Last update: 11:10 PM, March 7, 2025

Acting, Planning,
and Learning

Chapters 15, 16 LT
Hierarchical Refinement Planning, Learning

Dana S. Nau
University of Maryland

with contributions from
Mark “mak” Roberts

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0 1

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://scholar.google.com/citations?user=vlbX4J8AAAAJ

Outline

Planning for Rae
Acting with Planning (RAE+UPOM)

Learning

Actor

= P~

Evaluation, Application

Hierarchical
Operational
Models

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

RAE

RAE (Ch. 14 Review)

Agenda «— empty list
while True do

= W N -

for each new task or event 7 to be addressed do
observe current state &

m « Guide(¢&, 7, (7, nil, 1, @), dynax. nro)

if m = @ then output(r, “failed”)

else Agenda «— Agenda U {{(t,m,1,2))}

for each stack € Agenda do
observe current state &
stack «— Progress(stack, &)
if stack = & then

Agenda «— Agenda \ stack
_output(7, “succeeded”)

else if stack =failure then
Agenda — Agenda \ stack
| output(t, “failed”)

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

An abstraction of RAE we will use:

procedure RAE:
loop:
for every new external task or event T do
choose a method instance m for t
create a refinement stack for t, m
add the stack to Agenda
for each stack ¢ in Agenda
call Progress(o)
if o 1s finished then remove it

In Ch. 14, Guide was a
heuristic choice.

We will explore some possible
ways to do Guide.

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Progress (Ch. 14 Review)

Progress(stack, &)
(t,m,i,tried) < top(stack)
1 if m[i] is an already triggered action then
case exec-status (m[i])=
running: return stack
2 failed: return Retry(stack)
done: return Next(stack, &)

//i is the current step of m

3 else

if m[i] is an assignment step then
update & according to m[i]

| return Next(stack, &)

//i is the next step of m

if m[i] is an action a then

trigger the execution of action a

| return stack

if m[i] is a task 7" then

4 observe current state &

5 m’ « Guide(¢&, v/, push((1’, nil, 1,0), stack), d,qx» 1yo)
if m’ = @ then return Retry(stack)

else return push((7/,m’, 1, @), stack)

Next(stack, &)
repeat
(t,m,i,tried) < top(stack)
pop(stack)
1 if stack = () then return @
until ; is not the last step of m
J < step following i/ in m depending on &
return push((r, m, j, tried), stack)

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Progress(o): |(t,m,i,tried)« top(o)

no

running

return
success

m’s current step
a command?

retry 7 using an
untried candidate

pop(o)

update
state s

choose a candidate m'
push (z',m’,...) onto o

candidates

for 7'?

command

send 7’ to the
execution platform

retry T using an
untried candidate

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Progress(o): |(t,m,i,tried)« top(o)

Planning for Rae?

procedure RAE:
loop:

for every new external task or event T do

choose a method instance m for t

create a refinement stack for t, m
add the stack to Agenda running

for each stack ¢ in Agenda
call Progress(o)

return
success

retry T using an
untried candidate

if o 1s finished then remove it

more steps
in m?

e Four places where Rae and Progress choose a method instance yes pop()
for a task 7' < next step of m
. v
e Bad choice may lead to assignment command

> more costly solution

send 7’ to the
execution platform

update

» failure - need to recover, sometimes unrecoverable oo
S

candidates
for 7'?

e Solution:

> call a planner, choose the method instance it suggests
choose a candidate m' retry T using an

push (z,m’, ...) onto & untried candidate | .

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Planning and Acting Integration

e Planner’s action models are abstractions Actor
» The planned actions are tasks for the actor to refine Descriptive models
e Consistency problem: What the Planning

actions do

> How to get action models that
describe what the actor will do? Consistent?

e One possible solution: Operational models

How to
perform tasks

> Actor and planner both use the same representation

e Must be operational; descriptive models too abstract

e Need planning algorithms that can use operational models

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Planning and Acting Integration

e Planner’s action models are abstractions Actor
» The planned actions are tasks for the actor to refine Descriptive models
e Consistency problem: What the Planning

actions do

> How to get action models that
describe what the actor will do? Consistent?

e One possible solution:

> Actor and planner both use the same representation perform tasks

e Must be operational; descriptive models too abstract

e Need planning algorithms that can use operational models _—

e [dea I: o

» Planner uses Rae’s tasks and refinement methods

» For each of Rae’s actions, have a classical action model

» DFS or GBFS search among alternatives to see which works best

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

SeRPE (Sequential Refinement Planning Engine) TEE

M = {methods}

A = {action models}
s = initial state
7 = task or goal

SeRPE(M, A, s, T)
Candidates < Instances(M, 7, s)
if Candidates = @ then return failure

nondeterministically choose m € Candidates

return Progress-to-finish(M, A, s, 7, m)

e Like Rae with just one external task

> Progress it all the way to the end,
like Progress with a loop around it

» Plan rather than act

e For each action, use a classical action model

e This has some problems ...

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Automated Planning and Acting
Progress-to-finish(M, A, s, 7,m)
i < nil // instruction pointer for body(m)
T+ () // plan produced from body(m)

loop

if 7 is a goal and s = 7 then return 7
if 4 is the last step of m then
if 7 is a goal and s [~ 7 then return failure
return 7
i < nextstep(m, 1)
case type(mli|)
assignment: update s according to m|i
command:
a < the descriptive model of m[i] in A
if s = pre(a) then
s+ v(s,a); ™+ T.a
else return failure
task or goal:
7’ < SeRPE(M, A, s, m[i])
if 7/ = failure then return failure
s+ (s, 7); m+ wa'

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Problems With SeRPE Automated P(ljclinr;u;g and Acting

Problem I: difficult to implement

e FEach time a method invokes a subtask, SeRPE
makes a nondeterministic choice Example:

e To implement deterministically e Suppose that

> Each path in the search space is an execution
trace of the body of a method

» Need to backtrack over code execution

» Each task has two applicable methods

» When i=2, the 1% method for baz(2) fails
e Backtracking:

. . > Try 2" method for baz(2)
e Need to write a compiler that can do m-foo(k) S
backtracking task: foo(k) » If it fails, try 2°¢ method for bar(2)
> IS lt Worth the effort‘? pre: - > If lt faﬂS, bathraCk toi= 1
body: e Try 2™ method for baz(1)
fori« 1tok:

bar(i) e Ifit fails, try 2" method for bar(1)
baz(i) » If it fails, backtrack to task foo(k) ...

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Problems with SeRPE

e Problem 2: limitations of classical action models
> e.g., the fetch example

e We don’t know in advance what perceive’s effects
will be

» If we did, perceive wouldn’t actually be needed

loc3 / %
cl r2 |

loc / riju—— <&
locl /o B0®

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

take(r,0,/)

// robot r takes object o at location /
pre: cargo(r) = nil, loc(r)=1, loc(o)=1
eff: cargo(r) < o, loc(o) <« r

put(r,0,/)

// v puts o at location /
pre: loc(r)=1[, loc(o)=r
eff: cargo(r) < nil, loc(o) < [

perceive(r,/):

// robot r sees what objects are at /
pre: loc(r)=1

eff: ?

10

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Progress(o):

Planning for Rae

procedure RAE: v
loop:

for every new external task or event T do

choose a method instance m for t

running
create a refinement stack for t, m
status?

add the stack to Agenda return retry T using an

for each stack ¢ in Agenda success suclceeded untried candidate

call Progress(o) more steps
n m? n

if o 1s finished then remove it
yes pop(o)

o o o !/
» Run Rae in simulated environment T' < next step of m

e [dea 2: simulation with multithreading or multiprocessing

e Simulate the actions (see next page)

. assignment command
» To choose among method instances, try all of them
e Planner returns the method instance m having the highest update send 7' to the
expected utility (= least expected cost) state execution platform

candidates
for 7’7 no

A)Yes B)No C)Itdepends choose a candidate m' retry T using an
" 0 . .
Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0 puSh (T b m 9 oo) OntO o untrled Candldate 11

Poll: is this a reasonable approach?

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Simulating Actions

e Simplest case:

> probabilistic action template

a(xla ceey xk)

pre: ...

(pl) effectsl: €11, €125 - -
@ simulated
command

(p,,) effects,,: e,,1, €., --. —
> Choose effects; at random with probability p, ‘ o b

and use it to update the current state

possible choices

method m,,

possible
choices

method

e More general:

> Arbitrary computation, e.g.,
physics-based simulation

» Run the code to get simulated effects

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0 12

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Progress(o):

Planning for Rae

procedure RAE:
loop:

for every new external task or event T do

choose a method instance m for t

create a refinement stack for t, m
add the stack to Agenda
for each stack ¢ in Agenda
call Progress(o)
if o 1s finished then remove it

running

status?

return
success

retry T using an
untried candidate

suclceeded

more steps
in m?

e Idea 3: simulation with Monte Carlo rollouts
> Multiple runs
e Random choices and outcomes in each run
» Maintain statistics to estimate each choice’s expected utility
» Return the method instance m that has the highest estimated utility

yes

pop(o)

7' < next step of m

assignment command

update send 7’ to the

Patra, Mason, Kumar, Traverso, Ghallab, and Nau. Integrating Acting, Planning, and Learning in Hierarchical Operational
Models. ICAPS, 2020. Best student paper honorable mention award. https://doi.org/10.1609/aaai.v33i01.33017691

Patra, Mason, Kumar, Ghallab, Nau, and Traverso. Deliberative acting, planning and learning with hierarchical operational
models. Art. Intel. Journal. Vol. 299, 2021. https://doi.org/10.1016/j.artint.2021.103523

state

execution platform

candidates
for 7’7

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

choose a candidate m'
push (z/, m’, ...) onto o

retry T using an
untried candidate

13

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://doi.org/10.1609/aaai.v33i01.33017691
https://doi.org/10.1016/j.artint.2021.103523

Planner

Simulate-Progress(o):

Plan-with-UPOM (task 7):
Candidates < {method instances relevant for r}
fori—1ton
call UPOM(7)
update estimates of methods’ expected utility

return the m € Candidates that has
the highest estimated utility

UPOM(7):
choose a method instance m for ¢
create refinement stack o for 7 and m
loop while Simulate-Progress(o) # failure
if o 1s completed then return (m, utility)
return failure

e Each call to UPOM does a Monte Carlo rollout

» Simulated execution of RAE on 7

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

running

return
success

simulation
status

suclceeded

more steps
in m?

yes

retry T using an
untried candidate

pop(o)

7' < next step of m

assignment

update
state

command

start simulation
of ¢’/

candidates
for 7’7

choose a candidate m'
push (', m’,...) onto o

retry 7 using an
untried candidate

14

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Monte-Carlo rollouts

Plan-with-UPOM (task 7):
Candidates < {method instances relevant for r}

fori«— 1ton
call UPOM(7)
update estimates of methods’ expected utility

return the m € Candidates with the highest estimated utility

UPOM(7):
choose a method instance m for 7
create refinement stack o for 7 and m
loop while Simulate-Progress(o) # failure
if o 1s completed then return (m, utility)

return failure

sequeénce of|code execution

—»

mulated

Si
@ command

o

e Each call to UPOM does a Monte Carlo rollout

» Simulated execution of RAE on 7

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

subtree below my

possible
choices

method method

15

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

UCT and UPOM

e UCT algorithm: e UPOM search tree more complicated
» Monte Carlo rollouts on MDPs » tasks, method instances, actions, code execution
» Call it many times, choice e Ifno exogenous events,
converges to optimal > Can map it to UCT search of a complicated MDP

> Proof of convergence to optimal < taskty >

possible choices

tion| POSSible T (method instance ml) oo (method instance m k)
action . acton
choices A
sequénce of|code execution
PR 4’ III ‘\\
possible @
outcomes @ simulated
: command / search tree
sample " belowm; -

action

.. laction . '
. lpossible
choices
/ belowt,

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Outline

Planning for Rae
Acting with Planning (RAE+UPOM)

Learning

=l

Evaluation, Application

Hierarchical
Operational
Models

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Actor

17

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Progress(o):

RAE + UPOM

procedure RAE: v

loop:

for every new external task or event T do

choose a method instance m for t

running

create a refinement stack for t, m status?
add the stack to Agenda return sudloeded retr}f T using an
for each stack o in Agenda success untried candidate
call Progress(o) n
m m:!
if o 1s finished then remove it o8
Y pop(o)

7' < next step of m

e Whenever RAE needs to choose a method instance

» call Plan-with-UPOM, use the method instance
1t returns

assignment command

send 7’ to the
execution platform

update
state

e Open-source Python implementation: candid?;es
https://bitbucket.org/sunandita/RAE/ for 7 no

choose a candidate m' retry T using an
- : - : - ush (z/, m’, ...) onto o untried candidate
Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0 p) 9 coo 18

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://bitbucket.org/sunandita/RAE/

Could we use UPOM with HTN-Run-Lookahead?

e Suppose we try to use Run-Lookahead with a
modified version of UPOM (call it UPOM’)

» Instead of returning method instance m, return
the actions in the last Monte Carlo rollout

° T=(ay, ay, as, dy, As)
e Problem

» Run-lookahead calls UPOM’, gets m,
executes a;, then calls UPOM’ again

> This time, UPOM' needs to plan for ¢,
in state s, rather than s,

> There might not be an applicable method

e If we want to use Run-Lookahead, we need to
ensure that methods can work in unexpected states

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

possible
choices

(method instance) (method instance mD

wutk

action az1 actlon a5
outcomes

(method instance m,) .. (method mstance)

/W

actlon a, actlon a actlon a,

19

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Could we use UPOM with HTN-Run-Lazy-Lookahead?

possible
choices

e Run-Lazy-Lookahead calls UPOM’,
4 (method instance) (method instance mD

UPOM' returns ©t = {(a,, a,, a;, a4, as)
e Run-Lazy-Lookahead executes a,, a,, as, ay, as, // \
won’t call UPOM’ again unless codefexecution

something unexpected happens, e.g.,
e action a, has an execution failure sk al actlon a5
e a, produces a state in which a; 1s inapplicable ‘ b ‘
e an exogenous event makes a; inapplicable o@?ﬁﬁﬁfs
» Method m, fails; we need to replan task ¢, (method instance mz) (method mstance)

e Need to modify Run-Lazy-Lookahead so that
when a failure occurs, it knows which task to replan co e executi

» Need to modify the methods to work in unexpected
actlon a, actlon a actlon a,

slates

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

20

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Comparison

possible
choices

» works better than Run-Lazy-Lookahead + UPOM’ (method instance) (method instance mD

e Example
» Case 1: Run-Lazy-Lookahead calls UPOM'’ for ¢, in state s, code/execution

e UPOM'returns @ = {(a;, a,, az, a4, as)

e Rae+UPOM has tighter coupling between planning and acting

e Run-Lazy-Lookahead executes a;, gets state s;" (not s) action al aCt'O” a5

> Suppose this makes a, redundant ‘ b ‘
e Run-Lazy-Lookahead doesn’t have a way to pOSSIble

detect this; continues with the rest of & outcomes
» Case 2: Rae calls UPOM for #; in state s method instance mz) (method mstance)

e UPOM returns m;, Rae executes a;, gets state s, / \z\b\
e Rae calls UPOM for ¢, in state s;’ coye executl

> UPOM might return a better method instance

\

act|on az aCtlon a3 action a4
> Or maybe UPOM returns m,, but m,’s body .. -
includes an if-test to omit a, if it’s redundant

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0 21

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Outline

Planning for Rae
Acting with Planning (RAE+UPOM)

Learning

> b=

Evaluation, Application

Operational
Models

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Actor

Tasks
Planner Learnin
(UPOM) 8
Acting Engine (RAE)

22

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Motivation

e Plan-with-UPOM is called by RAE, runs online

> Time constraints might not allow complete search

e (ase 1: no time to search at all
» need a choice function

e (Case 2: enough time to do partial search
> Receding horizon

e Cut off search at depth d,,,,
or when we run out of time

e At leaf nodes, use heuristic function
to estimated expected utility

method m,

possible
choices

method m,,

e Learning algorithms:
» Learnn: learns a choice function

» LearnH: learns a heuristic function

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

23

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Integration with Learning

e (Gather training data from acting-and-planning o [earnm
traces of RAE and Plan-with-UPOM

e Train classifiers (feed-forward neural nets)

» Learns function for choosing a method

» Given current task and context (state
and other information), choose m from
the set of available refinement methods

» Useful if there isn’t enough time to use UPOM

possible
choices

Actor:

method m,

method m i

Planning
(UPOM)

Task, context
Acting Engine (RAE)

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0 24

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Integration with Learning

e (Gather training data from acting-and-planning
traces of RAE and Plan-with-UPOM

e Train classifiers (feed-forward neural nets)

possible
choices

method m method m,

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

e LecarnH
» Learns a heuristic function to guide UPOM’s search

» UPOM can use it to estimate expected utility at leaf

nodes

» Useful if there isn’t enough time to search all the

way to the end

Actor: m, task,
context

Planning

(UPOM)
h(m)

Task, context

Acting Engine (RAE)

25

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Outline

Planning for Rae
Acting with Planning (RAE+UPOM)

Learning

No» b=

Evaluation, Application

Operational
Models

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Actor

Tasks
Planning Learnin
(UPOM) 8
Acting Engine (RAE)

26

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Experimental Evaluation

Dynamic Dead Sensing Robot Concurrent
Domain | |7| |M| |M| |A| events ends collaboration tasks
S&R 8 16 16 14 v v v v v
Explore 9 17 17 14 v v v v v
Fetch 7 10 10 9 v v v - v
Nav 6 9 15 10 v = v v v
Deliver 6 6 50 9 v v - v v

e Five different domains, different combinations of characteristics

e Evaluation criteria: efficiency (reciprocal of cost), successes vs failures

e Result: Planning and learning help

> RAE operates better with UPOM or learning than without

» RAE’s performance improves with more planning

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

27

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Prototype Application

e Software-defined networks Billions of Data Points
» Decoupled control and data layers
> Prone to high-volume, fast-paced online attacks Millions of Alerts
> Need automated attack recovery High-volume, fast-paced
e Prototype solution using RAE+UPOM Cyber Events
» Expert writes recovery procedures as refinement methods
e Experimental results
» Improved efficiency, retry ratio, success ratio,
resilience compared to human expert
S. Patra, A. Velasquez, M. Kang, and D. Nau. Using online planning Complex
and acting to recover from cyberattacks on software-defined networks. Systems
In Proc. Innovative Applications of AI Conference (IAAI), Feb. 2021. to Defend
https://www.cs.umd.edu/~nau/papers/patra2021using.pdf

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0 28

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://www.cs.umd.edu/~nau/papers/patra2021using.pdf

Summary

Chapter 15: Hierarchical Refinement Planning

e Plan by simulating Rae on a single external
task/event/goal

» SeRPE uses classical action models

» UPOM simulates the actor’s actions, does
Monte Carlo rollouts

e Acting and planning
» Rae+UPOM
» Comparison: Run-Lazy-Lookahead + UPOM’
» Open-source Python implementation:
e https://bitbucket.org/sunandita/RAE/

Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

e Chapter 16: Learning
» Learning a function to choose a method

» Learning heuristics to guide search

e Additional material not in the book
» Experimental evaluation

» Prototype application

29

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://bitbucket.org/sunandita/RAE/

