
Program Stack Layout on AMD64 and AArch64

Dr. Michael Marsh

November 8, 2024

1 Introduction

For several decades, the dominant personal computer architecture was based on Intel’s x86 chips. In the
64-bit era, the most common of these is AMD64, also referred to as x86 64. Starting late 2020, Apple
began introducing ARM-architecture chips in many of its popular personal computers. While the ARM
architecture was not new, it had fallen out of favor for personal computers, and was mostly used in more
resource-constrained environments (mobile devices, Raspberry Pis, etc.). The 64-bit ARM architecture used
by Apple’s chips is AArch64, also referred to as ARM64.

Because they are different architectures, AMD64 and AArch64 have different instruction sets, different
registers, and different stack structures. Here we focus on the last two, particularly the stack layouts.

On AMD64, the instruction pointer is rip, and a copy of the caller’s instruction pointer is saved in the
callee’s stack. The same is done for the caller’s base pointer rbp.

On AArch64, the instruction pointer is pc, and the caller’s instruction pointer is stored in the register
x30. The caller’s base pointer is stored in the register x29. As long as the callee does not call another
function, these registers do not need to be stored on the stack. Once the callee calls another function, the
caller’s stored pointers are then saved on the stack.

Thanks to Prof. Dave Levin for suggestions on improving this document.

1

2 Example Program

We will consider this simple program:

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <stdint.h>

uint64_t third(uint16_t x) {

uint32_t a;

uint64_t b;

unsigned char c;

a = x << 1;

b = x << 10;

c = x % 256;

return a+b+c;

}

uint32_t second(uint8_t x) {

uint64_t a;

a = third(x << 4);

return a >> 16;

}

void first() {

uint8_t a;

a = 0xf4; // 244

printf("%x\n",second(a));

}

int main(int argc, char** argv) {

first();

return 0;

}

2

3 Comparing Stacks

bytes from top of stack

x

0

c

17

b

18

a

30

third

x29

34

x30

42

(first)

x

65

a

74

second

x29

82

x30

90

(main)

a

113

first

x29

114

x30

122

(pre-main)

argc

142

argv

570

main

AArch64

bytes from top of stack

x

0

c

19

b

20

a

32

rbp

36

rip

44

(second)

third

x

56

a

68

rbp

76

rip

84

(first)

second

a

107

rbp

108

rip

116

(main)

first

argc

136

rbp

140

rip

148

(pre-main)

argv

420

main

AMD64

If we look at the layouts above, we see that the stack layouts are similar, at least as far as the local
variables and function arguments are concerned. They do not line up exactly, however, as shown in the
number of bytes from the top of the stack at which the variable begins.

An interesting feature is that saved registers are stored at similar locations on the stack, but they are for
different functions. For example, we see saved instruction pointers 44 bytes from the top of the stack on the
AMD64 version of our program and 42 bytes from the top of the stack on the AArch64 version. However,
the former is the instruction pointer for second, while the latter is the instruction pointer for first.

As mentioned in Section 1, this is because on AArch64 the saved registers sp and pc from the caller
are stored in registers x29 and x30, rather than on the stack. As long as a function does not call anything
else, all of the information required on return is held in registers rather than on the stack. That is why we
never see second’s saved registers on the stack. This makes certain security vulnerabilities, such as buffer
overflows, harder to exploit.

Once a function (eg, second) calls another function (eg, third), the x29 and x30 registers will need to
hold second’s frame pointer and program counter. That means the current values of x29 and x30 (first’s
frame pointer and program counter) need to be written to the stack, so they can be restored later. From a
buffer overflow perspective, if we were to overflow a buffer in third (which is not possible in our example),
we would not be able to overwrite the next instruction to execute after third returns (as in AMD64). We
would, however, be able to overwrite the next instruction to execute after second returns.

3

A gdb Session on AMD64

(gdb) where

#0 third (x=3904) at layout.c:12

#1 0x00000000004018a5 in second (x=244 ’\364’) at layout.c:20

#2 0x00000000004018ce in first () at layout.c:27

#3 0x0000000000401904 in main (argc=1, argv=0x7fffffffe5e8) at layout.c:31

(gdb) info frame

Stack level 0, frame at 0x7fffffffe478:

rip = 0x40185c in third (layout.c:12); saved rip = 0x4018a5

called by frame at 0x7fffffffe4a0

source language c.

Arglist at 0x7fffffffe468, args: x=3904

Locals at 0x7fffffffe468, Previous frame’s sp is 0x7fffffffe478

Saved registers:

rbp at 0x7fffffffe468, rip at 0x7fffffffe470

(gdb) info locals

a = 7808

b = 12624466609913245184

c = 0 ’\000’

(gdb) x &a

0x7fffffffe464: 0x00001e80

(gdb) x &b

0x7fffffffe458: 0x92a8ae00

(gdb) x &c

0x7fffffffe457: 0xa8ae0000

(gdb) info args

x = 3904

(gdb) x &x

0x7fffffffe444: 0x00000f40

(gdb) up

#1 0x00000000004018a5 in second (x=244 ’\364’) at layout.c:20

20 a = third(x << 4);

(gdb) info frame

Stack level 1, frame at 0x7fffffffe4a0:

rip = 0x4018a5 in second (layout.c:20); saved rip = 0x4018ce

called by frame at 0x7fffffffe4c0, caller of frame at 0x7fffffffe478

source language c.

Arglist at 0x7fffffffe490, args: x=244 ’\364’

Locals at 0x7fffffffe490, Previous frame’s sp is 0x7fffffffe4a0

Saved registers:

rbp at 0x7fffffffe490, rip at 0x7fffffffe498

(gdb) info locals

a = 4919712

(gdb) x &a

0x7fffffffe488: 0x004b11a0

(gdb) info args

x = 244 ’\364’

(gdb) x &x

0x7fffffffe47c: 0x00007ff4

4

(gdb) up

#2 0x00000000004018ce in first () at layout.c:27

27 printf("%x\n",second(a));

(gdb) info frame

Stack level 2, frame at 0x7fffffffe4c0:

rip = 0x4018ce in first (layout.c:27); saved rip = 0x401904

called by frame at 0x7fffffffe4e0, caller of frame at 0x7fffffffe4a0

source language c.

Arglist at 0x7fffffffe4b0, args:

Locals at 0x7fffffffe4b0, Previous frame’s sp is 0x7fffffffe4c0

Saved registers:

rbp at 0x7fffffffe4b0, rip at 0x7fffffffe4b8

(gdb) info locals

a = 244 ’\364’

(gdb) x &a

0x7fffffffe4af: 0xffe4d0f4

(gdb) info args

No arguments.

(gdb) up

#3 0x0000000000401904 in main (argc=1, argv=0x7fffffffe5e8) at layout.c:31

31 first();

(gdb) info frame

Stack level 3, frame at 0x7fffffffe4e0:

rip = 0x401904 in main (layout.c:31); saved rip = 0x401e38

caller of frame at 0x7fffffffe4c0

source language c.

Arglist at 0x7fffffffe4d0, args: argc=1, argv=0x7fffffffe5e8

Locals at 0x7fffffffe4d0, Previous frame’s sp is 0x7fffffffe4e0

Saved registers:

rbp at 0x7fffffffe4d0, rip at 0x7fffffffe4d8

(gdb) info locals

No locals.

(gdb) info args

argc = 1

argv = 0x7fffffffe5e8

(gdb) x &argc

0x7fffffffe4cc: 0x00000001

(gdb) x argv

0x7fffffffe5e8: 0xffffe7d4

5

B gdb Session on AArch64

(gdb) where

#0 third (x=3904) at layout.c:11

#1 0x000000000040080c in second (x=244 ’\364’) at layout.c:20

#2 0x0000000000400838 in first () at layout.c:27

#3 0x0000000000400868 in main (argc=1, argv=0xfffffffff5e8) at layout.c:31

(gdb) info frame

Stack level 0, frame at 0xfffffffff3d0:

pc = 0x4007ac in third (layout.c:11); saved pc = 0x40080c

called by frame at 0xfffffffff400

source language c.

Arglist at 0xfffffffff3a0, args: x=3904

Locals at 0xfffffffff3a0, Previous frame’s sp is 0xfffffffff3d0

(gdb) info locals

a = 0

b = 281474976707648

c = 0 ’\000’

(gdb) x &a

0xfffffffff3cc: 0x00000000

(gdb) x &b

0xfffffffff3c0: 0xfffff440

(gdb) x &c

0xfffffffff3bf: 0xfff44000

(gdb) info args

x = 3904

(gdb) x &x

0xfffffffff3ae: 0xf3c00f40

(gdb) up

#1 0x000000000040080c in second (x=244 ’\364’) at layout.c:20

20 a = third(x << 4);

(gdb) info frame

Stack level 1, frame at 0xfffffffff400:

pc = 0x40080c in second (layout.c:20); saved pc = 0x400838

called by frame at 0xfffffffff420, caller of frame at 0xfffffffff3d0

source language c.

Arglist at 0xfffffffff3d0, args: x=244 ’\364’

Locals at 0xfffffffff3d0, Previous frame’s sp is 0xfffffffff400

Saved registers:

x29 at 0xfffffffff3d0, x30 at 0xfffffffff3d8

(gdb) info locals

a = 4790600

(gdb) x &a

0xfffffffff3f8: 0x00491948

(gdb) info args

x = 244 ’\364’

(gdb) x &x

0xfffffffff3ef: 0x497770f4

6

(gdb) up

#2 0x0000000000400838 in first () at layout.c:27

27 printf("%x\n",second(a));

(gdb) info frame

Stack level 2, frame at 0xfffffffff420:

pc = 0x400838 in first (layout.c:27); saved pc = 0x400868

called by frame at 0xfffffffff440, caller of frame at 0xfffffffff400

source language c.

Arglist at 0xfffffffff400, args:

Locals at 0xfffffffff400, Previous frame’s sp is 0xfffffffff420

Saved registers:

x29 at 0xfffffffff400, x30 at 0xfffffffff408

(gdb) info locals

a = 244 ’\364’

(gdb) x &a

0xfffffffff41f: 0xfff440f4

(gdb) info args

No arguments.

(gdb) up

#3 0x0000000000400868 in main (argc=1, argv=0xfffffffff5e8) at layout.c:31

31 first();

(gdb) info frame

Stack level 3, frame at 0xfffffffff440:

pc = 0x400868 in main (layout.c:31); saved pc = 0x400928

caller of frame at 0xfffffffff420

source language c.

Arglist at 0xfffffffff420, args: argc=1, argv=0xfffffffff5e8

Locals at 0xfffffffff420, Previous frame’s sp is 0xfffffffff440

Saved registers:

x29 at 0xfffffffff420, x30 at 0xfffffffff428

(gdb) info locals

No locals.

(gdb) info args

argc = 1

argv = 0xfffffffff5e8

(gdb) x &argc

0xfffffffff43c: 0x00000001

(gdb) x argv

0xfffffffff5e8: 0xfffff7d5

7

