dependency parsing

CS 5685, Fall 2018

Introduction to Natural Language Processing
http://people.cs.umass.edu/~miyyer/cs585/

Mohit lyyer

College of Information and Computer Sciences
University of Massachusetts Amherst

many slides from Marine Carpuat & Brendan O’Connor

http://people.cs.umass.edu/~miyyer/cs585/

guestions from last time...

® can you “misplace” the midterms and give us
a retest”
® NO

o we'll apply a curve when computing final grades,
SO don'’t WOrry too much! uniess you totally bombed it :(

o H\W 37
e |ast HW (we’ll merge HWs 3 and 4)!

o Wil be due after Thanksgiving and have an extra
credit component

® more time to work on your projects

thus, | expect a significant amount of work to
go into the progress reports (due nov 16)!
2

e Nohit out Thu

Handler (NL

more stuff

D)

(SO

~N

ay, guest lecture by Abe

D student)

e will be helpful for your projects!
® No instructor office hours this Friday

 what topics do you want to see covered
towards the end of the class?

suggest things using the anonymous form
or piazza or in person or whatever

Dependency Grammars

* Syntactic structure = lexical items linked by binary asymmetrical
relations called dependencies

Dependency Type

!

Head Dependent
(modifier /object / compliment)

Dependency Relations

Argument Dependencies

Description

nsubj nominal subject
csubj clausal subject

dobj direct object

iobj indirect object

pobj object of preposition
Modifier Dependencies Description

tmod temporal modifier
appos appositional modifier
det determiner

prep prepositional modifier

Relation Examples with head and dependent
NSUBJ United canceled the flight.
DOBIJ United diverted the flight to Reno.

We booked her the first flight to Miami.
I0BJ We booked her the flight to Miami.
NMOD We took the morning flight.
AMOD Book the cheapest flight.
NUMMOD Before the storm JetBlue canceled 1000 flights.
APPOS United, a unit of UAL, matched the fares.
DET The flight was canceled.

Which flight was delayed?
CONJ We flew to Denver and drove to Steamboat.
CcC We flew to Denver and drove to Steamboat.
CASE Book the flight through Houston.

IDTNICEER] Examples of core Universal Dependency relations.

OBJ

(NMOD)]
[m\ [—-T COORD COORD

bread

== My daughter bought some

subj

cheese

=m Min datter kgbte nogle

oo [e[o)

mm Min dotter kopte nagra

ey | ey e e e

Example Dependency Parse

prep
dobj

nsubj detnn pcomp dObj
| ; |l \l: \lf_ll VIV

India won the world cup by beating Lanka

Projectivity
In projective dependency parsing, there are no crossing edges.

» Crossing edges are rare in English:

mMM

She ate a pizza yesterday which was vegetarian

*figure from (Nivre 2007) [Example:Jacob Eisenstein]

https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

Projectivity
In projective dependency parsing, there are no crossing edges.
» Crossing edges are rare in English:

AT NV N
She ate a pizza yesterday which was vegetarian

» They are more common in other languages, like Czech:?

; AuxZ ¢
AuxP %
] AuxP
Pred Sb
Atr 1 { AuxZ] Adv
i \ {] [.
0 I 2 3 4 2 6 7 8
R P VB A } C R N4 F
Z nich je jen jedna na kvalitu
(Out-of them 18 only one-FEM-SG (o quality)

(*Only one of them concerns quality.”)

*figure from (Nivre 2007) [Example:Jacob Eisenstein]

https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

Projectivity

% non-projective edges

‘% non-projective sentences

Czech
English
German

1.86%
0.39%
2.33%

22.42%
7.63%
28.19%

Table 12.1: Frequency of non-projective dependencies in three languages (Kuhlmann and

Nivre, 2010)

[Example: Jacob Eisenstein]

https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

Dependency formalisms

* Most general form: a graph G = (V,A)
* V vertices: usually one per word in sentence
* A arcs (set of ordered pairs of vertices): head-dependent relations between
elementsinV
e Restricting to trees provide computational advantages
 Single designated ROOT node that has no incoming arcs
* Except for ROOT, each vertex has exactly one incoming arc
* Unique path from ROOT to each vertex in V

 Each word has a single head

 Dependency structure is connected
* There is a single root node from which there is a unique path to each word

Data-driven dependency parsing

Goal: learn a good predictor of dependency graphs
Input: sentence
Output: dependency graph/tree G = (V,A)

Can be framed as a structured prediction task
- very large output space
- with interdependent labels

2 dominant approaches: transition-based parsing and graph-based
parsing

Transition-based dependency parsing

| * Builds on shift-reduce parsing
nput buffer
1 N [Aho & Ullman, 1927]
e Configuration
. e Stack
- }« Parser - Dependency * Input buffer of words
e Set of dependency relations
Stack | - P y
* Goal of parsing
n find a final configuration where
— * all words accounted for

IBTNICHERY Basic transition-based parser. The parser examines the top two elements of the
stack and selects an action based on consulting an oracle that examines the current configura-
tion.

» Relations form dependency tree

Transition operators

* Transitions: produce a new
configuration given current
configuration

* Parsing is the task of
* Finding a sequence of transitions

e That leads from start state to
desired goal state

e Start state
e Stack initialized with ROOT node

* Input buffer initialized with words
In sentence

* Dependency relation set = empty

 End state

e Stack and word lists are empty

* Set of dependency relations = final
parse

Arc Standard Transition System

e Defines 3 transition operators [Covington, 2001; Nivre 2003]
 LEFT-ARC:

 create head-dependent rel. between word at top of stack and 2" word (under

top)
* remove 2" word from stack

* RIGHT-ARC:

* Create head-dependent rel. between word on 2" word on stack and word on
top

 Remove word at top of stack

* SHIFT

* Remove word at head of input buffer
* Push it on the stack

Arc standard transition systems

* Preconditions

 ROOT cannot have incoming arcs
* LEFT-ARC cannot be applied when ROOT is the 2"? element in stack
 LEFT-ARC and RIGHT-ARC require 2 elements in stack to be applied

Transition-based Dependency Parser

e Assume an oracle

function DEPENDENCYPARSE(words) returns dependency tree

* Parsing complexity

state <— {[root], [words], [] } ; initial configuration

while state not final e Linear in sentence
t < ORACLE(state) ; choose a transition operator to apply |
state <— APPLY(t, state) ; apply it, creating a new state Ie ngt h .

return state

A generic transition-based dependency parser e Gree dy 3l gorlthm
* Unlike Viterbi for POS
tagging

example:
pbook me the morning flight

Where do we get an oracle??

Where do we get an oracle??

we have treebanks annotated with dependencies...

20

Where do we get an oracle??”

we have treebanks annotated with dependencies...

We can treat finding the correct action as a multi-class
classification problem!

N
out

Ou

OU

t: current parser state (stack / buffer / prev actions)

. ground-truth action from converted treebank

21

Where do we get an oracle??”

we have treebanks annotated with dependencies...

We can treat finding the correct action as a multi-class
classification problem!

N
out

Ou

OU

t: current parser state (stack / buffer / prev actions)

. ground-truth action from converted treebank

How many possible actions are there?

22

Where do we get an oracle??”

we have treebanks annotated with dependencies...

We can treat finding the correct action as a multi-class
classification problem!

N
out

OU

OU

' current parser state (stack / buffer / prev actions)

. ground-truth action from converted treebank

How many possible actions are there?

shift

nght-arc(X) - x is any dependency relation!!!

left-arc(X)

23

Generating Training Examples

e What we have in a treebank e What we need to train an oracle
 Pairs of configurations and

predicted parsing action
TN \
M Step Stack Word List Predicted Action

Book the flight through Houston 0 [root] [book, the, flight, through, houston] SHIFT
| [root, book] [the, flight, through, houston] SHIFT
2 [root, book, the] [flight, through, houston] SHIFT
3 [root, book, the, flight] [through, houston] LEFTARC
4 [root, book, flight] [through, houston] SHIFT
5 [root, book, flight, through] [houston] SHIFT
6 [root, book, flight, through, houston] [] LEFTARC
7 [root, book, flight, houston] [] RIGHTARC
8 [root, book, flight] [] RIGHTARC
9 [root, book] [] RIGHTARC
10 [root] [] Done

IDTNICEER] Generating training items consisting of configuration/predicted action pairs by
simulating a parse with a given reference parse.

24

Features

* Configuration consist of stack, buffer, current set of relations

* Typical features

e Features focus on top level of stack
 Use word forms, POS, and their location in stack and buffer

25

Features example

* Given configuration

Stack

Word buffer

Relations

[root, canceled, flights]

[to Houston]

(canceled — United)
(flights — morning)
(flights — the)

what kind of model can take
features like these as input?

can we use a neural network
for this task”? how?

26

* Example of useful features

(s1.w = flights,op = shift)
(s2.w = canceled,op = shift)
(s1.t = NNS,op = shift)

(s2.t = VBD,op = shift)
(by.w = to,op = shift)
(b1.t =TO,0p = shift)
(s1.wt = flightsNNS, op = shift)

(s1t.5ot = NNSVBD, op = shift)

Dependency parsing in action

Dependency parsing is used in many real-world applications,
like question answering (Cui et al, 2005):

[Example:Jacob Eisenstein]

https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

Dependency parsing in action

Dependency parsing is used in many real-world applications,
like question answering (Cui et al, 2005):

IS~ |

What % of the nation’s cheese does Wisconsin produce?

[Example:Jacob Eisenstein]

https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

Dependency parsing in action

Dependency parsing is used in many real-world applications,
like question answering (Cui et al, 2005):

IS~ |

What % of the nation’s cheese does Wisconsin produce?

AN SN

In Wisconsin, where farmers produce 28 % of the nation’s cheese, ...

[Example:Jacob Eisenstein]

https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

Dependency parsing in action

Question answering works by searching for statements which
match well against the query.

» In the surface form of the question, produce and % are six
words apart.

» But in the dependency parse, they're adjacent.

LS~ |

What % of the nation’s cheese does Wisconsin produce?

[Example:Jacob Eisenstein]

https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

Constits -> Deps

® Every phrase has a head word. It dominates all other
words of that phrase in the dep. graph.

® Head rules: for every nonterminal in tree, choose one of
its children to be its “head”. This will define head words.

® Every nonterminal type has a different head rule;
e.g. from Collins (1997):

® |[f parent is NP,
® Search from right-to-left for first child that’'s NN,
NNP, NNPS, NNS, NX, JJR

® FElse:search left-to-right for first child which is NP

31

S
NP VP

o7 R T

| | Vit NP
the lawyer |_ /\
questioned DT NN
| |
the witness

Y

S(questioned)

TN

NP (lawyer) VP (questioned)

N\

DT(the) NN (lawyer)
| | Vt(questioned) NP(witness)

the lawyer | /\
questioned

DT(the) NN (witness)
| |

the witness

® Dependencies tend to be less specific than
constituent structure

VP
’/\
VP VP PP
e N —
Vv NP PP PP VP PP with a fork
| | —

ate dinner on the table with a fork Y N|P on the table

(a) Flat ate dinner
(b) Two-level (PTB-style)

VP
- \

VP PP PP
/\
V NP the tabl ith a fork
| | on the table Wwi d 10r ! ﬂ m

ate dinner ate dinner on the table with a fork

(c) Chomsky adjunction (d) Dependency representation

33 [Example: Jacob Eisenstein]

https://github.com/jacobeisenstein/gt-nlp-class/tree/master/notes

Parsing to dependencies

® Constituents -> Dependency conversion is one
approach

® Direct dependency parsing more common
® Annotating dependencies is easier
® http://universaldependencies.org/

® Algorithmic approaches
® Graph-based: global CRF-style models
® History-based: shift-reduce (Nivre)

34

http://universaldependencies.org/

Graph-based parsing

Edge scoring models

ROOT: 9 ROOT
10 R‘
9
saw 30 Ssaw 30
30 ﬁ 30
- 1

John Mary John Mary

~_

3

Inference: minimum spanning tree algorithms
Learning: structured perceptron/svm

35 [Slides: McDonald and Nivre, EACL 2014 tutorial]

http://stp.lingfil.uu.se/~nivre/eacl14.html

Linear vs neural features

® Non-stateful

® Nivre (~2003 & others), “MALT": linear SVM to
make shift-reduce decisions, trained on oracle
decisions

® Chen and Manning (2014): neural softmax, trained
on oracle decisions

® Andors et al. (2016),"SyntaxNet”: similar but with
CRF-style global normalization

® Stateful: recurrent neural networks over
sentence or state transitions

36

Greedy, Local, Transition-Based Parsing

» Advantages:
» Highly efficient parsing — linear time complexity with constant

time oracles and transitions
» Rich history-based feature representations — no rigid

constraints from inference algorithm

» Drawback:
» Sensitive to search errors and error propagation due to greedy
inference and local learning
» The major question in transition-based parsing has been how
to improve learning and inference, while maintaining high
efficiency and rich feature models

[Slides: McDonald and Nivre, EACL 2014 tutorial]

Recent Advances in Dependency Parsing

http://stp.lingfil.uu.se/~nivre/eacl14.html

Better search

® Greedy decoding: errors can propagate
(e.g. garden paths!)

® Why not Viterbi?

® Beam search
® Beam: contain K automaton states (partial parses)

® |terate until done:
® For each item on beam: enumerate expansions
® Take top-K scoring items from ALL expansions, as the new
beam.
® Take top item on final beam as solution

® Most common heuristic search strategy for left-to-
right NLP models (incl. generation, machine translation)

38

