
1Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Last update: 11:10 PM, March 7, 2025

Acting, Planning,
and Learning

Malik Ghallab, Dana Nau,
and Paolo TraversoChapters 15, 16

Hierarchical Refinement Planning, Learning

Dana S. Nau
University of Maryland

with contributions from
Mark “mak” Roberts

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://scholar.google.com/citations?user=vlbX4J8AAAAJ

2Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Outline

1. Planning for Rae
2. Acting with Planning (RAE+UPOM)
3. Learning
4. Evaluation, Application

Execution Platform

State

Actuation Sensing

Actions Events

Tasks

Hierarchical
Operational

Models

Queries Plans

Planner

Acting Engine (RAE)

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

3Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

RAE (Ch. 14 Review)

In Ch. 14, Guide was a
heuristic choice.

We will explore some possible
ways to do Guide.

procedure RAE:
loop:

for every new external task or event τ do
choose a method instance m for τ
create a refinement stack for τ, m
add the stack to Agenda

for each stack σ in Agenda
 call Progress(σ)
 if σ is finished then remove it

An abstraction of RAE we will use:

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

4Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Progress (Ch. 14 Review)
is

m’s current step
a command?

command
status?

return
success

running failed

choose a candidate m′
push (τʹ,m′,…) onto σ

no
more steps

in m?

pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state s

retry τ using an
untried candidate

yes

retry τ using an
untried candidate

succe eded

started m?
yes

no

no

Progress(σ): (τ,m,i,tried)← top(σ)

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

5Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

is
m’s current step

a command?

command
status?

return
success

running failed

choose a candidate m′
push (τʹ,m′,…) onto σ

no
more steps

in m?

pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state s

retry τ using an
untried candidate

yes

retry τ using an
untried candidate

succe eded

started m?
yes

no

no

Progress(σ): (τ,m,i,tried)← top(σ)

Planning for Rae?

● Four places where Rae and Progress choose a method instance
for a task

● Bad choice may lead to
▸ more costly solution
▸ failure - need to recover, sometimes unrecoverable

● Solution:
▸ call a planner, choose the method instance it suggests

procedure RAE:
loop:

for every new external task or event τ do
choose a method instance m for τ
create a refinement stack for τ, m
add the stack to Agenda

for each stack σ in Agenda
 call Progress(σ)
 if σ is finished then remove it

retry τ using an
untried candidate

retry τ using an
untried candidate

choose a candidate m′
push (τ′,m′, …) onto σ

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

6Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Planning and Acting Integration

● Planner’s action models are abstractions
▸ The planned actions are tasks for the actor to refine

● Consistency problem:
▸ How to get action models that

describe what the actor will do?
● One possible solution:

▸ Actor and planner both use the same representation
• Must be operational; descriptive models too abstract
• Need planning algorithms that can use operational models

Operational models
How to
perform tasks

Consistent?

Planning

Acting (RAE)

Queries Plans

Descriptive models
What the
actions do

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

7Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Planning and Acting Integration

● Planner’s action models are abstractions
▸ The planned actions are tasks for the actor to refine

● Consistency problem:
▸ How to get action models that

describe what the actor will do?
● One possible solution:

▸ Actor and planner both use the same representation
• Must be operational; descriptive models too abstract
• Need planning algorithms that can use operational models

Operational models
How to
perform tasks

Consistent?

Planning

Acting (RAE)

Queries Plans

Descriptive models
What the
actions do

● Idea 1:
▸ Planner uses Rae’s tasks and refinement methods
▸ For each of Rae’s actions, have a classical action model
▸ DFS or GBFS search among alternatives to see which works best

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

8Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

SeRPE (Sequential Refinement Planning Engine)

● Like Rae with just one external task
▸ Progress it all the way to the end,

like Progress with a loop around it
▸ Plan rather than act

• For each action, use a classical action model
● This has some problems …

M = {methods}
A = {action models}
 s = initial state
 τ = task or goal

Automated Planning and Acting
Ch. 3.3

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

9Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Problems with SeRPE

Problem 1: difficult to implement

● Each time a method invokes a subtask, SeRPE
makes a nondeterministic choice

● To implement deterministically
▸ Each path in the search space is an execution

trace of the body of a method
▸ Need to backtrack over code execution

● Need to write a compiler that can do
backtracking
▸ Is it worth the effort?

Example:
● Suppose that

▸ Each task has two applicable methods
▸ When i=2, the 1st method for baz(2) fails

● Backtracking:
▸ Try 2nd method for baz(2)
▸ If it fails, try 2nd method for bar(2)
▸ If it fails, backtrack to i = 1

• Try 2nd method for baz(1)
• If it fails, try 2nd method for bar(1)

▸ If it fails, backtrack to task foo(k) …

m-foo(k)
 task: foo(k)
 pre: …
 body:
 for i ← 1 to k:
 bar(i)
 baz(i)

Automated Planning and Acting
Ch. 3.3

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

10Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Problems with SeRPE

● Problem 2: limitations of classical action models

▸ e.g., the fetch example

● We don’t know in advance what perceive’s effects
will be
▸ If we did, perceive wouldn’t actually be needed

take(r,o,l)
// robot r takes object o at location l
pre: cargo(r) = nil, loc(r) = l, loc(o) = l
eff: cargo(r) ← o, loc(o) ← r

put(r,o,l)
// r puts o at location l
pre: loc(r) = l, loc(o) = r
eff: cargo(r) ← nil, loc(o) ← l

perceive(r,l):
 // robot r sees what objects are at l
 pre: loc(r) = l
 eff: ?

loc0
loc2

loc1
c1

loc4

loc3

c2

r2
r1

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

11Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Planning for Rae
is m’s current

step a command?

command
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps

in m?

pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an
untried candidate

yes

retry τ using an
untried candidate

suc ceeded

started m?
yes

no

no
Progress(σ):

retry τ using an
untried candidate

retry τ using an
untried candidate

choose a candidate m′
push (τ′, m′, …) onto σ

Poll: is this a reasonable approach?

A) Yes B) No C) It depends

procedure RAE:
loop:

for every new external task or event τ do
choose a method instance m for τ
create a refinement stack for τ, m
add the stack to Agenda

for each stack σ in Agenda
 call Progress(σ)
 if σ is finished then remove it

● Idea 2: simulation with multithreading or multiprocessing
▸ Run Rae in simulated environment

• Simulate the actions (see next page)
▸ To choose among method instances, try all of them

● Planner returns the method instance m having the highest
expected utility (≈ least expected cost)

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

12Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Simulating Actions
● Simplest case:

▸ probabilistic action template
 a(x1, …, xk)
 pre: …
 (p1) effects1: e11, e12, …
 …
 (pm) effectsm: em1, em2, …

▸ Choose effectsi at random with probability pi
and use it to update the current state

● More general:
▸ Arbitrary computation, e.g.,

physics-based simulation
▸ Run the code to get simulated effects

subtree below mk

outcome

task

method m1 method mk

simulated
command task task

methodmethod

…
…

… …

possible choices

sequence of code execution

outcome
sample

possible
choices

…

…

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

13Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Patra, Mason, Kumar, Traverso, Ghallab, and Nau. Integrating Acting, Planning, and Learning in Hierarchical Operational
Models. ICAPS, 2020. Best student paper honorable mention award. https://doi.org/10.1609/aaai.v33i01.33017691

Patra, Mason, Kumar, Ghallab, Nau, and Traverso. Deliberative acting, planning and learning with hierarchical operational
models. Art. Intel. Journal. Vol. 299, 2021. https://doi.org/10.1016/j.artint.2021.103523

Planning for Rae
is m’s current

step a command?

command
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps

in m?

pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an
untried candidate

yes

retry τ using an
untried candidate

suc ceeded

started m?
yes

no

no
Progress(σ):

retry τ using an
untried candidate

retry τ using an
untried candidate

choose a candidate m′
push (τ′, m′, …) onto σ

procedure RAE:
loop:

for every new external task or event τ do
choose a method instance m for τ
create a refinement stack for τ, m
add the stack to Agenda

for each stack σ in Agenda
 call Progress(σ)
 if σ is finished then remove it

● Idea 3: simulation with Monte Carlo rollouts
▸ Multiple runs

• Random choices and outcomes in each run
▸ Maintain statistics to estimate each choice’s expected utility
▸ Return the method instance m that has the highest estimated utility

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://doi.org/10.1609/aaai.v33i01.33017691
https://doi.org/10.1016/j.artint.2021.103523

14Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

is m’s current
step a command?

command
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps

in m?

pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an
untried candidate

yes

retry τ using an
untried candidate

suc ceeded

started m?
yes

no

no

simulation
status

Simulate-Progress(σ):

start simulation
of τ′

UPOM(τ):
choose a method instance m for τ
create refinement stack σ for τ and m
loop while Simulate-Progress(σ) ≠ failure
 if σ is completed then return (m, utility)
return failure

Planner

● Each call to UPOM does a Monte Carlo rollout
▸ Simulated execution of RAE on τ

Plan-with-UPOM (task τ):
Candidates ← {method instances relevant for τ}
for i ← 1 to n
 call UPOM(τ)
 update estimates of methods’ expected utility
return the m ∈ Candidates that has
 the highest estimated utility

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

15Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

outcome

task

method m1 method mk

simulated
command task task

methodmethod

…
…

… …

possible choices

sequence of code execution

outcome
sample

possible
choices

…

…

subtree below mk

UPOM(τ):
choose a method instance m for τ
create refinement stack σ for τ and m
loop while Simulate-Progress(σ) ≠ failure
 if σ is completed then return (m, utility)
return failure

Monte-Carlo rollouts

● Each call to UPOM does a Monte Carlo rollout
▸ Simulated execution of RAE on τ

Plan-with-UPOM (task τ):
Candidates ← {method instances relevant for τ}
for i ← 1 to n
 call UPOM(τ)
 update estimates of methods’ expected utility
return the m ∈ Candidates with the highest estimated utility

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

16Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

● UPOM search tree more complicated
▸ tasks, method instances, actions, code execution

● If no exogenous events,
▸ Can map it to UCT search of a complicated MDP
▸ Proof of convergence to optimal

state

task t1

method instance m1 method instance mk

simulated
command task t2 task t3

methodmethod

…

… …

possible choices

sequence of code execution

state
sample

possible
choices

…

…

search tree
below mk

search tree
below t2

action action

state

state

state state state state

actionaction

. . .
possible
choices

. . .
possible
outcomes

… …

. . .

state

UCT and UPOM

● UCT algorithm:
▸ Monte Carlo rollouts on MDPs
▸ Call it many times, choice

converges to optimal

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

17Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Outline

1. Planning for Rae
2. Acting with Planning (RAE+UPOM)
3. Learning
4. Evaluation, Application

Execution Platform

State

Actuation Sensing

Actions Events

Tasks

Hierarchical
Operational

Models

Queries Plans

Planner (UPOM)

Acting Engine (RAE)

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

18Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

RAE + UPOM

● Whenever RAE needs to choose a method instance
▸ call Plan-with-UPOM, use the method instance

it returns

● Open-source Python implementation:
https://bitbucket.org/sunandita/RAE/

is m’s current
step a command?

command
status?

return
success

running failed

choose a candidate m′
push (τʹ, m′,…) onto σ

no
more steps

in m?

pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state

retry τ using an
untried candidate

yes

retry τ using an
untried candidate

suc ceeded

started m?
yes

no

no
Progress(σ):

retry τ using an
untried candidate

retry τ using an
untried candidate

choose a candidate m′
push (τ′, m′, …) onto σ

procedure RAE:
loop:

for every new external task or event τ do
choose a method instance m for τ
create a refinement stack for τ, m
add the stack to Agenda

for each stack σ in Agenda
 call Progress(σ)
 if σ is finished then remove it

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://bitbucket.org/sunandita/RAE/

19Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

state s3 state s4state

method instance m1

method instance m2

task t1

method instance

action a1 task t2

method instance

… …

code execution

state s1 state s1′

action a5
…

state s5 state

…

action a3
…

code execution

action a4
…

state

… …

. . .
possible

outcomes

possible
choices

. . .

action a2
…

state s2 state

Could we use UPOM with HTN-Run-Lookahead?

● Suppose we try to use Run-Lookahead with a
modified version of UPOM (call it UPOMʹ)
▸ Instead of returning method instance m1, return

the actions in the last Monte Carlo rollout
• π = ⟨a1, a2, a3, a4, a5⟩

● Problem
▸ Run-lookahead calls UPOMʹ, gets π,

executes a1, then calls UPOMʹ again
▸ This time, UPOMʹ needs to plan for t1

in state s1 rather than s0
▸ There might not be an applicable method

● If we want to use Run-Lookahead, we need to
ensure that methods can work in unexpected states

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

20Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Could we use UPOM with HTN-Run-Lazy-Lookahead?

● Run-Lazy-Lookahead calls UPOMʹ,
UPOMʹ returns π = ⟨a1, a2, a3, a4, a5⟩

● Run-Lazy-Lookahead executes a1, a2, a3, a4, a5,
won’t call UPOMʹ again unless
something unexpected happens, e.g.,

• action a2 has an execution failure
• a2 produces a state in which a3 is inapplicable
• an exogenous event makes a3 inapplicable

▸ Method m2 fails; we need to replan task t2
● Need to modify Run-Lazy-Lookahead so that

when a failure occurs, it knows which task to replan
▸ Need to modify the methods to work in unexpected

states

state s3 state s4state

method instance m1

method instance m2

task t1

method instance

action a1 task t2

method instance

… …

code execution

state s1 state s1′

action a5
…

state s5 state

…

action a3
…

code execution

action a4
…

state

… …

. . .
possible

outcomes

possible
choices

. . .

action a2
…

state s2 state

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

21Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Comparison
● Rae + UPOM has tighter coupling between planning and acting

▸ works better than Run-Lazy-Lookahead + UPOMʹ
● Example

▸ Case 1: Run-Lazy-Lookahead calls UPOMʹ for t1 in state s0

• UPOMʹ returns π = ⟨a1, a2, a3, a4, a5⟩
• Run-Lazy-Lookahead executes a1, gets state s1′ (not s1)

▸ Suppose this makes a2 redundant
• Run-Lazy-Lookahead doesn’t have a way to

detect this; continues with the rest of π
▸ Case 2: Rae calls UPOM for t1 in state s0

• UPOM returns m1, Rae executes a1, gets state s1′
• Rae calls UPOM for t2 in state s1′

▸ UPOM might return a better method instance
▸ Or maybe UPOM returns m2, but m2’s body

includes an if-test to omit a2 if it’s redundant state s3 state s4state

method instance m1

method instance m2

task t1

method instance

action a1 task t2

method instance

… …

code execution

state s1 state s1′

action a5
…

state s5 state

…

action a3
…

code execution

action a4
…

state

… …

. . .
possible

outcomes

possible
choices

. . .

action a2
…

state s2 state

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

22Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Outline

1. Planning for Rae
2. Acting with Planning (RAE+UPOM)
3. Learning
4. Evaluation, Application

Acting Engine (RAE)

Execution Platform

State

Actuation Sensing

Actions Events

TasksPlanner
(UPOM) Learning

Hierarchical
Operational

Models

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

23Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Motivation

● Plan-with-UPOM is called by RAE, runs online
▸ Time constraints might not allow complete search

● Case 1: no time to search at all
▸ need a choice function

● Case 2: enough time to do partial search
▸ Receding horizon

• Cut off search at depth dmax
or when we run out of time

• At leaf nodes, use heuristic function
to estimated expected utility

● Learning algorithms:
▸ Learnπ: learns a choice function
▸ LearnH: learns a heuristic function

task

method m1 method mk

possible
choices
…

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

24Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Integration with Learning

● Gather training data from acting-and-planning
traces of RAE and Plan-with-UPOM

● Train classifiers (feed-forward neural nets)

● Learnπ
▸ Learns function for choosing a method
▸ Given current task and context (state

and other information), choose m from
the set of available refinement methods

▸ Useful if there isn’t enough time to use UPOM

Acting Engine (RAE)

Task, context

Planning
(UPOM)

m

Actor:

Learnπ

task

method m1 method mk

possible
choices
…

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

25Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Integration with Learning

● Gather training data from acting-and-planning
traces of RAE and Plan-with-UPOM

● Train classifiers (feed-forward neural nets)

● LearnH
▸ Learns a heuristic function to guide UPOM’s search
▸ UPOM can use it to estimate expected utility at leaf

nodes
▸ Useful if there isn’t enough time to search all the

way to the endtask

method m1 method mk

possible
choices
…

Acting Engine (RAE)

Task, context

m, task,
context

h(m)
m

Actor:

Planning
(UPOM) LearnH Learnπ

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

26Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Outline

1. Planning for Rae
2. Acting with Planning (RAE+UPOM)
3. Learning
4. Evaluation, Application

Acting Engine (RAE)

Execution Platform

State

Actuation Sensing

Actions Events

TasksPlanning
(UPOM) Learning

Hierarchical
Operational

Models

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

27Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Experimental Evaluation

● Five different domains, different combinations of characteristics
● Evaluation criteria: efficiency (reciprocal of cost), successes vs failures
● Result: Planning and learning help

▸ RAE operates better with UPOM or learning than without
▸ RAE’s performance improves with more planning

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

28Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Prototype Application

● Software-defined networks
▸ Decoupled control and data layers
▸ Prone to high-volume, fast-paced online attacks
▸ Need automated attack recovery

● Prototype solution using RAE+UPOM
▸ Expert writes recovery procedures as refinement methods

● Experimental results
▸ Improved efficiency, retry ratio, success ratio,

resilience compared to human expert

Billions of Data Points

Millions of Alerts

High-volume, fast-paced
Cyber Events

. . .

Complex
Systems

to Defend

Cyber
Warriors

S. Patra, A. Velasquez, M. Kang, and D. Nau. Using online planning
and acting to recover from cyberattacks on software-defined networks.
In Proc. Innovative Applications of AI Conference (IAAI), Feb. 2021.
https://www.cs.umd.edu/~nau/papers/patra2021using.pdf

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://www.cs.umd.edu/~nau/papers/patra2021using.pdf

29Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Summary

Chapter 15: Hierarchical Refinement Planning
● Plan by simulating Rae on a single external

task/event/goal
▸ SeRPE uses classical action models
▸ UPOM simulates the actor’s actions, does

Monte Carlo rollouts
● Acting and planning

▸ Rae + UPOM
▸ Comparison: Run-Lazy-Lookahead + UPOMʹ
▸ Open-source Python implementation:

• https://bitbucket.org/sunandita/RAE/

● Chapter 16: Learning
▸ Learning a function to choose a method
▸ Learning heuristics to guide search

● Additional material not in the book
▸ Experimental evaluation
▸ Prototype application

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://bitbucket.org/sunandita/RAE/

