
1

Qualitative analysis

Michelle Mazurek

(some material from Vibha
Sazawal, Bilge Mutlu, Susan 
Zickmund, Klaus Krippendorff)



2

QUALITATIVE ANALYSIS



3

Coding, in general

• Process data (e.g., transcribe)

• Break into units (a sentence, answer to one 
question, etc.)

– Smaller units: More nuanced results, tougher to get 
intercoder agreement

• Assign a descriptive code to each unit

– Potentially more than one



4

Open vs. fixed coding

• Open (inductive)

– Create codes as you go
– Generally reach a final set of codes “codebook” 

partway through (maybe minor changes after)

• Fixed (deductive)

– Starts from THEORY / existing taxonomy

• Are codes mutually exclusive?



5

A good codebook

• Codes are sufficiently detailed / well defined

– Clear when a code does/doesn’t apply

• Clear link between RQs and codes

– Don’t code a bunch of irrelevant stuff
– (revisit during grounded theory discussion)

• Granularity of coding

– Too fine grained vs. too coarse grained
– Capture subtle nuances
– Don’t overwhelm coder / lead to mistakes
– Coding in levels to help with this?



6

Tools

• MaxQDA, Atlas.ti, Nvivo, Cassandra, QDAMiner, 
Dedoose

– Others: https://en.wikipedia.org/wiki/Computer-
assisted_qualitative_data_analysis_software

• Most of the good ones aren’t free

• Features to consider:

– Granularity, multiple coders, auto stats, etc.



7

Different approaches

• Grounded theory

• Content analysis



8

GROUNDED THEORY
And relatives ….



9

Key ideas

• Formulate THEORY from the data

• As close as possible to zero preconceived ideas

– Open minded, multiple viewpoints, comparative

• Open coding (fine-grained)

• Followed by axial coding (to generate themes)

• Theory developed: specific -> general

• Theory must FIT



10

Formal/traditional

• Very rigid and rigorous

• Not usually applied in HCI context

– Same general approach, a little more relaxed

• Straussian elements:

– Code as you collect
– Theoretical sampling: Choose samples with best 

chance of confirming/disconfirming/deepening your 
current working theory



11

Process

• Open coding

• Axial coding

• Selective coding

• Comparative analysis 

• Theory building



12

Open coding

• Constant comparison: compare data pieces to 
each other

• Begin to induce concept names / codes

• As you work, continue comparing all pieces that 
have the same code 

• Refine definition of codes as you go

• Then compare new data to existing codes

• Cycle, repeat



13

Building theory

• Axial: categorize codes into themes that go 
together

• Selective: place axial codes into “big picture” 
relational models. What causes/relates to what?

• Compare these big-picture findings across 
dimensions (e.g., people in different groups)

• These comparisons are the pieces of the theory



15

Theory fit

• Fitness: theory belongs to data, not forcing into 
pre-existing categories

– Categories emerge from data, modify as go along

• Relevance: explain what happened, predict what 
will happen, interpret

• Adaptability: modify based on new data



16

Content analysis

• Any “text” (words, visual, etc.)

• Traditionally: conceptual analysis

– Quantify presence of concepts in text
– Existence vs. frequency

• Amenable to open or fixed coding

• Generally more concrete and finer grained

– Set of codes can be iterative, but meaning per each is 
generally not

– Can devolve to word counting (not great)



17

“TYPICAL” HCI PROCESS



18

Borrows from both

• Inductiveness of coding

– When appropriate!

• Layered approach (open, axial)

• Coding concepts rather than counting words

• But less open-ended

– Codes become fixed relatively early
– No theoretical sampling
– Reliability



19

One typical process

• Relaxed open coding to develop codebook

• Rest of coding according to codebook

– Interrater agreement

• Axial coding process

– Affinity diagrams? Etc. 



20

Relaxed open coding approach

• Open coding/codebook construction

– Typically 20% of cases? Depends on sample size
– Can stop when approximate saturation in codes

• Next 20% to validate codebook

– Which codes continue to be useful? Any redundant? 
Any to split into pieces if too general?

– Are any new codes needed?
– Hopefully final codebook now

• Formalize codebook

– Definitions, inclusion/exclusion examples



21

Establishing validity

• Typical process:

– One or two researchers develop codebook
– Independently code samples
– Measure agreement
– Resolve disagreements to 100%

• Best: independently code all data

– Get agreement, then resolve

• If needed: once high agreement reached, one 
coder does the rest.



22

Reliability

• Intra-rater: same coder is consistent

• Inter-rater/coder: scheme is sufficiently stable 
that multiple people get same answer



23

What do we want to measure?

• Agreement btwn independent observers

– Not about how many observers, which ones
– Not about how many categories/scale points

• Account for both applied and missing codes

– Agreement on what does/doesn’t apply!



24

Measures of agreement

• Percent agreement

– In most cases, overstates agreement due to chance

• Cohen’s Kappa

– Accounts for chance
– Statistical independence of coder data
– Can be high if disagreement is systematic



25

Instead: Krippendorff’s alpha

• Fundamentally measures disagreement

• Good: alpha > 0.8

– Can live with > 0.667 for very fuzzy/tentative

• Works for > 2 coders

• Works for multiple variables, non-exclusive, 
nominal/ordinal/interval, missing data, etc.



26

Krippendorff’s alpha

• alpha = 1 – Do / De

• Do = observed disagreement

• De = expected disagreement if totally chance

• Defined via coincidence matrices

• Simple example from the Kripp. Paper (2 coders, 
binary data, no missing data)

– http://web.asc.upenn.edu/usr/krippendorff/mwebreli
ability5.pdf


