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questions from last time…
• info for project proposal? template now posted! 
• teammates for project? 
• HW2??? 
• recorded lecture audio not happening :(  
• midterm???  

• will cover text classification / language modeling / word 
embeddings / sequence labeling / machine translation 
(including today’s lecture)  

• will not cover CFGs / parsing.  
• 20% multiple choice, 80% short answer/computational qs 
• 1-page “cheat sheet” allowed, must be hand-written 

• Mohit out next lecture and 11/1
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limitations of IBM models

• discrete alignments 
• all alignments equally likely (model 1 only) 
• translation of each f word depends only on 

aligned e word!
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Recap: The Noisy Channel Model

I Goal: translation system from French to English

I Have a model p(e | f) which estimates conditional probability
of any English sentence e given the French sentence f . Use
the training corpus to set the parameters.

I A Noisy Channel Model has two components:

p(e) the language model

p(f | e) the translation model

I Giving:

p(e | f) = p(e, f)

p(f)
=

p(e)p(f | e)P
e p(e)p(f | e)

and
argmaxep(e | f) = argmaxep(e)p(f | e)
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Phrase-Based Model

• Foreign input is segmented in phrases

• Each phrase is translated into English

• Phrases are reordered

Chapter 5: Phrase-Based Models 2



phrase-based MT
• better way of modeling           : phrase 

alignments instead of word alignments
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p( f |e)

p( f |e) =
I

∏
i=1

ϕ( f̄i, ēi)d(starti − endi−1 − 1)

phrase translation probability

reordering probability

set of phrases in f
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Word Alignment
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Chapter 5: Phrase-Based Models 9

Phrase alignment from word alignment!
use IBM models 

to get word 
alignments!
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Phrase alignment from word alignment!

assumes / geht davon aus 
assumes that / geht davon aus , dass

use IBM models 
to get word 
alignments!
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Real Example

• Phrase translations for den Vorschlag learned from the Europarl corpus:

English �(ē| ¯f) English �(ē| ¯f)

the proposal 0.6227 the suggestions 0.0114
’s proposal 0.1068 the proposed 0.0114
a proposal 0.0341 the motion 0.0091
the idea 0.0250 the idea of 0.0091
this proposal 0.0227 the proposal , 0.0068
proposal 0.0205 its proposal 0.0068
of the proposal 0.0159 it 0.0068
the proposals 0.0159 ... ...

– lexical variation (proposal vs suggestions)
– morphological variation (proposal vs proposals)
– included function words (the, a, ...)
– noise (it)

Chapter 5: Phrase-Based Models 4

in general, we learn a phrase table to store these translation 
probabilities. what are some limitations of phrase-based MT?



today: neural MT
• instead of using the noisy channel model  to 

decompose                              , let’s directly 
model 
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p(e | f ) ∝ p( f |e)p(e)
p(e | f )

p(e | f ) = p(e1, e2, …, el | f )

= p(e1 | f ) ⋅ p(e2 |e1, f ) ⋅ p(e3 |e2, e1, f ) ⋅ …

=
L

∏
i=1

p(ei |e1, …, ei−1, f )

this is a conditional language model. how is this 
different than the LMs we saw in the IBM models?



seq2seq models

• use two different RNNs to model  

• first we have the encoder, which encodes the 
foreign sentence f 

• then, we have the decoder, which produces 
the English sentence e
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L

∏
i=1

p(ei |e1, …, ei−1, f )
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A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1, c2, c3, c4

c1 c2 c3 c4

the students opened their

̂y = softmax(W2h(t) + b2)

W2

h(t) = f(Whh(t−1) + Wect + b1)
h(0) is initial hidden state!

Reminder: RNN language models!
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Neural Machine Translation (NMT)

2/15/1823

<START>

Source sentence (input)

les    pauvres sont démunis

The sequence-to-sequence model
Target sentence (output)

Decoder RNN

Encoder RNN produces 
an encoding of the 
source sentence.

Encoding of the source sentence.
Provides initial hidden state 

for Decoder RNN.

Decoder RNN is a Language Model that generates 
target sentence conditioned on encoding.

the
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Note: This diagram shows test time behavior: 
decoder output is fed in           as next step’s input

have      any    money  <END>

don’t    have      any    money
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Training a Neural Machine Translation system

2/15/1825

En
co

de
r R

NN

Source sentence (from corpus)

<START>   the      poor    don’t    have      any    moneyles    pauvres sont démunis

Target sentence (from corpus)

Seq2seq is optimized as a single system.
Backpropagation operates “end to end”.

Decoder RNN

!"# !"$ !"% !"& !"' !"( !")

*# *$ *% *& *' *( *)

= negative log 
prob of “the”

* = 1
-./0#

1
*/ =                 +          +         +         +          +         +

= negative log 
prob of <END>

= negative log 
prob of “have”

what are the parameters of this model?
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Training a Neural Machine Translation system

2/15/1825
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Source sentence (from corpus)

<START>   the      poor    don’t    have      any    moneyles    pauvres sont démunis

Target sentence (from corpus)

Seq2seq is optimized as a single system.
Backpropagation operates “end to end”.

Decoder RNN

!"# !"$ !"% !"& !"' !"( !")

*# *$ *% *& *' *( *)

= negative log 
prob of “the”

* = 1
-./0#

1
*/ =                 +          +         +         +          +         +

= negative log 
prob of <END>

= negative log 
prob of “have”

what are the parameters of this model?
Wenc

h , Wenc
e , Cenc, Wdec

h , Wdec
e , Cdec, Wout

C is word embedding matrix



decoding
• given that we trained a seq2seq model, how 

do we find the most probable English 
sentence?  

• more concretely, how do we find  

• can we enumerate all possible English 
sentences e? 
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arg max
L

∏
i=1

p(ei |e1, …, ei−1, f )



decoding
• given that we trained a seq2seq model, how 

do we find the most probable English 
sentence?  

• more concretely, how do we find  

• can we enumerate all possible English 
sentences e?  

• can we use the Viterbi algorithm like we did 
for HMMs?
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arg max
L

∏
i=1

p(ei |e1, …, ei−1, f )



decoding
• given that we trained a seq2seq model, how 

do we find the most probable English 
sentence?  

• more concretely, how do we find  

• can we enumerate all possible English 
sentences e?  

• can we use the Viterbi algorithm like we did 
for HMMs?
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arg max
L

∏
i=1

p(ei |e1, …, ei−1, f )



decoding
• given that we trained a seq2seq model, how 

do we find the most probable English 
sentence?  

• easiest option: greedy decoding
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Better-than-greedy decoding?

• We showed how to generate (or “decode”) the target sentence 
by taking argmax on each step of the decoder

• This is greedy decoding (take most probable word on each step)
• Problems?

2/15/1826
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Beam search
• in greedy decoding, we cannot go back and 

revise previous decisions!  

• fundamental idea of beam search: explore 
several different hypotheses instead of just a 
single one 

• keep track of k most probable partial translations 
at each decoder step instead of just one! 

Better-than-greedy decoding?

• Greedy decoding has no way to undo decisions! 
• les pauvres sont démunis (the poor don’t have any money)
• → the ____
• → the poor ____
• → the poor are ____

• Better option: use beam search (a search algorithm) to explore 
several hypotheses and select the best one

2/15/1827

the beam size k is usually 5-10
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Beam search decoding: example

Beam size = 2

2/15/1830

<START>

the

a

-1.05

-1.39
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Beam search decoding: example

Beam size = 2

2/15/1831

poor
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<START>

the

a

-1.90

-1.54

-2.3

-3.2
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Beam search decoding: example

Beam size = 2

2/15/1832
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Beam search decoding: example

Beam size = 2

2/15/1833
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<START>

the

a

-3.82

-3.32

-2.67

-3.61

and so on…
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Beam search decoding: example

Beam size = 2
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Beam search decoding: example

Beam size = 2
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Beam search decoding: example

Beam size = 2

2/15/1836

poor

people

poor

person

are

don’t

person

but

always

not

have

take

in

with

any

enough

money

funds

money

funds

<START>

the

a



 29

how many probabilities do we need to evaluate 
at each time step with a beam size of k?

what are the termination 
conditions for beam search?

does beam search always produce the best 
translation (i.e., does it always find the argmax?)
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Advantages of NMT

Compared to SMT, NMT has many advantages:

• Better performance
• More fluent
• Better use of context
• Better use of phrase similarities

• A single neural network to be optimized end-to-end
• No subcomponents to be individually optimized

• Requires much less human engineering effort
• No feature engineering
• Same method for all language pairs

2/15/1837
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Disadvantages of NMT?

Compared to SMT:

• NMT is less interpretable 
• Hard to debug

• NMT is difficult to control
• For example, can’t easily specify rules or guidelines for 

translation
• Safety concerns!

2/15/1838
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Sequence-to-sequence: the bottleneck problem

2/15/1848

En
co

de
r R

NN

Source sentence (input)

<START>   the      poor    don’t    have      any    moneyles    pauvres sont démunis

the      poor    don’t    have      any    money  <END>

Decoder RNN

Target sentence (output)

Encoding of the 
source sentence. 

This needs to capture all 
information about the 

source sentence.
Information bottleneck!



The solution: attention

• Attention mechanisms allow the decoder 
to focus on a particular part of the source 
sequence at each time step 
• Conceptually similar to alignments

 33
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Sequence-to-sequence with attention

2/15/1853
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dot product

decoder, first time step

dot product with each 
encoder hidden state
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Sequence-to-sequence with attention

2/15/1854
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<START>les    pauvres sont démunis

Decoder RNN
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On this decoder timestep, we’re 
mostly focusing on the first 
encoder hidden state (”les”)
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Take softmax to turn the scores 
into a probability distribution
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Sequence-to-sequence with attention

2/15/1855
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Attention 
output

Use the attention distribution to take a 
weighted sum of the encoder hidden 
states.

The attention output mostly contains 
information the hidden states that 
received high attention.
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Sequence-to-sequence with attention

2/15/1856
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use to compute !"# as before
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Sequence-to-sequence with attention

2/15/1857
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decoder, second time step
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Attention is great

• Attention significantly improves NMT performance
• It’s very useful to allow decoder to focus on certain parts of the source

• Attention solves the bottleneck problem
• Attention allows decoder to look directly at source; bypass bottleneck

• Attention helps with vanishing gradient problem
• Provides shortcut to faraway states

• Attention provides some interpretability
• By inspecting attention distribution, we can see 

what the decoder was focusing on
• We get alignment for free!
• This is cool because we never explicitly trained

an alignment system
• The network just learned alignment by itself

2/15/1863

9/24/14 
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Alignments: hardest 
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phrase 
alignment 

Alignment as a vector 

Mary 
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not 
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i j 

1 
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4 
4 
4 
0 
5 
7 
6 

aj=i 
•  used in all IBM models 
•  a is vector of length J 
•  maps indexes j to indexes i 
•  each aj 
 {0, 1 … I} 
•  aj = 0 	 fj is �spurious� 
•  no one-to-many alignments 
•  no many-to-many alignments 
•  but provides foundation for 

phrase-based alignment 

IBM Model 1 generative story 
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Choose length J for French sentence 

For each j in 1 to J: 

–  Choose aj uniformly from 0, 1, … I 

–  Choose fj by translating eaj 

Given English sentence e1, e2, … eI 

We want to learn 
how to do this 

Want: P(f|e) 

IBM Model 1 parameters 
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Applying Model 1* 

As translation model 

As alignment model 

P(f, a | e) can be used as a translation model or an alignment model 

* Actually, any P(f, a | e), e.g., any IBM model 



onto evaluation…
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How good is a translation?
Problem: no single right answer
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Evaluation
• How good is a given machine translation system?

• Many different translations acceptable

• Evaluation metrics
• Subjective judgments by human evaluators
• Automatic evaluation metrics
• Task-based evaluation
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Automatic Evaluation Metrics
• Goal: computer program that computes quality of translations

• Advantages: low cost, optimizable, consistent

• Basic strategy
• Given: MT output
• Given: human reference translation
• Task: compute similarity between them
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Precision and Recall of Words
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Precision and Recall of Words
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BLEU 
Bilingual Evaluation Understudy
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Multiple Reference Translations
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BLEU examples



neural MT usually > phrase-based MT!

 49 from Toral & Way, 2018

English-to-Catalan novel translation



what are some drawbacks of BLEU?
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what are some drawbacks of BLEU?

• all words/n-grams treated as equally relevant 
• operates on local level 
• scores are meaningless (absolute value not 

informative) 
• human translators also score low on BLEU
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Yet automatic metrics such as BLEU 
correlate with human judgement



exercise!
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