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RAE (Ch. 14 Review)

In Ch. 14, Guide was a 
heuristic choice.  

We will explore some possible 
ways to do Guide.

procedure RAE:
loop:

for every new external task or event τ do
choose a method instance m for τ
create a refinement stack for τ, m
add the stack to Agenda

for each stack σ in Agenda
 call Progress(σ)
 if σ is finished then remove it

An abstraction of RAE we will use:

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Progress (Ch. 14 Review)
is 
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push (τʹ,m′,…) onto σ

no
more steps 

in m?

pop(σ)

no
candidates

for τʹ?

yes

yes

τʹ ← next step of m

type(τʹ)

task

command

send τʹ to the
execution platform

assignment

update
state s

retry τ using an 
untried candidate 

yes

retry τ using an 
untried candidate 

succe eded

started m?
yes

no

no
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Planning for Rae?

● Four places where Rae and Progress choose a method instance 
for a task

● Bad choice may lead to 
▸ more costly solution
▸ failure - need to recover, sometimes unrecoverable

● Solution: 
▸ call a planner, choose the method instance it suggests

procedure RAE:
loop:

for every new external task or event τ do
choose a method instance m for τ
create a refinement stack for τ, m
add the stack to Agenda

for each stack σ in Agenda
 call Progress(σ)
 if σ is finished then remove it

retry τ using an
untried candidate

retry τ using an
untried candidate

choose a candidate m′
push (τ′,m′, …) onto σ

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Planning and Acting Integration

● Planner’s action models are abstractions
▸ The planned actions are tasks for the actor to refine

● Consistency problem:
▸ How to get action models that

describe what the actor will do?
● One possible solution: 

▸ Actor and planner both use the same representation
• Must be operational; descriptive models too abstract
• Need planning algorithms that can use operational models

Operational models
How to 
perform tasks

Consistent?

Planning

Acting (RAE)

Queries Plans

Descriptive models
What the 
actions do

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Planning and Acting Integration

● Planner’s action models are abstractions
▸ The planned actions are tasks for the actor to refine

● Consistency problem:
▸ How to get action models that

describe what the actor will do?
● One possible solution: 

▸ Actor and planner both use the same representation
• Must be operational; descriptive models too abstract
• Need planning algorithms that can use operational models

Operational models
How to 
perform tasks

Consistent?

Planning

Acting (RAE)

Queries Plans

Descriptive models
What the 
actions do

● Idea 1: 
▸ Planner uses Rae’s tasks and refinement methods
▸ For each of Rae’s actions, have a classical action model
▸ DFS or GBFS search among alternatives to see which works best

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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SeRPE (Sequential Refinement Planning Engine)

● Like Rae with just one external task
▸ Progress it all the way to the end,

like Progress with a loop around it
▸ Plan rather than act

• For each action, use a classical action model
● This has some problems …

M = {methods}
A = {action models}
  s = initial state
  τ = task or goal

Automated Planning and Acting 
Ch. 3.3

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Problems with SeRPE

Problem 1: difficult to implement

● Each time a method invokes a subtask, SeRPE 
makes a nondeterministic choice

● To implement deterministically
▸ Each path in the search space is an execution 

trace of the body of a method
▸ Need to backtrack over code execution 

● Need to write a compiler that can do 
backtracking
▸ Is it worth the effort?

Example:
● Suppose that 

▸ Each task has two applicable methods
▸ When i=2, the 1st method for baz(2) fails

● Backtracking:
▸ Try 2nd method for baz(2)
▸ If it fails, try 2nd method for bar(2)
▸ If it fails, backtrack to i = 1

• Try 2nd method for baz(1)
• If it fails, try 2nd method for bar(1)

▸ If it fails, backtrack to task foo(k) …

m-foo(k)
 task: foo(k) 
 pre: …
 body: 
     for i ← 1 to k:
  bar(i)
  baz(i)

Automated Planning and Acting 
Ch. 3.3

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Problems with SeRPE

● Problem 2: limitations of classical action models

▸ e.g., the fetch example

● We don’t know in advance what perceive’s effects 
will be
▸ If we did, perceive wouldn’t actually be needed

take(r,o,l)
// robot r takes object o at location l
pre:  cargo(r) = nil, loc(r) = l, loc(o) = l
eff:  cargo(r) ← o, loc(o) ← r

put(r,o,l)
// r puts o at location l
pre:  loc(r) = l, loc(o) = r
eff:  cargo(r) ← nil, loc(o) ← l

perceive(r,l): 
 // robot r sees what objects are at l
 pre:  loc(r) = l
 eff:   ?

loc0
loc2

loc1
c1

loc4

loc3

c2

r2
r1

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Planning for Rae
is m’s current 

step a command?

command 
status?
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Progress(σ):

retry τ using an
untried candidate

retry τ using an 
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choose a candidate m′
push (τ′, m′, …) onto σ

Poll: is this a reasonable approach?

A) Yes B) No C) It depends

procedure RAE:
loop:

for every new external task or event τ do
choose a method instance m for τ
create a refinement stack for τ, m
add the stack to Agenda

for each stack σ in Agenda
 call Progress(σ)
 if σ is finished then remove it

● Idea 2: simulation with multithreading or multiprocessing
▸ Run Rae in simulated environment

• Simulate the actions (see next page)
▸ To choose among method instances, try all of them

● Planner returns the method instance m having the highest 
expected utility (≈ least expected cost)

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Simulating Actions
● Simplest case: 

▸ probabilistic action template
    a(x1, …, xk)
 pre: …
  (p1) effects1:  e11, e12, … 
  …  
 (pm) effectsm:  em1, em2, …

▸ Choose effectsi at random with probability pi
and use it to update the current state

● More general: 
▸ Arbitrary computation, e.g.,

physics-based simulation
▸ Run the code to get simulated effects

subtree below mk

outcome

task

method m1 method mk

simulated
command task task

methodmethod

…
…

… …

possible choices

sequence of code execution

outcome
sample

possible
choices

…

…

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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procedure RAE:
loop:

for every new external task or event τ do
choose a method instance m for τ
create a refinement stack for τ, m
add the stack to Agenda

for each stack σ in Agenda
 call Progress(σ)
 if σ is finished then remove it

● Idea 3: simulation with Monte Carlo rollouts
▸ Multiple runs

• Random choices and outcomes in each run
▸ Maintain statistics to estimate each choice’s expected utility
▸ Return the method instance m that has the highest estimated utility

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://doi.org/10.1609/aaai.v33i01.33017691
https://doi.org/10.1016/j.artint.2021.103523
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is m’s current 
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simulation
status

Simulate-Progress(σ):

start simulation 
of τ′

UPOM(τ):
choose a method instance m for τ
create refinement stack σ for τ and m
loop while Simulate-Progress(σ) ≠ failure
 if σ is completed then return (m, utility)
return failure

Planner

● Each call to UPOM does a Monte Carlo rollout
▸ Simulated execution of RAE on τ

Plan-with-UPOM (task τ):
Candidates ← {method instances relevant for τ}
for i ← 1 to n
 call UPOM(τ)
 update estimates of methods’ expected utility 
return the m ∈ Candidates that has 
 the highest estimated utility

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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outcome

task

method m1 method mk

simulated
command task task

methodmethod

…
…

… …

possible choices

sequence of code execution

outcome
sample

possible
choices

…

…

subtree below mk

UPOM(τ):
choose a method instance m for τ
create refinement stack σ for τ and m
loop while Simulate-Progress(σ) ≠ failure
 if σ is completed then return (m, utility)
return failure

Monte-Carlo rollouts

● Each call to UPOM does a Monte Carlo rollout
▸ Simulated execution of RAE on τ

Plan-with-UPOM (task τ):
Candidates ← {method instances relevant for τ}
for i ← 1 to n
 call UPOM(τ)
 update estimates of methods’ expected utility 
return the m ∈ Candidates with the highest estimated utility

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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● UPOM search tree more complicated 
▸ tasks, method instances, actions, code execution

● If no exogenous events, 
▸ Can map it to UCT search of a complicated MDP
▸ Proof of convergence to optimal

state

task t1

method instance m1 method instance mk

simulated
command task t2 task t3

methodmethod

…

… …

possible choices

sequence of code execution

state
sample

possible
choices

…

…

search tree 
below mk

search tree 
below t2

action action

state

state

state state state state

actionaction

. . .
possible
choices

. . .
possible
outcomes

… …

. . .

state

UCT and UPOM

● UCT algorithm: 
▸ Monte Carlo rollouts on MDPs
▸ Call it many times, choice 

converges to optimal

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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RAE + UPOM

● Whenever RAE needs to choose a method instance
▸ call Plan-with-UPOM, use the method instance 

it returns

● Open-source Python implementation: 
https://bitbucket.org/sunandita/RAE/ 
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Progress(σ):

retry τ using an
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retry τ using an 
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procedure RAE:
loop:

for every new external task or event τ do
choose a method instance m for τ
create a refinement stack for τ, m
add the stack to Agenda

for each stack σ in Agenda
 call Progress(σ)
 if σ is finished then remove it

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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state s3 state s4state

method instance m1

method instance m2

task t1

method instance

action a1 task t2

method instance

… …

code execution

state s1 state s1′

action a5
…

state s5 state

…

action a3
…

code execution

action a4
…

state

… …

. . .
possible

outcomes

possible
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. . .

action a2
…

state s2 state

Could we use UPOM with HTN-Run-Lookahead?

● Suppose we try to use Run-Lookahead with a 
modified version of UPOM (call it UPOMʹ)
▸ Instead of returning method instance m1, return

the actions in the last Monte Carlo rollout
• π = ⟨a1, a2, a3, a4, a5⟩

● Problem
▸ Run-lookahead calls UPOMʹ, gets π,

executes a1, then calls UPOMʹ again
▸ This time, UPOMʹ needs to plan for t1 

in state s1 rather than s0
▸ There might not be an applicable method

● If we want to use Run-Lookahead, we need to
ensure that methods can work in unexpected states

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en


20Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Could we use UPOM with HTN-Run-Lazy-Lookahead?

● Run-Lazy-Lookahead calls UPOMʹ, 
UPOMʹ returns π = ⟨a1, a2, a3, a4, a5⟩

● Run-Lazy-Lookahead executes a1, a2, a3, a4, a5, 
won’t call UPOMʹ again unless
something unexpected happens, e.g.,

• action a2 has an execution failure
• a2 produces a state in which a3 is inapplicable
• an exogenous event makes a3 inapplicable

▸ Method m2 fails; we need to replan task t2
● Need to modify Run-Lazy-Lookahead so that 

when a failure occurs, it knows which task to replan
▸ Need to modify the methods to work in unexpected 

states

state s3 state s4state

method instance m1

method instance m2

task t1

method instance

action a1 task t2

method instance

… …

code execution

state s1 state s1′

action a5
…
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…

action a3
…

code execution

action a4
…
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… …

. . .
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possible
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. . .

action a2
…

state s2 state

https://projects.laas.fr/planning/
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Comparison
● Rae + UPOM has tighter coupling between planning and acting

▸ works better than Run-Lazy-Lookahead + UPOMʹ
● Example

▸ Case 1: Run-Lazy-Lookahead calls UPOMʹ for t1 in state s0

• UPOMʹ returns π = ⟨a1, a2, a3, a4, a5⟩
• Run-Lazy-Lookahead executes a1, gets state s1′ (not s1)

▸ Suppose this makes a2 redundant
• Run-Lazy-Lookahead doesn’t have a way to 

detect this; continues with the rest of π
▸ Case 2: Rae calls UPOM for t1 in state s0

• UPOM returns m1, Rae executes a1, gets state s1′
• Rae calls UPOM for t2 in state s1′

▸ UPOM might return a better method instance
▸ Or maybe UPOM returns m2, but m2’s body 

includes an if-test to omit a2 if it’s redundant state s3 state s4state

method instance m1

method instance m2

task t1

method instance

action a1 task t2

method instance

… …

code execution

state s1 state s1′

action a5
…

state s5 state

…

action a3
…

code execution

action a4
…

state

… …

. . .
possible

outcomes

possible
choices

. . .

action a2
…

state s2 state
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Motivation

● Plan-with-UPOM is called by RAE, runs online
▸ Time constraints might not allow complete search

● Case 1: no time to search at all
▸ need a choice function

● Case 2: enough time to do partial search
▸ Receding horizon

• Cut off search at depth dmax 
or when we run out of time

• At leaf nodes, use heuristic function
to estimated expected utility

● Learning algorithms:
▸ Learnπ: learns a choice function 
▸ LearnH: learns a heuristic function

task

method m1 method mk

possible 
choices
…

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Integration with Learning

● Gather training data from acting-and-planning 
traces of RAE and Plan-with-UPOM

● Train classifiers (feed-forward neural nets)

● Learnπ
▸ Learns function for choosing a method
▸ Given current task and context (state 

and other information), choose m from 
the set of available refinement methods

▸ Useful if there isn’t enough time to use UPOM

Acting Engine (RAE)

Task, context

Planning
(UPOM)

m

Actor:

Learnπ

task

method m1 method mk

possible 
choices
…

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en


25Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Integration with Learning

● Gather training data from acting-and-planning 
traces of RAE and Plan-with-UPOM

● Train classifiers (feed-forward neural nets)

● LearnH
▸ Learns a heuristic function to guide UPOM’s search 
▸ UPOM can use it to estimate expected utility at leaf 

nodes
▸ Useful if there isn’t enough time to search all the 

way to the endtask

method m1 method mk

possible 
choices
…

Acting Engine (RAE)

Task, context

m, task, 
context

h(m)
m

Actor:

Planning
(UPOM) LearnH Learnπ

https://projects.laas.fr/planning/
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Experimental Evaluation

● Five different domains, different combinations of characteristics
● Evaluation criteria: efficiency (reciprocal of cost), successes vs failures
● Result: Planning and learning help

▸ RAE operates better with UPOM or learning than without
▸ RAE’s performance improves with more planning

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Prototype Application

● Software-defined networks
▸ Decoupled control and data layers
▸ Prone to high-volume, fast-paced online attacks
▸ Need automated attack recovery

● Prototype solution using RAE+UPOM
▸ Expert writes recovery procedures as refinement methods

● Experimental results
▸ Improved efficiency, retry ratio, success ratio, 

resilience compared to human expert

Billions of Data Points

Millions of Alerts

High-volume, fast-paced
Cyber Events

. . .

Complex 
Systems 

to Defend

Cyber 
Warriors

S. Patra, A. Velasquez, M. Kang, and D. Nau. Using online planning 
and acting to recover from cyberattacks on software-defined networks. 
In Proc. Innovative Applications of AI Conference (IAAI), Feb. 2021. 
https://www.cs.umd.edu/~nau/papers/patra2021using.pdf 
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Summary

Chapter 15: Hierarchical Refinement Planning
● Plan by simulating Rae on a single external 

task/event/goal
▸ SeRPE uses classical action models
▸ UPOM simulates the actor’s actions, does 

Monte Carlo rollouts
● Acting and planning

▸ Rae + UPOM
▸ Comparison: Run-Lazy-Lookahead + UPOMʹ
▸ Open-source Python implementation:

• https://bitbucket.org/sunandita/RAE/ 

● Chapter 16: Learning
▸ Learning a function to choose a method
▸ Learning heuristics to guide search

● Additional material not in the book
▸ Experimental evaluation
▸ Prototype application

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://bitbucket.org/sunandita/RAE/

