it’s ≤ )

● Action schema (book also calls it a primitive): 
▸ a triple (head,T,C)

• head is the name and parameters
• (T,C) is the union of a set of timelines

● Always two additional parameters
▸ starting time ts , ending time te

● In each temporal assertion in T,
• left endpoint is like a precondition

ó need for causal support
• right endpoint is like an effect

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Action Schemas

enter(r,d,w)
// robot r goes from waypoint w to loading dock d 
assertions: 

  [ts,te] loc(r): (w,d)
[ts,te] occupant(d): (empty,r) 

 constraints:
  te ≤ ts + δ2

adjacent(d,w) 

▸ Action duration te – ts ≤ δ2

▸ Dock d becomes occupied by r

d
w r

take(k,c,r,d)
// crane k takes container c from robot r 
assertions:

  [ts,te] pos(c): (r, k) // where c is
  [ts,te] grip(k): (empty, c) // what’s in k’s gripper
  [ts,te] freight(r): (c,empty) // what r is carrying
  [ts,te] loc(r) = d // where r is

constraints:
attached(k,d) 

c

d

r

k

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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d

r

p

c

k

Action Schemas
● leave(r,d,w) robot r leaves dock d to an adjacent waypoint w
● enter(r,d,w) r enters d from an adjacent waypoint w

● take(k,c,r) crane k takes container c from robot r
● put(k,c,r) crane k puts container c onto robot r

● navigate(r,w,w′) r navigates from waypoint w to adjacent waypoint w′
● connected(w,w′) waypoint w is connected waypoint w′

● stack(k,c,p) crane k stacks container c on top of pile p
● unstack(k,c,p) crane k takes a container c from top of pile p

• w′

• w

d′

k′

p′

c, c′ - containers
d, d′ - loading docks
k, k′ - cranes
p, p′ - piles
r - robot
w, w′ - waypoints

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Tasks and Methods
● Task: move robot r to dock d 

▸ [ts ,te] move(r,d)

● Method:
m-move1(r,d,d′,w,w′)
    task: move(r,d)
    refinement:
  [ts,t1] leave(r,d′,w′)
  [t2,t3] navigate(r,w′,w)
  [t4,te] enter(r,d,w) 
   assertions:
  [ts,ts+1] loc(r) = d′ 
  constraints:
  adjacent(d,w), 
  adjacent(d′,w′), d ≠ d′, 
  connected(w,w′), 
  t1 ≤ t2, t3 ≤ t4

d′d •w′
r

•w

need causal establishment

tasks and actions

like C

d′d •w′
r

•w

d′d •w′
r
•w

d′d •w′
r

•w

ts

leave
navigate

t1 t3t2 t4 te

enter

ts                t1 t2              t3  t4               te

[ts ,te] move(r,d)

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Chronicles

● Chronicle ϕ = (A,S,T,C) 
▸A: temporally qualified tasks
▸ S : a priori supported assertions
▸ T: temporally qualified assertions
▸ C: constraints

● ϕ can include
▸ Current state, future predicted events
▸ Tasks to perform
▸ Assertions and constraints to satisfy

● Can represent
▸ a planning problem
▸ a plan or partial plan

docked(ship1)=d3

[ts , te] bring(r,c1,d4) 

loc(r1)=d1

 ts    t0      ts+10                       ts+ δ  t1       te

loc(r1)=d1
top(pile-ship1)=c1

ϕ0:
tasks: [t0,t1] bring(r,c1,d4)
supported: [ts] loc(r1)=d1

[ts] loc(r2)=d2
[ts+10,ts+δ] docked(ship1)=d3
[ts] top(pile-ship1)=c1
[ts] pos(c1)=pallet

assertions: [te] loc(r1)=d1
[te] loc(r2)=d2

constraints: ts = 0 < t0 < t1 < te , 20 ≤ δ ≤ 30

like partial
plans in PSP

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Outline

Topic   Section

● Introduction       17.1

● Representation       17.2

● Planning (briefly)      18.2

● Consistency and controllability     18.3

● Acting (Part 1: refinement)     17.3.1

● Acting (Part 2: dispatching)     17.3.1

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Planning

● Planning problem: a chronicle ϕ0 that has some flaws
▸ Temporal assertions that aren’t causally supported

▸ like open goals in PSP
▸ Temporal assertions that are (possibly) conflicting

• like threats in PSP
▸ Non-refined tasks

• like tasks in HTN planning
● Resolvers

▸ persistence assertions
▸ constraints
▸ actions
▸ tasks
▸ refinement methods

● If it’s possible to resolve all flaws, then
at least one of the nondeterministic 
execution traces will do so

● The details are intricate and tedious
▸ If this interests you, I can point you to 

some good references

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Outline
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● Introduction       17.1

● Representation       17.2

● Planning (briefly)      18.2

● Consistency and controllability     18.3

● Acting (Part 1: refinement)     17.3.1

● Acting (Part 2: dispatching)     17.3.1

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Consistency of Constraints
● When TemPlan applies resolvers, it modifies ϕ = (A,S,T,C)

▸ Some resolvers will make ϕ inconsistent
▸ No solution in this part of the search space

▸ Would like to detect inconsistency, prune that part of the search space
• Otherwise we’ll waste time searching it

● Analogy: PSP checks simple cases of inconsistency
▸ E.g., if there’s already a constraint c ≺ b, 

don’t resolve a threat by adding a constraint b ≺ c 

● But PSP ignores more complicated cases
▸ Suppose Range(c) = Containers = {c1, c2, c3}
▸ To resolve three different threats, suppose PSP chooses 

c ≠ c1 , c ≠ c2 , c ≠ c3
• No solutions in this part of the search

space, but PSP searches it anyway

c: move(r, d2, y)

loc(r1) = x

a: move(r1, d1, x) b: move(r1, x, d2)

loc(r1) = x

loc(r) = y
threat

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Consistency of Constraints

● ϕ = (A,S,T,C)
● At various points, have TemPlan check 

whether C is consistent
▸ If it isn’t, then ϕ isn’t either
▸ Can prune this part of the search space

● Doesn’t detect every possible inconsistency
▸ If C is consistent, ϕ still may have other 

inconsistencies
● But if TemPlan can detect some of the 

inconsistencies, it may prune large parts of 
the search space

● C contains two kinds of constraints
▸ Object constraints 

• loc(r) ≠ l2 ,  l ∈ {loc3, loc4},  r = r1,  o ≠ o′
▸ Temporal constraints

• t1 < t3 ,   a < t,   t < t′,   a ≤ t′ − t ≤ b

● Assume the two kinds of constraints are 
independent
▸ exclude things like t = distance (l,l′) / speed(r)

● Then two separate subproblems
▸ (1) are the object constraints consistent?
▸ (2) are the temporal constraints consistent?

● C is consistent iff both are consistent

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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(1) Object Constraints

● Constraint-satisfaction problem (CSP):  NP-hard
● Can write a CSP algorithm that’s complete but runs in exponential time

• If there’s an inconsistency, always finds it
• Might enable a lot of pruning
• But the calls to the CSP algorithm will take lots of time

● Instead, use a technique that’s incomplete but takes polynomial time
• arc consistency, path consistency*

● Detects some inconsistencies but not others
▸ Runs much faster, but prunes fewer nodes

__________
*See Russell & Norvig, Artificial Intelligence: A Modern Approach

…

… …

…

…
…

…

…

…

…

…

… …

…

… …

……… …… … … … … … ……

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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t5

t4

t3

t2

t1

(2) Time Constraints

To represent time constraints:
● Simple Temporal Networks (STNs)

▸ Networks of constraints on time points

● Synthesize incrementally them starting from ϕ0

▸ can check time constraints in time O(n3)

● Instantiate them incrementally during acting
● Keep them consistent throughout planning and acting

[1, 2]

[1, 2]

[3, 4]

[6, 7] [4, 5]

[1, 7]

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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t1

t2

t3

[1,2] [3,4]

[3,7]

Time Constraints
● Simple Temporal Network (STN): 
● a pair (V,E), where

• V = {a set of temporal variables {t1, …, tn}
• E ⊆ V 2 is a set of arcs

● Each arc (ti,tj) is labeled with an interval rij = [a,b]
• Represents constraint 𝑎!" ≤ 𝑡" − 𝑡! ≤ 𝑏!"
• Sometimes written: tj − ti ∈ [a, b]
• Or equivalently, ti − tj ∈ [–b, –a]

● To represent unary constraints: 
▸ Constraint of the form: 𝑎 ≤ 𝑡" ≤ 𝑏	
▸ Where a “dummy” variable t0 ≡ 0
▸ Then, arc r0j = [a,b] represents tj – 0 ∈ [a,b]

t1

t2

t3

[1,2] [3,4]

[–7,–3]

t0

t2

t3

[1,2] [3,4]

[3,7]

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Operations on STNs
● Intersection,   ∩

  tj – ti ∈ rij = [aij , bij]
  tj – ti ∈ r′ij = [a′ij , b′ij]

▸ Infer tj – ti ∈ rij ∩ r′ij = [max(aij,a′ij), min(bij,b′ij)]

● Composition,   •
   tk – ti ∈ rik = [aik,bik]
   tj – tk ∈ rkj = [akj,bkj]

▸ Infer  tj – ti ∈ rik • rkj = [aik +akj, bik +bkj]
▸ Reason: shortest and longest times for the two intervals 

● Consistency checking
▸ rik , rkj , rij are consistent iff  rij ∩ (rik • rkj) ≠ ∅ 

ti
tj

rij

rij ∩ r′ij

r′ij

ti

tk

tj

rik
rkj

rik • rkj

ti

tk

tj

rik rkj

rij

rij ∩ (rik • rkj)
rik • rkj

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Time Constraints

● Solution to an STN: 
▸ any assignment of integer values to the time points 

	𝑡#, 𝑡$, . . , 𝑡% such that all the constraints are satisfied
● Consistent STN: has a solution

● Minimal STN: 
for every arc (ti,tj) with label [a,b], 

for every t ∈ [a,b], 
there’s at least one solution such that tj − ti = t

▸ If we make any of the time intervals shorter,
we’ll exclude some solutions

● Solutions:

t1

t2

t3

[1,2] [1,2]

[0,100]

t1

t2

t3

[1,2] [1,2]

[2,4]

t2 – t1 t3 – t2 t3 – t1

1 1 2
1 2 3
2 1 3
2 2 4

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Two Examples

▸ V = {t1, t2, t3}
▸ E = {r12=[1,2],  r23=[3,4],  r13=[2,3]}

● Composition:
▸ r′13 = r12 • r23 = [1+3, 2+4] = [4,6]

● Thus
▸ r13 ∩ r′13 = [2,3] ∩ [4,6] = ∅

● Can’t satisfy both r13 and r′13

● (V,E) is inconsistent

▸ V = {t1, t2, t3}
▸ E = {r12=[1,2], r23=[3,4], r13=[2,5]}

● As before, r′13 = r12 • r23 = [4,6]
▸ r13 ∩ r′13 = [2,5] ∩ [4,6] = [4,5]

● (V,E) is consistent
▸ r13 ← [4,5] will make it minimal

t1

t2

t3

[1,2] [3,4]

[2,3]
t1

t2

t3

[1,2] [3,4]

[2,5]
t1

t2

t3

[1,2] [3,4]

[4,5]

Same set of solutions:

t2–t1 t3–t2 t3–t1

1 3 4
1 4 5
2 3 5
2 4 6

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Time Constraints

● Solution to an STN: 
▸ any assignment of integer values to the time points 

	𝑡#, 𝑡$, . . , 𝑡% such that all the constraints are satisfied
● Consistent STN: has a solution

● Minimal STN: 
for every arc (ti,tj) with label [a,b], 

for every t ∈ [a,b], 
there’s at least one solution such that tj − ti = t

▸ If we make any of the time intervals shorter,
we’ll exclude some solutions

t1

t2

t3

[1,2] [3,4]

[1,7]

Poll: Is this network minimal?

Poll: Is this network consistent?

t1

t2

t3

[1,2] [3,4]

[2,3]
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Path Consistency

● Makes network minimal
▸ Reduce each rij to exclude 

values that aren’t in any 
solution

● Detects inconsistent networks
▸ inconsistent if 

rij shrinks to ∅

● i, j, k each go ≈ from 1 to n
▸ O(n3) triples
▸ total time O(n3)

● PC (Path Consistency) algorithm
● Iterate over each combination of k, i, j

● If an arc has no constraint, use [−∞, +∞]

PC(V,E):
 for 1 ≤ k ≤ n do
  for 1 ≤ i < j ≤ n,  i ≠ k,  j ≠ k  do

rij ← rij ∩ [rik • rkj]
if rij = ∅ then

return inconsistent

● Dashed lines: constraints 
shrunk from [–∞, ∞]

3

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

[15, 50] [0
, 1

5]

[25,55]

3

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

[15, 50] [0
, 1

5]

[25,55]

i

k

j

rik
rkj

rij ∩ [rik • rkj]
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Pruning TemPlan’s search space

● Take the time constraints in C
▸ Write them as an STN
▸ Use Path Consistency to check whether STN is consistent
▸ If it’s inconsistent, TemPlan can backtrack

● TemPlan needs to add new constraints incrementally
▸ Can modify PC to make it incremental
▸ Given a consistent, minimal STN, 

incorporate a new constraint r′ij
• time O(n2)
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Controllability

● Section 18.3.3 of the book
● Suppose TemPlan gives you a chronicle and you want to execute it

▸ Constraints on time points
▸ Need to reason about these in order to decide when to start each action

● Solid lines: duration constraints
▸ Robot will do bring&move, will take 30 to 50 time units
▸ Crane will do uncover, will take 5 to 10 time units

● Dashed line: synchronization constraint
▸ At most 5 seconds between the two ending times

= Objective
▸ Choose starting times that will satisfy the constraints

2

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

bring&move

uncover
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2

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

bring&move

uncover

3

t1

t3

t2

t4

[30, 50]

[5, 10]
[-5, 5]

[15, 50] [0
, 1

5]

[25,55]

bring&move

uncover

Controllability

● Suppose we run PC
▸ Returns a minimal and consistent network

● There exist time points that satisfy all the 
constraints

● Would work if we could choose all four time 
points
▸ But we can’t choose t2 and t4

● Actor can control when each action starts
▸ t1 and t3 are controllable

● Can’t control how long the actions take
▸ t2 and t4 are contingent
▸ random variables that are known 

to satisfy the duration constraints
• t2 ∈ [t1+30, t1+50]
• t4 ∈ [t3+5, t3+10]

● Want to choose t1, t3 that will work for every t2, t4
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Controllability

● Start bring&move at time t1 = 0
● Let db = duration of bring&move

▸ Then t2 = db

● Start uncover at time t3

● Let du = duration of uncover
▸ Then t4 = t3 + du

● r24:      –5  ≤  t4 –  t2     ≤  5
 –5  ≤  t3 + du –  db     ≤  5

–5 + (db – du)  ≤          t3          ≤  5 + (db – du)

● Suppose the durations are
• bring&move 50
• uncover 5

▸ Then db – du = 45
• 40 ≤ t3 ≤ 50

● Suppose the durations are
• bring&move 30
• uncover 10

▸   Then db – du = 20
• 15 ≤ t3 ≤ 25

● There’s no t3 that works in both cases

3

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

[15, 50] [0
, 1

5]

[25,55]

bring&move

uncover
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STNUs
● STNU (Simple Temporal Network with Uncertainty):

▸ A 4-tuple (V,Ṽ,E,Ẽ )
• V ={controllable time points}, e.g., starting times of actions
• Ṽ ={contingent time points}, e.g., ending times of actions
• E ={controllable constraints}, 
• Ẽ ={contingent constraints}, 

▸ Synchronization between starting times of two actions: controllable
▸ Synchronization between ending times of two actions: contingent
▸ Synchronization between end of action a1 and start of action a2

• If a2 starts after a1 ends, controllable
• If a2 starts before a1 ends, contingent

● Want a way for the actor to choose time points in V (starting times) 
that guarantee that the constraints are satisfied

3

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

[15, 50] [0
, 1

5]

[25,55]

bring&move

uncover

Poll. is r32 controllable? 
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3

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

[15, 50] [0
, 1

5]

[25,55]

bring&move

uncover

Three kinds of controllability
● (V,Ṽ,E,Ẽ ) is strongly controllable if the actor can choose values for V that 

satisfy E, such that success occurs for all values of Ṽ that satisfy Ẽ
▸ Actor can choose the values for V offline
▸ The right choice works regardless of Ṽ

● (V,Ṽ,E,Ẽ ) is weakly controllable if the actor can choose values for V that 
satisfy E, such that success occurs for at least one combination of values for 
Ṽ that satisfy Ẽ
▸ To make the right choice, the actor needs to know in advance what the 

values of Ṽ will be

● Dynamic execution strategy: procedure the actor calls at each time point t, to 
assign the value t to zero or more unassigned variables in V. 
▸ Input: t and a list of previous assignments to some variables in V and Ṽ. 

Previous assignments will always be values in [0, t–1] that satisfy E and Ẽ.
● (V,Ṽ,E,Ẽ ) is dynamically controllable if there exists a dynamic execution 

strategy for it that can guarantee that the constraints in E are satisfied.

Poll. Is the above STNU 
strongly controllable? 

Poll. Is it weakly 
controllable?

Poll. Is it dynamically 
controllable?

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en


37Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Game-Theoretic Model
● Can model dynamic execution as a zero-sum game between actor and environment

For t = 0, 1, 2, …
1. Actor chooses an unassigned set of variables Vt ⊆ V that all can be assigned the 

value t without violating any constraints in E
▸ ≈ actions the actor chooses to start at time t

2. Simultaneously, environment chooses an unassigned set of variables Ṽt ⊆ Ṽ that 
all can be assigned the value t without violating any constraints in Ẽ
▸ ≈ actions that finish at time t

3. Each chosen time point v is assigned v ← t
4. Failure if any of the constraints in E ∪ Ẽ are violated

• There might be violations that neither Vt nor Ṽt caused individually
5. Success if all variables in V ∪ Ṽ have values and no constraints are violated

● Dynamic execution strategy σA for actor, σE for environment
▸ σA(ht–1) = {what events in V to trigger at time t, given ht–1}
▸ σE(ht–1) = {what events in Ṽ to trigger at time t, given ht–1}

• ht = ht–1 . (σA(ht–1) ∪ σE(ht–1))
▸ (V,Ṽ,E,Ẽ ) is dynamically controllable if ∃ σA that will guarantee success ∀ σE

rij = [l,u] is violated if ti and tj 
have values such that tj – ti ∉ [l,u]
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Example

● Instead of a single bring&move task, two separate bring and move tasks
▸ Then it’s dynamically controllable

● Actor’s dynamic execution strategy
▸ trigger t1 at whatever time you want
▸ wait and observe t
▸ trigger t′ at any time from t to t + 5
▸ trigger t3 = t′ + 10
▸ t2 ∈ [t′ + 15, t′ + 20] 
▸ t4 ∈ [t3 + 5, t3 + 10] = [t′ + 15, t′ + 20]

▸ t4 – t2 ≤ max value for t4 – min value for t2

= (t′ + 20) – (t′ + 15) = 5
▸ t4 – t2 ≥ min value for t4 – max value for t2

= (t′ + 15) – (t′ + 20) = –5
▸ so t4 – t2 ∈ [–5, 5]

▸ The constraints are satisfied

t′

t3

t2

t4

[15, 20]

[5, 10]

[-5, 5]

t1 t[15, 25] [0, 5]
move

uncover

bring

V = {t1, t′, t3}
Ṽ  = {t, t2, t4}
E  = {t′ – t}
Ẽ = {t4 – t3}

2

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]
bring&move

uncover
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Dynamic Controllability Checking
● For a chronicle ϕ = (A, ST, T, C) 

▸ Temporal constraints in C correspond to an STNU
▸ Put code into TemPlan to keep the STNU dynamically controllable

● If we detect cases where it isn’t dynamically controllable, then backtrack 
● If PC(V ∪ Ṽ, E ∪ Ẽ ) reduces a contingent constraint 

then (V, Ṽ, E, Ẽ ) isn’t dynamically controllable
   ⇒  can prune this branch

● If it doesn’t reduce any contingent contraints, 
we don’t know whether (V, Ṽ, E, Ẽ ) is dynamically controllable

● Two options
▸ Either continue down this branch and backtrack later if necessary, or
▸ Extend PC to detect more cases where (V, Ṽ, E, Ẽ ) isn’t dynamically controllable

• additional constraint propagation rules
• I’ll skip the details

PC(V,E):
 for 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ k ≤ n,
    i ≠ j, i ≠ k,  j ≠ k  do

rij ← rij ∩ [rik • rkj]
if rij = ∅ then

return inconsistent
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Outline

Topic   Section

● Introduction       17.1

● Representation       17.2

● Planning (briefly)      18.2

● Consistency and controllability     18.3

● Acting (Part 1: refinement)     17.3.1

● Acting (Part 2: dispatching)     17.3.1
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Atemporal Refinement of Actions
● Templan’s actions may correspond to compound tasks

▸ In RAE, use refinement methods to refine them into commands

● Templan’s 
action schema
(descriptive model)

● RAE’s 
refinement method
(operational model)

unstack(k,c,p)
assertions: … 
constraints: …
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Discussion

● Atemporal Refinement of Actions
▸ Advantages

• Simple online refinement with RAE
• Can be augmented to include some temporal monitoring functions in RAE

▸ Disadvantages
• Does not handle temporal requirements at the command level, 

▸ e.g., synchronize two robots that must act concurrently
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Outline

Topic   Section

● Introduction       17.1

● Representation       17.2

● Planning (briefly)      18.2

● Consistency and controllability     18.3

● Acting (Part 1: refinement)     17.3.1

● Acting (Part 2: dispatching)     17.3.1
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Dispatching

● Dispatching procedure: a dynamic execution strategy
▸ Controls when to start each action
▸ Given a dynamically controllable plan with executable primitives, triggers 

actions from online observations

t3

t5

t4

t6

[15, 20]

[5, 10]

[-5, 5]

t1 t2[15, 25] [0, 5]
move

uncover

bring

[10,10]

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en


45Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Dispatching

● Let (V,Ṽ,E,Ẽ ) be a grounded controllable STNU
● Different from a grounded expression in logic

▸ At least one time point in (V,Ṽ,E,Ẽ ) is instantiated
● Bounds every time point ti within an interval [li,ui]

Controllable time point t in the future:
● ti is alive if current time now ∈ [li , ui]
● ti is enabled if
▸it’s alive
▸every precedence constraint t′ < ti has occurred
▸for every wait constraint ⟨te, α⟩, 

• te has occurred or α has expired

● Let t1 = 0. Then:
▸ t2 ∈ [15,25]
▸ t3 ∈ [t2, t2+5]
▸ t4 ∈ [t3+15, t3+20]
▸ t5 ∈ [t3+10, t3+10]
▸ t6 ∈ [t5+5, t5+10] ∩ [t4–5, t4+5]

● Suppose bring finishes at t2=20
▸ t3 is enabled during [20, 25]

● Suppose we start move at t3 = 22
▸ t5 is enabled during [32,32]

t3

t5

t4

t6

[15, 20]

[5, 10]

[-5, 5]

t1 t2[15, 25] [0, 5]
move

uncover

bring

[10,10]
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Dispatching

● Let (V,Ṽ,E,Ẽ ) be a grounded controllable STNU
● Different from a grounded expression in logic

▸ At least one time point in (V,Ṽ,E,Ẽ ) is instantiated
● Bounds every time point ti within an interval [li,ui]

Controllable time point t in the future:
● ti is alive if current time now ∈ [li , ui]
● ti is enabled if
▸it’s alive
▸every precedence constraint t′ < ti has occurred
▸for every wait constraint ⟨te, α⟩, 

• te has occurred or α has expired

t3

t5

t4

t6

[15, 20]

[5, 10]

[-5, 5]

t1 t2[15, 25] [0, 5]
move

uncover

bring

[10,10]

Dispatch(V,Ṽ,E,Ẽ )
● initialize the network
● while there are time points in V that 

haven’t been triggered, do
1. update now
2. update the time points in Ṽ that were 

triggered since the last iteration
3. update enabled
4. trigger every ti ∈ enabled such that now = ui

5. arbitrarily choose other time points in 
enabled, and trigger them

6. propagate values of triggered timepoints 
(change [lj,uj] for each future timepoint tj)

ti is bounded 
by [li , ui]
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Example
● Initially:

t2 ∈ [t1+15, t1+25],     t3 ∈ [t2, t2+5],           t4 ∈ [t3+15, t3+20],
t5 ∈ [t3+10, t3+10],  t6 ∈ [t5+5, t5+10] ∩ [t4–5, t4+5]

● now = 0: trigger t1

▸ propagate [lj,uj] values:  t1 = 0,  t2 ∈ [15,25]
● now = 20: bring finishes, update t2 ← 20, add t3 to enabled

▸ propagate [lj,uj] values:  
• t2 = 20,  t3 = [20, 25]

● now = 22: trigger t3, propagate [lj,uj] values:  
• t3 = 22,  t4 ∈ [37, 42],  t5 ∈ [32, 32]

● now = 32: add t5 to enabled; now = u5 so we must trigger t5 
▸ propagate values:  

• t5 = 32,  t6 ∈ [37, 42] ∩ [t4–5, t4+5]
● now = 37: move finishes, update t4 ← 37

▸ propagate values:  
• t4 = 37, t6 ∈ [37, 42] ∩ [32, 42]

● now = 42: uncover finishes, update t6 ← 42

Dispatch(V,Ṽ,E,Ẽ )
● initialize the network
● while there are time points in V that 

haven’t been triggered, do
1. update now
2. update the time points in Ṽ that were 

triggered since the last iteration
3. update enabled
4. trigger every ti ∈ enabled such that now = ui

5. arbitrarily choose other time points in 
enabled, and trigger them

6. propagate values of triggered timepoints 
(change [lj,uj] for each future timepoint tj)

ti is bounded 
by [li , ui]

t3

t5

t4

t6

[15, 20]

[5, 10]

[-5, 5]

t1 t2[15, 25] [0, 5]
move

uncover

bring

[10,10]
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Deadline Failures
● Suppose something makes it impossible to start an action on time
● Do one of the following:

▸ stop the delayed action, and look for new plan
▸ let the delayed action finish; try to repair the plan by resolving violated 

constraints at the STNU propagation level
• e.g., accommodate a delay in bring by delaying the whole plan

▸ let the delayed action finish; try to repair the plan some other way

t3

t5

t4

t6

[15, 20]

[5, 10]

[-5, 5]

t1 t2[15, 25] [0, 5]
move

uncover

bring

[10,10]
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Partial Observability

● Tacit assumption: all occurrences of contingent events are observable
▸ Observation needed for dynamic controllability

● In general, not all events are observable 
● POSTNU (Partially Observable STNU)

● Dynamically controllable?

Controllable
Timepoints Invisible

Contingent
Observable
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[20, 25]
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Observation Actions

Controllable

Contingent
Invisible
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Dynamic Controllability

● A POSTNU is dynamically controllable if 
▸ there exists an execution strategy that chooses future controllable points to meet all the constraints, 

given the observation of past visible points
● Observable ≠ visible
● Observable means it will be known when observed
● It can be temporarily hidden

Controllable
Timepoints Invisible

Contingent  Visible
Observable

   Hidden 

tʹ

t3

t2

t4

[20, 25]

[25, 30]

[-5, 10]

t1 t [1, 2]
driving

cooking

working

t0
[19:00, 19:30]
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Summary 
● Representation

▸ Time-oriented view
▸ Timelines

• Temporal assertions, object constraints, temporal constraints
▸ Causal support
▸ Action schemas, Methods
▸ Chronicles

● Material from Chapter 18
▸ Flaws, resolvers, TemPlan
▸ Temporal constraints: STNs, PC algorithm (path consistency)

● Acting
▸ Dynamic controllability
▸ STNUs
▸ RAE and eRAE
▸ Dispatching
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