Last update: 11:09 PM, March 7, 2025

Acting, Planning, and Learning

Malik Ghallab, Dana Nau, and Paolo Traverso

Chapter 11 Acting with Nondeterministic Models

Dana S. Nau University of Maryland

Motivation

- In Chapters 8–10, we had probability distributions over the possible outcomes of actions
- Sometimes we want to reason about nondeterminism *without* the probability distributions
 - Probabilities might not be available
 - We might want policies that satisfy safety conditions:
 - Guaranteed to work for all possible action outcomes

Credit: <u>Dennis Hill</u>, <u>CC BY 2.0</u> Lecture slides for *Acting*, *Planning*, *and Learning*. Creative Commons CC BY-SA 4.0

Credit: Airtuna08, CC BY-SA 3.0

Credit: David Wilson, CC BY 2.0

Credit: Slaunger, CC BY-SA 3.0

- Very simple harbor management domain
 - Unload a single item from a ship
 - Move it around a harbor
- One state variable: pos(item)
 - Simplified names for states
 - For {pos(item)=on_ship}, just write on_ship

Nondeterministic Planning Domains

- 3-tuple (S, A, γ)
 - ► *S* and *A* − finite sets of states and actions
 - $\gamma: S \times A \rightarrow 2^S$
- γ(s,a) = {all possible "next states" after applying action a in state s}
 - *a* is applicable in state *s* iff $\gamma(s,a) \neq \emptyset$
- Applicable(s) = {all actions applicable in s} = $\{a \in A \mid \gamma(s,a) \neq \emptyset\}$
- Example:
 - Applicable(at_harbor) = {park}
 - park has three possible outcomes
 - put item in parking1 or parking2 if one of them has space
 - or in transit1 if there's no parking space
 - γ(at_harbor, park) = {parking1, parking2, transit1}

Nondeterministic Planning Domains

- One possible action representation:
 - like classical, but with n mutually exclusive "effects" lists
- e.g., park:

Nondeterministic Planning Domains

- For deterministic planning problems, search space was a graph
- Now it's an AND/OR graph
 - OR branch:
 - several applicable actions, which one to choose?
 - ► AND branch:
 - multiple possible outcomes, must handle all of them
- Analogy to PSP in Chapter 2
 - *OR* branch \Leftrightarrow action selection
 - *AND* branch \Leftrightarrow flaw selection

Policies

- *Policy*: a function $\pi: S' \to A$
 - ► $S' \subseteq S$
 - For every s ∈ Domain(π), require π(s) ∈ Applicable(s)
- Two equivalent notations:

 $\pi_1(on_ship) = unload,$ $\pi_1(at_harbor) = park,$ $\pi_1(parking1) = deliver$

- $\begin{aligned} \pi_1 &= \{(\text{on_ship, unload}), \\ & (\text{at_harbor, park}), \\ & (\text{parking1, deliver}) \} \end{aligned}$
- That's just the notation
 - implementation could be quite different

Definitions Over Policies

- *Transitive closure*:
 - $\hat{\gamma}(s,\pi) = \{ \text{all states reachable from } s \text{ using } \pi \}$
 - $\widehat{\gamma}(s,\pi) = S_0 \cup S_1 \cup S_2 \cup \ldots$

 $S_0 = \{s\}$ $S_1 = S_0 \cup \{\gamma(s_0, \pi(s_0)) \mid s_0 \in S_0\}$ $S_2 = S_1 \cup \{\gamma(s_1, \pi(s_1)) \mid s_1 \in S_1\}$

- *Reachability graph*: Graph(s,π) = (V,E)
 - $V = \hat{\gamma}(s,\pi)$

. . .

- $E = \{(s_1, s_2) \mid s_1 \in V, s_2 \in \gamma(s_1, \pi(s_1))\}$
- $leaves(s,\pi) = \hat{\gamma}(s,\pi) \setminus \text{Dom}(\pi)$
 - may be empty

Acting with a Policy

Types of Policies

- Acting (or planning) problem $P = (\Sigma, s_0, S_g)$
 - planning domain Σ = (S,A,γ), initial state s₀ ∈ S, set of goal states S_g ⊆ S (shown in green)
- π is a *solution* if at least one execution ends at a goal
 - $leaves(s,\pi) \cap S_g \neq \emptyset$
- A policy π is *safe* if $\forall s \in \hat{\gamma}(s_0, \pi), leaves(s, \pi) \cap S_g \neq \emptyset$
 - at every state in γ̂(s₀,π),
 at least one of the execution paths from s using π stops at a goal state.
- Otherwise, *unsafe* policy

Poll: Is π_1 safe or unsafe?

Safe Policies

• *Acyclic* safe policy

- Graph(s_0, π) is acyclic, and $leaves(s, \pi) \subseteq S_{g}$
- If we run ActPolicy(π) starting at s₀, we're guaranteed to stop at a goal

• ActPolicy(π) $s \leftarrow \text{observe current state}$

while $s \in \text{Domain}(\pi)$ do

perform action $\pi(s)$

 $s \leftarrow \text{observe current state}$

Safe Policies

- *Cyclic* safe policy
 - Graph (s_0, π) is cyclic, and $leaves(s,\pi) \subseteq S_g$, and $\forall s \in \hat{\gamma}(s_0,\pi)$, $leaves(s,\pi) \cap S_g \neq \emptyset$
 - At every state s in γ̂(s₀,π), at least one of the execution paths from s using π ends at a goal state
 - Will never get caught in a dead end

 $\pi_3 = \{ (on_ship, unload), (at_harbor, park), \\ (parking1, deliver), (parking2, back), \\ (transit1, move), (transit2, move), \\ (gate1, back) \}$

on ship

unload

park

at harbor

• ActPolicy(π)

 $s \leftarrow \text{observe current state}$ while $s \in \text{Domain}(\pi)$ do perform action $\pi(s)$ $s \leftarrow \text{observe current state}$

transit2

Poll: Let π be a cyclic safe solution. Suppose we run ActPolicy(π) starting at s_0 .

- Are there situations where we can be sure π will reach a goal?
- 2. Are there situations where we can't be sure π will reach a goal?

Safe Policies

- *Cyclic* safe policy
 - Graph(s_0, π) is cyclic, and $leaves(s,\pi) \subseteq S_g$, and $\forall s \in \hat{\gamma}(s_0,\pi)$, $leaves(s,\pi) \cap S_g \neq \emptyset$
 - At every state s in γ̂(s₀,π), at least one of the execution paths from s using π ends at a goal state
 - Will never get caught in a dead end
 - Every "fair" execution will reach a goal

 $\pi_3 = \{(on_ship, unload), (at_harbor, park), (parking1, deliver), (parking2, back), (transit1, move), (transit2, move), (gate1, back)\}$

• ActPolicy(π)

 $s \leftarrow \text{observe current state}$ while $s \in \text{Domain}(\pi)$ do perform action $\pi(s)$ $s \leftarrow \text{observe current state}$

Can you think of a

real-world situation

Can you think of a

in which there are

real-world situation

"unfair" executions?

executions are "fair"?

in which all

Kinds of Solution Policies

Beyond Policies

- Sometimes we want to give the actor instructions that can't be described as a policy, e.g.,
 - Try to open the door twice. If it opens, go through it. If it doesn't, go to another door
- The book describes two other ways to represent instructions to the actor
 - Input/Output Automata
 - Behavior Trees
- I'll discuss behavior trees in a separate set of slides

Summary

- Actions, plans, policies, planning problems
- Types of solution policies:
 - unsafe, safe (acyclic, cyclic)
- Motivation for instructions other than policies