
1Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Last update: 11:09 PM, March 7, 2025

Acting, Planning,
and Learning

Malik Ghallab, Dana Nau,
and Paolo TraversoChapter 12

Planning with Nondeterministic Models

Dana S. Nau
University of Maryland

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

2Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Kinds of Solution Policies

Goal States

a
acyclic
policies

bunsafe
policies

ccyclic
policies

safe
policies

solution
policies

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

3Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Finding (Unsafe) Solutions

For comparison:

Forward-search (Σ, s0, g)
s ← s0; π ← ⟨⟩
while s ⊭ g do

if Applicable(s) = ∅ then return failure
nondeterministically choose a ∈ Applicable(s)
s ← γ(s,a); π ← π·a

return π

(*)
Cycle-checking

Decide which state to plan for

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

4Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Finding (Unsafe) Solutions

Poll: which should (*) be?
A. nondeterministically choose
B. arbitrarily choose
C. don’t know

(*)

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Cycle-checking

Decide which state to plan for

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

5Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

s = on_ship

Example

π = {}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

s

Visited = {on_ship}

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

6Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

π = {(on_ship, unload)}

s = on_ship
 a = unload
 γ(s,a) = {at_harbor}
s ← s′ = at_harbor unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

s′s

a

Visited = {on_ship, at_harbor}

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

7Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

s = at_harbor
 a = park
 γ(s,a) = {parking1,
 parking2,
 transit1}
s ← s′ = parking1

Example

π = {(on_ship, unload),
 (at_harbor, park)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

s′

Visited = {on_ship, at_harbor, parking1}

s

a

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

8Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

π = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver)}

s = parking1
 a = deliver
 γ(s,a) = {gate1,
 gate2,
 transit2}
s ← s′ = gate1

Visited = {on_ship, at_harbor, parking1, gate1}

s

aunload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

s′

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

9Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

π = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver)}

gate1 is a goal,
so return π

s = gate1

Visited = {on_ship, at_harbor, parking1, gate1}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

s

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

10Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Find-Acyclic-Solution

Check for cycles:
● Does γ(s,a) include a state s′ that is a π-ancestor of s?

▸ for each s′∈ γ(s,a) ∩ Domain(π), is s ∈ "γ(s′,π)?

Keep track of unexpanded states, as in A*

Add all states s such that
π(s) isn’t already defined

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

11Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

π = {}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Frontier = {on_ship}

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

12Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

π = {(on_ship, unload)}

Frontier = {at_harbor}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

13Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

π = {(on_ship, unload),
 (at_harbor, park)}

Frontier = {parking1, parking2, transit1}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

14Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Frontier = {parking2, transit1, transit2,
 gate1, gate2}

Example

π = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

15Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Frontier = {transit1, transit2, transit3 ,
 gate1, gate2}

Example

π = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver),
 (parking2, deliver)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

nondeterministically choose back or deliver
• back ⇒ cycle, so return failure
• deliver ⇒ no cycle, so continue

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

16Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Frontier = {transit2, transit3,
 gate1, gate2}

Example

π = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver),
 (parking2, deliver),
 (transit1, move)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

17Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Frontier = {transit3,
 gate1, gate2}

Example

π = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver),
 (parking2, deliver),
 (transit1, move),
 (transit2, move)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

18Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Frontier = {gate1, gate2} ⊆ Sg

Example

π = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver),
 (parking2, deliver),
 (transit1, move),
 (transit2, move),
 (transit3, move)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Found a
solution

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

19Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Find-Safe-Solution

Like
Find-Acyclic-Solution
except here:

Check for unsafe cycles:
● Does γ(s,a) include a state s′ from which π can’t take us to the frontier?

• For each s′∈ γ(s,a) ∩ Dom(π), is	$γ(s′,π) ∩ Frontier = ∅?
● If so, then π contains a cycle that can’t be escaped

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

20Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

π = {}

Frontier = {on_ship}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

21Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

π = {(on_ship, unload)}

Frontier = {at_harbor}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

22Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

π = {(on_ship, unload),
 (at_harbor, park)}

Frontier = {parking1, parking2, transit1}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

23Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Frontier = {parking2, transit1, transit2,
 gate1, gate2}

Example

π = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

24Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Frontier = {parking2, transit1, transit2,
 gate1, gate2}

Example

π = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Nondeterministically choose either back or deliver
• back is OK because cycle is escapable

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

25Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Frontier = {transit1, transit2,
 gate1, gate2}

Example

π = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver),
 (parking2, back)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

26Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Frontier = {transit2,
 gate1, gate2}

Example

π = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver),
 (parking2, back),
 (transit1, move)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

27Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Frontier = {gate1, gate2} ⊆ Sg

Example

π = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver),
 (parking2, back),
 (transit1, move),
 (transit2, move)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

28Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Guided-Find-Safe-Solution

● Motivation: much easier to find solutions if they don’t have to be safe
▸ Find-Safe-Solution needs plans for all possible outcomes of actions
▸ Find-Solution only needs a plan for one of them

● Idea:
▸ loop

• Find a (possibly unsafe) solution π
• For each each leaf node of π

▸ If the leaf node isn’t a goal,
• find a (possibly unsafe) solution

and incorporate it into π

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

29Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Guided-Find-Safe-Solution

π is a solution. Return the part
that’s reachable from s0.

For each (s,a) in π′, add to π
unless π already has an action at s

s is unsolvable. For each (s′,a) that
can produce s, modify π and Σ so
we’ll never use a at s′

Choose any leaf s that isn’t a goal.
Find a (possibly unsafe) solution π′ for s.

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

30Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

tr4

tr5

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

31Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

π = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver)}
Q = {parking2, transit1,
 transit2}

tr4

tr5

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

32Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

π = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver),
 (parking2, deliver)}
Q = {transit1, transit2,
 transit3}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

tr4

tr5

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

33Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

π = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver),
 (parking2, deliver),
 (transit3, move),
 (tr4, move)}
Q = {transit1, transit2, tr5}

tr4

tr5

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

34Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

fail

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

π = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver),
 (parking2, deliver),
 (transit3, move),
 (tr4, move)}
Q = {transit1, transit2, tr5}

tr4

tr5

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

35Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	
move

π = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver),
 (parking2, deliver),
 (tr4, move)}
Q = {transit1, transit2,
 transit3}

tr4

tr5

Modify Σ to make
move inapplicable at
transit3

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

36Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

fail

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	
move

π = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver),
 (parking2, deliver),
 (tr4, move)}
Q = {transit1, transit2,
 transit3}

tr4

tr5

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

37Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

π = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver),
 (tr4, move)}
Q = {transit1, transit2,
 parking2}

tr4

tr5

Modify Σ to make
deliver inapplicable
at parking2

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

38Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

π = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver),
 (tr4, move),
 (parking2, back)}
Q = {transit1, transit2}

tr4

tr5

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

39Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

π = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver),
 (tr4, move),
 (parking2, back),
 (transit1, move)}
Q = {transit2}

tr4

tr5

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

40Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

π = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver),
 (tr4, move),
 (parking2, back),
 (transit1, move),
 (transit2, move)}

tr4

tr5

Sg

Q = ∅

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

41Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

π = {(on_ship, unload),
 (at_harbor, park),
 (parking1, deliver),
 (tr4, move),
 (parking2, back),
 (transit1, move),
 (transit2, move)}

tr4

tr5

Remove (tr4,move)
from π because π
can’t ever reach tr4

Sg

Q = ∅

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

42Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Discussion

● How to implement it?
▸ Need implementation of Find-Solution
▸ Need it to be very efficient

• We’ll call it many times

● Idea: instead of Find-Solution,
use a classical planner
▸ Any of the algorithms from Chapter 2
▸ Efficient algorithms, search heuristics

● Need to convert the actions into something
the classical planner can use …

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

43Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

at_harbor

parking1
parking2

transit1

park

Determinization
● Let ai be a nondeterministic action with n possible outcomes
● Determinization of ai =

{n deterministic actions, one for each outcome of ai }

at_harbor

parking1
parking2

transit1

park3park1
park2

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

44Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

Determinization

● Suppose a classical planner returns an acyclic plan p = ⟨a1, a2, …, an⟩
● Actions and states: ⟨s0, a1, s1, a2, s2, a3, …, an, sn⟩
● Convert p to a policy ⟨(s0,a1), (s1,a2), …, (sn–1,an)⟩

▸ a1 = the nondeterministic action whose determinization includes ai

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

45Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Find-Safe-Solution-by-Determinization

Any classical
planner that doesn’t
return cyclic plans

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

46Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

tr4

tr5

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

47Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

tr4

tr5

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

48Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

tr4

tr5

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

49Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

tr4

tr5

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

50Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

tr4

tr5

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

51Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

tr4

tr5

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

52Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

fail

tr4

tr5

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

53Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

Modify Σd to make
move inapplicable at
transit3

tr4

tr5

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

54Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

fail

tr4

tr5

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

55Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

Modify Σd to make
deliver inapplicable
at parking2

tr4

tr5

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

56Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

tr4

tr5

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

57Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

tr4

tr5

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

58Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

tr5

tr4

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

59Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

tr4

tr5

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

60Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

tr4

tr5

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

61Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

Remove (tr4,move)
from π because π
can’t ever reach tr4

tr4

tr5

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

62Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Making Actions Inapplicable

● Modify Σd to make a inapplicable at s
▸ worst-case exponential time

● Better: hash table of bad state-action pairs
▸ For every (s′,a) such that s ∈ γ(s′,a),

Bad[s′] ← Bad[s′] ∪ determinization(a)
▸ Modify classical planner to take the table

as an argument
• if s is current state, only choose

actions in Applicable(s) \ Bad[s]

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

63Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

12.1.3 Online Approaches

● Motivation
▸ Planning models are approximate –

execution seldom works out as planned
▸ Large problems may require too much

planning time
● 2nd motivation even more stronger in

nondeterministic domains
▸ Nondeterminism makes planning

exponentially harder
• Exponentially more time,

exponentially larger policies

196 Chapter 5

Figure 5.20: O↵-line vs. Run Time Search Spaces: Intuitions

acting and planning then we reduce significantly the search space. We need
indeed to find a partial policy, e.g., the next few ”good” actions, apply all
or some of them, and repeat these two interleaved planning and acting steps
from the state that has been actually reached. This is the great advantage
of interleaving acting and planning, we know exactly which of the many
possible states has been actually reached, and the uncertainty as well as the
search space gets reduced significantly.

Intuitively, the di↵erence in search space between planning o↵-line and
interleaving planing and acting is shown in Figure 5.20. In the case of
purely o↵-line planning, uncertainty in the actual next state (and therefore
the number of states to search for) increases exponentially from the initial
state (the left vertex of the triangle) to the set of possible final states (the
right part of the triangle) : the search space is depicted as the large triangle.
In planning and acting, we plan just for a few next steps, then we act and
we know exactly in which state the application of actions results. We repeat
the interleaving of planning and acting until we reach a goal state. The
search space is reduced to the small sequence of triangles depicted in Figure
5.20. Notice that there is a dii↵erence between the search space depicted in
Figure 5.20 and the ones depicted in Figures 1.3 and 1.5, since here we have
uncertainty in the outcome of each action, and the basis of each red triangle
represents all the possioble outcomes of an action rather than the di↵erent
outcome of the search for each di↵erent action in a deterministic domain.

A critical side of acting and planning algorithms is how to select “good”
actions (i.e. actions that tend to lead to the goal) without exploring the
entire search space. This is can be donewith estimations of distances from
and reachability conditions to the goal like in heuristic search and by learning

Draft, not for distribution. March 24, 2015.

Offline vs Runtime
Search Spaces

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

64Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Online Approaches

● Need to identify good actions without exploring entire search space
▸ Can be done using heuristic estimates

● Some domains are safely explorable
▸ Safe to create partial plans, because goal states are always reachable

● In domains with dead-ends, partial planning won’t guarantee success
▸ Can get trapped in dead ends that we would have detected if we had planned fully

• No applicable actions
▸ robot’s battery goes dead

• Applicable actions, but caught in a loop
▸ robot goes into a collection of rooms from which there’s no exit

▸ But partial planning can still make success more likely

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

65Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Lookahead-Partial-Plan

● Adaptation of Run-Lazy-Lookahead (Chapter 2)
● Lookahead is any planning

algorithm that returns a policy π
▸ π may be partial or unsafe solution

● Execute π as far as it will go, then call Lookahead again

tr4

tr5

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

66Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

FS-Replan

● Adaptation of Lookahead-Partial-Plan
▸ Calls classical planner on determinized domain
▸ Gets plan, converts converts to policy

• Unsafe solution
▸ Executes policy as far as it will go, then calls

classical planner again

tr4

tr5

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

67Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

More Possibilities for Lookahead

● What if Lookahead doesn’t
have time to run to completion?
▸ Can use the same techniques

we discussed in Chapter 3
• Receding horizon
• Sampling
• Subgoaling
• Iterative deepening

▸ A few others …

Planning
Acting

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

68Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

More Possibilities for Lookahead
● Full horizon, limited breadth:

▸ look for solution that works for some of the outcomes
▸ E.g., modify Find-Acyclic-Solution to examine i outcomes of each action

● Iterative broadening:
for i = 1 by 1 until time runs out

look for a solution that handles i outcomes per action

T ← i elements of γ(s,a) \ Domain(π)
Frontier ← Frontier ∪ T

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

69Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Safely Explorable Domains

● Safely explorable domain
▸ for every state s, at least one goal state is reachable from s

● For Lookahead, suppose we use Lookahead-Partial-Plan or FS-Replan
▸ Then Lookahead never returns failure

● Every “fair” execution will eventually reach a goal

Poll: Suppose we just
choose a random action
each time. Is every “fair”
execution guaranteed to
reach a goal?

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

70Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Min-Max LRTA*

● loop
▸ choose an action a that (according to h) has optimal worst-case cost

• Update h(s) to use a’s worst-case cost
• Perform a

● In safely explorable domains with no “unfair” executions, guaranteed to
reach a goal

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

71Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

● Suppose that initially,
h(s) = 0 for every s

h = 0 unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

72Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

● Suppose that initially,
h(s) = 0 for every s

a = unload
h = 1

h = 0

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

73Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

a = park
h = 1+max(0,0,0)
 = 1

a = unload
h = 1

h = 0

h = 0

h = 0

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

74Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Example

a = deliver
h = 1

1+ 1 = 2
1+ max(0,0) = 1

a = unload
h = 1

h = 0

h = 0

a = park
h = 1+max(0,0,0)
 = 1

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

75Lecture slides for Acting, Planning, and Learning. Creative Commons CC BY-SA 4.0

Summary

● Types of solutions: unsafe, safe (acyclic, cyclic)
● Find-Solution,
● Find-Acyclic-Solution
● Find-Safe-Solution
● Guided-Find-Safe-Solution

▸ call Find-Solution to get an unsafe solution
▸ call Find-Solution again on the leaves
▸ if dead-ends are encountered, modify actions

that lead to them
● Find-Safe-Solution-by-Determinization

▸ Like Guided-Find-Safe-Solution, but
call classical planner on determinized
domain, convert plan into policy

● Online approaches
▸ Lookahead-Partial-Plan

• adaptation of Run-Lazy-Lookahead
▸ FS-Replan

• adaptation of Run-Lookahead
● Ways to do the lookahead

▸ full breadth with limited depth,
• iterative deepening

▸ full depth with limited breadth
• iterative broadening

▸ convergence in safely explorable domains
● Min-Max LRTA*

https://projects.laas.fr/planning/
https://creativecommons.org/licenses/by-sa/4.0/deed.en

