Last update: 11:09 PM, March 7, 2025

Acting, Planning, and Learning

Malik Ghallab, Dana Nau, and Paolo Traverso

Chapter 1 Introduction

Dana S. Nau University of Maryland

with contributions from

Mark "mak" Roberts

Deliberative Action

Poll

Name one component of "deliberative action".

- Deliberation (or thinking) implies:
 - A representation of the problem
 - A solver
 - An end to aim at
 - Potential application of experience
- Acting implies:
 - A boundary: exogenous and endogenous
 - Agency to modify the external world
 - Potential for exogenous activity

- For AI, deliberation often means:
 - An abstraction of the problem: Model
 - A solver: a search algorithm
 - An end to aim at: a goal or task
 - Potential application of experience: learning
- For AI, acting implies:
 - An actor
 - An external world or environment
- Scientific focus: how do we compute deliberative action: models and algorithms!
- Need not imply consciousness; we generally will not dwell on philosophy in this course

Ethical considerations

- Governing AI for Humanity, Interim Report (UN AI Advisory Board, 2023)
- Blueprint for AI Bill of Rights (White House OSTP, 2022)
- Reflections on AI for Humanity (Braunschweig and Ghallab, eds., 2021)
- 100 Year Study on AI (Stanford University, 2021, 2016)
- The alignment problem: How can machines learn human values? (Christian, 2021)
- Ethics guidelines for Trustworthy AI (EU High-level Group on AI, 2019)
- Responsible AI: requirements and Challenges (Ghallab, 2019)
- Lethal Autonomous Systems Pledge (Future of Life Institute, 2018)
- Study on Autonomy (US Defense Science Board, 2016)

Suggested readings on this topic:

- <u>Human compatible: AI and the problem of control</u> (Russell, 2019)
- <u>Life 3.0</u> (Tegmark, 2017)
- <u>The Myth of Artificial Intelligence</u> (Larson, 2021)

Motivation

- *Actor*: agent that performs actions
- Deliberation functions
 - Planning
 What actions to perform
 - Acting
 - *How* to perform them
 - Learning

Acquire models and decide *When* to act or plan

Planning

- Relies on *prediction* + *search*
- Uses *descriptive models* of the actions
 - Predict *what* the actions will do
 - Don't tell how to do them
- Search over *predicted states* and possible organizations of feasible actions

 $s \xrightarrow{a} s' = \gamma(s, a)$

- Different types of actions \Rightarrow
 - Different predictive models
 - Different planning problems and techniques
 - Motion and manipulation planning
 - Perception planning
 - Navigation planning
 - Communication planning
 - Task planning
 Most Al planning

Acting

- Traditional "AI planning" view:
 - Carrying out an action is just execution
 - Can ignore how it's done
- *Sometimes* that's OK
 - If the environment has been engineered to make actions predictable
 - Example on next slide
- Usually acting is more complicated
 - Example later

Acting as Execution

- Kiva Systems
 - (now part of Amazon Robotics)
- Warehouse with items stored in "pods"
 - Portable warehouse-shelving units
- When an order comes in for an item
 - Software locates closest mobile robot
 - Directs it to go to the correct pod
- To navigate around the warehouse
 - Robot follows bar-code stickers on the floor
- When the robot reaches the target location
 - Slides underneath the pod
 - Lifts it off the floor
 - Carries it to the specified human operator
 - Operator picks items from the pod

https://youtu.be/1FKMniE_q1Q

Deliberative Acting

- Experiment:
 - New Caledonian crow wants to retrieve a bucket of food from a vertical pipe
 - Nearby is a piece of wire
 - Crow tries to use the wire, fails
 - Bends the wire into a hook
 - Uses the bent hook to retrieve the bucket
- Crows make hooks in the wild
 - From sticks and leaves, not wire
- Adapted the technique to a new material

https://youtu.be/nTtDbyQTQV0

Interleaving Planning and Acting

- Actor is in a dynamic unpredictable environment
 - Adapt actions to current context
 - React to events
- Relies on
 - *Operational models* telling *how* to perform the actions
 - Observations of *current state*

Planning and Acting

- Multiple levels of abstraction
 - Actors are organized into physical subsystem
 - Deliberation reflects this
- Heterogeneous reasoning
 - Different techniques
 - at different levels
 - different subsystems at same level
- *Continual online planning*
 - Can't plan everything in advance
 - Plans are abstract and partial until more detail is needed

Bremen Harbor

Example: Harbor Management

Example: Service Robot

- Multiple levels of abstraction
 - Higher levels: more planning
 - Lower levels: more acting
- Continual online planning
 - What room is **o7** in?
 - What route?
 - What kind of door?
 - Close enough to door handle?
- Heterogeneous reasoning
 - planning abstract tasks
 - path planning
 - reactive (e.g., open door)

Models

"All models are wrong, but some are useful."

- George Box

- Models are an *abstraction* of the world
 - Good abstractions capture salient details
- Planning and Acting models approximate the causality of taking action:
 - Describe the necessary *preconditions* and expected *effects* for each action
 - May indicate the *expected utility* of taking action toward some end
- Hierarchical models describe how to break down a complex task
 - Example: a recipe describes how to cook a dish without reference to a specific kitchen

The Challenges of Using Models

- Models are often created and curated by humans, but this means they can be:
 - expensive to write and debug
 - sensitive to original assumptions
 - less adaptable to new environments
- Deployed systems may need to change models to account for
 - Adaptation to a new task or situation
 - The preferences of different humans
 - Failure to successfully complete an action
- Furthermore, acting systems often require multiple, simultaneous models at different levels of abstraction

▶ ...

Learning

- Learning consolidates experience
- Learning can overcome some of the challenges of producing models
 - Automates model production
 - Provides mechanism to adapt models
- For acting, learning acquires or adapts knowledge about *how* to do something
- For planning, learning acquires or adapts the effect of *what* was done

Integrating Acting, Planning, and Learning

- Models can be learned:
 - Using planning to produce traces
 - By interacting with a simulator
- Learning might iterate with:
 - Planning: to determine what needs learn or how to invest learning effort
 - Acting: by sampling the simulator or external world to determine the preconditions or effects of actions

The Music Lesson. Johannes Vermeer (c. 1662–1665)