
sequence modeling:
Viterbi algorithm

CS 585, Fall 2018

Introduction to Natural Language Processing

http://people.cs.umass.edu/~miyyer/cs585/

Mohit Iyyer

College of Information and Computer Sciences

University of Massachusetts Amherst

some slides from Jordan Boyd-Graber

http://people.cs.umass.edu/~miyyer/cs585/

questions from last time…

• audio on recorded lectures???????? idk,
communicating w/ the echo360 ppl now

• could you go slower / repeat important
concepts that aren’t on the slides? yes,
sorry!

• is it possible to do the project alone? in a
team of 3, one person ends up doing nothing
eventually! unfortunately not, but we will
evaluate team members separately

 2

 3

POS Tagging
• Input: Plays well with others

• Ambiguity: NNS/VBZ UH/JJ/NN/RB IN NNS

• Output: Plays/VBZ well/RB with/IN others/NNS

Penn
Treebank
POS tags

 4

 5

HMM Recapitulation

HMM Definition

Assume K parts of speech, a lexicon size of V , a series of observations
{x1, . . . , xN}, and a series of unobserved states {z1, . . . , zN}.

⇡ A distribution over start states (vector of length K):
⇡i = p(z1 = i)

✓ Transition matrix (matrix of size K by K):
✓i ,j = p(zn = j |zn�1 = i)

� An emission matrix (matrix of size K by V):
�j ,w = p(xn = w |zn = j)

Two problems: How do we move from data to a model? (Estimation)
How do we move from a model and unlabled data to labeled data?
(Inference)

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 26 of 35

today: inference!

probability of a tag sequence

 6

P(x = x1, x2, ⋯, xn, z = z1, z2, ⋯, zn) =

P(z1) * P(x1 |z1) * p(z2 |z1) * p(x2 |z2) * ⋯

initial prob π emission prob β transition prob θ

let’s quickly review
estimation before

continuing….

 7

 8

HMM Estimation

Reminder: How do we estimate a probability?

• For a multinomial distribution (i.e. a discrete distribution, like over
words):

✓i =
ni + ↵iP
k nk + ↵k

(1)

• ↵i is called a smoothing factor, a pseudocount, etc.

• When ↵i = 1 for all i , it’s called “Laplace smoothing” and
corresponds to a uniform prior over all multinomial distributions.

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 28 of 35

just like in naive Bayes, we’ll be
counting to estimate these probabilities!

 9

HMM Estimation

Training Sentences

x here come old flattop
z MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO V

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 29 of 35

x = tokens
z = POS tags

 10

HMM Estimation

Initial Probability ⇡

POS Frequency Probability
MOD 1.1 0.234
DET 1.1 0.234
CONJ 1.1 0.234
N 0.1 0.021

PREP 0.1 0.021
PRO 0.1 0.021
V 1.1 0.234

Remember, we’re taking MAP estimates, so we add 0.1 (arbitrarily
chosen) to each of the counts before normalizing to create a
probability distribution. This is easy; one sentence starts with an
adjective, one with a determiner, one with a verb, and one with a
conjunction.

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 30 of 35

let’s use add-alpha smoothing with alpha = 0.1

 11

HMM Estimation

Training Sentences

here come old flattop
MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO N

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 31 of 35

 12

HMM Estimation

Training Sentences

here come old flattop
MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO N

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 31 of 35

 13

HMM Estimation

Training Sentences

here come old flattop
MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO N

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 31 of 35

 14

HMM Estimation

Transition Probability ✓

• We can ignore the words; just look at the parts of speech. Let’s
compute one row, the row for verbs.

• We see the following transitions: V ! MOD, V ! CONJ, V ! V,
V ! PRO, and V ! PRO

POS Frequency Probability
MOD 1.1 0.193
DET 0.1 0.018
CONJ 1.1 0.193
N 0.1 0.018

PREP 0.1 0.018
PRO 2.1 0.368
V 1.1 0.193

• And do the same for each part of speech ...

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 32 of 35

 15

HMM Estimation

Training Sentences

here come old flattop
MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO N

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 33 of 35

 16

HMM Estimation

Training Sentences

here come old flattop
MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO N

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 33 of 35

 17

HMM Estimation

Emission Probability �

Let’s look at verbs . . .
Word a and come crowd flattop

Frequency 0.1 0.1 1.1 0.1 0.1
Probability 0.0125 0.0125 0.1375 0.0125 0.0125

Word get gotta her here i
Frequency 1.1 1.1 0.1 0.1 0.1
Probability 0.1375 0.1375 0.0125 0.0125 0.0125

Word into it life love my
Frequency 0.1 0.1 0.1 1.1 0.1
Probability 0.0125 0.0125 0.0125 0.1375 0.0125

Word of old people stared stopped
Frequency 0.1 0.1 0.1 1.1 1.1
Probability 0.0125 0.0125 0.0125 0.1375 0.1375

Natural Language Processing: Jordan Boyd-Graber | Boulder Part of Speech Tagging | 34 of 35

now… given that we’ve estimated
an HMM, how do we use it to get

POS tags for unlabeled data?

 18

 19

Finding Tag Sequences

Viterbi Algorithm

• Given an unobserved sequence of length L, {x1, . . . , x
L

}, we want
to find a sequence {z1 . . . z

L

} with the highest probability.

• It’s impossible to compute KL possibilities.

• So, we use dynamic programming to compute most likely tags for
each token subsequence from 0 to t that ends in state k .

• Memoization: fill a table of solutions of sub-problems

• Solve larger problems by composing sub-solutions

• Base case:
�1(k) = ⇡

k

�
k,x

i

(1)

• Recursion:
�
n

(k) = max
j

(�
n�1(j)✓

j ,k)�k,x
n

(2)

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 3 of 21

how many different possible tag sequences exist?

 20

Finding Tag Sequences

Viterbi Algorithm

• Given an unobserved sequence of length L, {x1, . . . , x
L

}, we want
to find a sequence {z1 . . . z

L

} with the highest probability.

• It’s impossible to compute KL possibilities.

• So, we use dynamic programming to compute most likely tags for
each token subsequence from 0 to t that ends in state k .

• Memoization: fill a table of solutions of sub-problems

• Solve larger problems by composing sub-solutions

• Base case:
�1(k) = ⇡

k

�
k,x

i

(1)

• Recursion:
�
n

(k) = max
j

(�
n�1(j)✓

j ,k)�k,x
n

(2)

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 3 of 21

 21

Finding Tag Sequences

Viterbi Algorithm

• Given an unobserved sequence of length L, {x1, . . . , x
L

}, we want
to find a sequence {z1 . . . z

L

} with the highest probability.

• It’s impossible to compute KL possibilities.

• So, we use dynamic programming to compute most likely tags for
each token subsequence from 0 to t that ends in state k .

• Memoization: fill a table of solutions of sub-problems

• Solve larger problems by composing sub-solutions

• Base case:
�1(k) = ⇡

k

�
k,x

i

(1)

• Recursion:
�
n

(k) = max
j

(�
n�1(j)✓

j ,k)�k,x
n

(2)

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 3 of 21

 22

Finding Tag Sequences

Viterbi Algorithm

• Given an unobserved sequence of length L, {x1, . . . , x
L

}, we want
to find a sequence {z1 . . . z

L

} with the highest probability.

• It’s impossible to compute KL possibilities.

• So, we use dynamic programming to compute most likely tags for
each token subsequence from 0 to t that ends in state k .

• Memoization: fill a table of solutions of sub-problems

• Solve larger problems by composing sub-solutions

• Base case:
�1(k) = ⇡

k

�
k,x

i

(1)

• Recursion:
�
n

(k) = max
j

(�
n�1(j)✓

j ,k)�k,x
n

(2)

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 3 of 21

 23

Finding Tag Sequences

Viterbi Algorithm

• Given an unobserved sequence of length L, {x1, . . . , x
L

}, we want
to find a sequence {z1 . . . z

L

} with the highest probability.

• It’s impossible to compute KL possibilities.

• So, we use dynamic programming to compute most likely tags for
each token subsequence from 0 to t that ends in state k .

• Memoization: fill a table of solutions of sub-problems

• Solve larger problems by composing sub-solutions

• Base case:
�1(k) = ⇡

k

�
k,x

i

(1)

• Recursion:
�
n

(k) = max
j

(�
n�1(j)✓

j ,k)�k,x
n

(2)

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 3 of 21

what is the complexity of this algorithm?
K2L

need to keep backpointers!

 25

Finding Tag Sequences

• The complexity of this is now K 2L.

• In class: example that shows why you need all O(KL) table cells
(garden pathing)

• But just computing the max isn’t enough. We also have to
remember where we came from. (Breadcrumbs from best previous
state.)

n

= argmax
j

�
n�1(j)✓

j ,k (3)

• Let’s do that for the sentence “come and get it”

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 4 of 21

let’s do an example for the sentence come and get it

 26

Viterbi Algorithm

POS ⇡
k

�
k,x1 log �1(k)

MOD 0.234 0.024 -5.18
DET 0.234 0.032 -4.89
CONJ 0.234 0.024 -5.18
N 0.021 0.016 -7.99

PREP 0.021 0.024 -7.59
PRO 0.021 0.016 -7.99
V 0.234 0.121 -3.56

come and get it

Why logarithms?

1. More interpretable than a float with lots of zeros.

2. Underflow is less of an issue

3. Addition is cheaper than multiplication

log(ab) = log(a) + log(b) (4)

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 6 of 21

= log(πkβk,x1
)

 27

Viterbi Algorithm

POS log �1(j)

log �1(j)✓
j ,CONJ

log �2(CONJ)

MOD -5.18

-8.48

DET -4.89

-7.72

CONJ -5.18

-8.47 ??? -6.02

N -7.99

 �7.99

PREP -7.59

 �7.59

PRO -7.99

 �7.99

V -3.56

-5.21

come and get it

log
⇣
�0(V)✓V, CONJ

⌘
= log �0(k) + log ✓V, CONJ = �3.56 +�1.65

log �1(k) = �5.21� log �CONJ, and =

� 5.21� 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 7 of 21

 28

Viterbi Algorithm

POS log �1(j)

log �1(j)✓
j ,CONJ

log �2(CONJ)

MOD -5.18

-8.48

DET -4.89

-7.72

CONJ -5.18

-8.47

???

-6.02

N -7.99

 �7.99

PREP -7.59

 �7.59

PRO -7.99

 �7.99

V -3.56

-5.21

come and get it

log
⇣
�0(V)✓V, CONJ

⌘
= log �0(k) + log ✓V, CONJ = �3.56 +�1.65

log �1(k) = �5.21� log �CONJ, and =

� 5.21� 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 7 of 21

 29

Viterbi Algorithm

POS log �1(j) log �1(j)✓
j ,CONJ log �2(CONJ)

MOD -5.18

-8.48

DET -4.89

-7.72

CONJ -5.18

-8.47

???

-6.02

N -7.99

 �7.99

PREP -7.59

 �7.59

PRO -7.99

 �7.99

V -3.56

-5.21

come and get it

log
⇣
�0(V)✓V, CONJ

⌘
= log �0(k) + log ✓V, CONJ = �3.56 +�1.65

log �1(k) = �5.21� log �CONJ, and =

� 5.21� 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 7 of 21

 30

Viterbi Algorithm

POS log �1(j) log �1(j)✓
j ,CONJ log �2(CONJ)

MOD -5.18

-8.48

DET -4.89

-7.72

CONJ -5.18

-8.47

???

-6.02

N -7.99

 �7.99

PREP -7.59

 �7.59

PRO -7.99

 �7.99

V -3.56

-5.21

come and get it

log
⇣
�0(V)✓V, CONJ

⌘
= log �0(k) + log ✓V, CONJ = �3.56 +�1.65

log �1(k) = �5.21� log �CONJ, and =

� 5.21� 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 7 of 21

 31

Viterbi Algorithm

POS log �1(j) log �1(j)✓
j ,CONJ log �2(CONJ)

MOD -5.18

-8.48

DET -4.89

-7.72

CONJ -5.18

-8.47

???

-6.02

N -7.99

 �7.99

PREP -7.59

 �7.59

PRO -7.99

 �7.99

V -3.56 -5.21

come and get it

log
⇣
�0(V)✓V, CONJ

⌘
= log �0(k) + log ✓V, CONJ = �3.56 +�1.65

log �1(k) = �5.21� log �CONJ, and =

� 5.21� 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 7 of 21

 32

Viterbi Algorithm

POS log �1(j) log �1(j)✓
j ,CONJ log �2(CONJ)

MOD -5.18

-8.48

DET -4.89

-7.72

CONJ -5.18

-8.47

???

-6.02

N -7.99  �7.99
PREP -7.59  �7.59
PRO -7.99  �7.99
V -3.56 -5.21

come and get it

log
⇣
�0(V)✓V, CONJ

⌘
= log �0(k) + log ✓V, CONJ = �3.56 +�1.65

log �1(k) = �5.21� log �CONJ, and =

� 5.21� 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 7 of 21

 33

Viterbi Algorithm

POS log �1(j) log �1(j)✓
j ,CONJ log �2(CONJ)

MOD -5.18 -8.48
DET -4.89 -7.72
CONJ -5.18 -8.47 ???

-6.02

N -7.99  �7.99
PREP -7.59  �7.59
PRO -7.99  �7.99
V -3.56 -5.21

come and get it

log
⇣
�0(V)✓V, CONJ

⌘
= log �0(k) + log ✓V, CONJ = �3.56 +�1.65

log �1(k) = �5.21� log �CONJ, and =

� 5.21� 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 7 of 21

 34

Viterbi Algorithm

POS log �1(j) log �1(j)✓
j ,CONJ log �2(CONJ)

MOD -5.18 -8.48
DET -4.89 -7.72
CONJ -5.18 -8.47 ???

-6.02

N -7.99  �7.99
PREP -7.59  �7.59
PRO -7.99  �7.99
V -3.56 -5.21

come and get it

log
⇣
�0(V)✓V, CONJ

⌘
= log �0(k) + log ✓V, CONJ = �3.56 +�1.65

log �1(k) = �5.21� log �CONJ, and =

� 5.21� 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 7 of 21

 35

Viterbi Algorithm

POS log �1(j) log �1(j)✓
j ,CONJ log �2(CONJ)

MOD -5.18 -8.48
DET -4.89 -7.72
CONJ -5.18 -8.47

??? -6.02

N -7.99  �7.99
PREP -7.59  �7.59
PRO -7.99  �7.99
V -3.56 -5.21

come and get it

log
⇣
�0(V)✓V, CONJ

⌘
= log �0(k) + log ✓V, CONJ = �3.56 +�1.65

log �1(k) = �5.21� log �CONJ, and =

� 5.21� 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 7 of 21

 36

Viterbi Algorithm

POS log �1(j) log �1(j)✓
j ,CONJ log �2(CONJ)

MOD -5.18 -8.48
DET -4.89 -7.72
CONJ -5.18 -8.47

??? -6.02

N -7.99  �7.99
PREP -7.59  �7.59
PRO -7.99  �7.99
V -3.56 -5.21

come and get it

log
⇣
�0(V)✓V, CONJ

⌘
= log �0(k) + log ✓V, CONJ = �3.56 +�1.65

log �1(k) = �5.21� log �CONJ, and = � 5.21� 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 7 of 21

 37

Viterbi Algorithm

POS log �1(j) log �1(j)✓
j ,CONJ log �2(CONJ)

MOD -5.18 -8.48
DET -4.89 -7.72
CONJ -5.18 -8.47

???

-6.02
N -7.99  �7.99

PREP -7.59  �7.59
PRO -7.99  �7.99
V -3.56 -5.21

come and get it

log
⇣
�0(V)✓V, CONJ

⌘
= log �0(k) + log ✓V, CONJ = �3.56 +�1.65

log �1(k) = �5.21� log �CONJ, and =

� 5.21� 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 7 of 21

 38

Viterbi Algorithm

POS �1(k) �2(k) b2 �3(k) b3 �4(k) b4
MOD -5.18

-0.00 X -0.00 X -0.00 X

DET -4.89

-0.00 X -0.00 X -0.00 X

CONJ -5.18 -6.02 V

-0.00 X -0.00 X

N -7.99

-0.00 X -0.00 X -0.00 X

PREP -7.59

-0.00 X -0.00 X -0.00 X

PRO -7.99

-0.00 X -0.00 X -14.6 V

V -3.56

-0.00 X -9.03 CONJ -0.00 X

WORD come and get it

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 8 of 21

backpointer!

 39

Viterbi Algorithm

POS �1(k) �2(k) b2 �3(k) b3 �4(k) b4
MOD -5.18 -0.00 X

-0.00 X -0.00 X

DET -4.89 -0.00 X

-0.00 X -0.00 X

CONJ -5.18 -6.02 V

-0.00 X -0.00 X

N -7.99 -0.00 X

-0.00 X -0.00 X

PREP -7.59 -0.00 X

-0.00 X -0.00 X

PRO -7.99 -0.00 X

-0.00 X -14.6 V

V -3.56 -0.00 X

-9.03 CONJ -0.00 X

WORD come and get it

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 8 of 21

 40

Viterbi Algorithm

POS �1(k) �2(k) b2 �3(k) b3 �4(k) b4
MOD -5.18 -0.00 X -0.00 X

-0.00 X

DET -4.89 -0.00 X -0.00 X

-0.00 X

CONJ -5.18 -6.02 V -0.00 X

-0.00 X

N -7.99 -0.00 X -0.00 X

-0.00 X

PREP -7.59 -0.00 X -0.00 X

-0.00 X

PRO -7.99 -0.00 X -0.00 X

-14.6 V

V -3.56 -0.00 X -9.03 CONJ

-0.00 X

WORD come and get it

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 8 of 21

 41

Viterbi Algorithm

POS �1(k) �2(k) b2 �3(k) b3 �4(k) b4
MOD -5.18 -0.00 X -0.00 X -0.00 X
DET -4.89 -0.00 X -0.00 X -0.00 X
CONJ -5.18 -6.02 V -0.00 X -0.00 X
N -7.99 -0.00 X -0.00 X -0.00 X

PREP -7.59 -0.00 X -0.00 X -0.00 X
PRO -7.99 -0.00 X -0.00 X -14.6 V
V -3.56 -0.00 X -9.03 CONJ -0.00 X

WORD come and get it

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 8 of 21

 42

Viterbi Algorithm

POS �1(k) �2(k) b2 �3(k) b3 �4(k) b4
MOD -5.18 -0.00 X -0.00 X -0.00 X
DET -4.89 -0.00 X -0.00 X -0.00 X
CONJ -5.18 -6.02 V -0.00 X -0.00 X
N -7.99 -0.00 X -0.00 X -0.00 X

PREP -7.59 -0.00 X -0.00 X -0.00 X
PRO -7.99 -0.00 X -0.00 X -14.6 V
V -3.56 -0.00 X -9.03 CONJ -0.00 X

WORD come and get it

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 8 of 21

most probable POS seq: V CONJ V PRO

let’s talk about projects!

Timeline

• Project proposal: 2-4 pages, due Oct 19
• Progress report: 4-6 pages, due Nov 16
• Poster presentations: near end of classes
• Final report: 12+ pages, due Dec 20

 44

Project

• Either build natural language processing systems,
or apply them for some task.

• Use or develop a dataset. Report empirical
results or analyses with it.

• Different possible areas of focus

• Implementation & development of algorithms

• Defining a new task or applying a linguistic
formalism

• Exploring a dataset or task

 45

Formulating a proposal

• What is the research question?

• What’s been done before?

• What experiments will you do?

• How will you know whether it worked?

• If data: held-out accuracy

• If no data: manual evaluation of system output.  
Or, annotate new data

 46

 47

The Heilmeier Catechism

• What are you trying to do? Articulate your objectives

using absolutely no jargon.

• How is it done today, and what are the limits of

current practice?

• What is new in your approach and why do you think it

will be successful?

• Who cares? If you are successful, what difference will

it make?

• What are the risks?

• How much will it cost?

• How long will it take?

• What are the mid-term and final “exams” to check for

success?
https://en.wikipedia.org/wiki/George_H._Heilmeier#Heilmeier.27s_Catechism

An example proposal

• Introduction / problem statement
• Motivation (why should we care? why is this

problem interesting?)
• Literature review (what has prev. been done?)
• Possible datasets
• Evaluation
• Tools and resources
• Project milestones / tentative schedule

 48

NLP Research
• All the best publications in NLP are open access!

• Conference proceedings: ACL, EMNLP, NAACL  
(EACL, LREC...)

• Journals: TACL, CL

• “aclweb”: ACL Anthology-hosted papers 
http://aclweb.org/anthology/

• NLP-related work appears in other journals/conferences too: data mining (KDD),
machine learning (ICML, NIPS), AI (AAAI), information retrieval (SIGIR, CIKM),
social sciences (Text as Data), etc.

• Reading tips

• Google Scholar

• Find papers

• See paper’s number of citations (imperfect but useful correlate of paper quality) and
what later papers cite it

• [... or SemanticScholar...]

• For topic X: search e.g. [[nlp X]], [[aclweb X]], [[acl X]], [[X research]]...

• Authors’ webpages 
find researchers who are good at writing and whose work you like

• Misc. NLP research reading tips:  
http://idibon.com/top-nlp-conferences-journals/

 49

http://aclweb.org/anthology/
http://idibon.com/top-nlp-conferences-journals/

A few examples
• Detection tasks

• Sentiment detection

• Sarcasm and humor detection

• Emoticon detection / learning

• Structured linguistic prediction

• Targeted sentiment analysis (i liked __
but hated __)

• Relation, event extraction (who did
what to whom)

• Narrative chain extraction

• Parsing (syntax, semantics, discourse...)

• Text generation tasks

• Machine translation

• Document summarization

• Poetry / lyrics generation (e.g. recent
work on hip-hop lyrics)

• Text normalization (e.g. translate
online/Twitter text to standardized
English)

 50

• End to end systems

• Question answering

• Conversational dialogue systems
(hard to eval?)

• Predict external things from text

• Movie revenues based on movie
reviews ... or online buzz? http://
www.cs.cmu.edu/~ark/movie$-data/

• Visualization and exploration (harder
to evaluate)

• Temporal analysis of events, show
on timeline

• Topic models: cluster and explore
documents

• Figure out a task with a cool dataset

• e.g. Urban Dictionary

http://www.cs.cmu.edu/~ark/movie$-data/
http://www.cs.cmu.edu/~ark/movie$-data/

Sources of data
• All projects must use (or make, and use) a textual dataset. Many

possibilities.

• For some projects, creating the dataset may be a large portion of the work;
for others, just download and more work on the system/modeling side

• SemEval and CoNLL Shared Tasks:  
dozens of datasets/tasks with labeled NLP annotations

• Sentiment, NER, Coreference, Textual Similarity, Syntactic Parsing, Discourse
Parsing, and many other things...

• e.g. SemEval 2015 ... CoNLL Shared Task 2015 ...

• https://en.wikipedia.org/wiki/SemEval (many per year)

• http://ifarm.nl/signll/conll/ (one per year)

• General text data (not necessarily task specific)

• Books (e.g. Project Gutenberg)

• Reviews (e.g. Yelp Academic Dataset https://www.yelp.com/academic_dataset)

• Web

• Tweets

 51

https://en.wikipedia.org/wiki/SemEval
http://ifarm.nl/signll/conll/
https://www.yelp.com/academic_dataset

Tools

• Tagging, parsing, NER, coref, ...

• Stanford CoreNLP http://nlp.stanford.edu/software/corenlp.shtml

• spaCy (English-only, no coref) http://spacy.io/

• Twitter-specific tools (ARK, GATE)

• Many other tools and resources 
tools ... word segmentation ... morph analyzers ...  
resources ... pronunciation dictionaries ... wordnet, word embeddings, word
clusters ...

• Long list of NLP resources 
https://medium.com/@joshdotai/a-curated-list-of-speech-and-natural-language-processing-
resources-4d89f94c032a

• Deep learning? Try out AllenNLP, PyTorch,
Tensorflow (https://allennlp.org, https://pytorch.org/, https://www.tensorflow.org/)

 52

http://nlp.stanford.edu/software/corenlp.shtml
http://spacy.io/
https://medium.com/@joshdotai/a-curated-list-of-speech-and-natural-language-processing-resources-4d89f94c032a
https://medium.com/@joshdotai/a-curated-list-of-speech-and-natural-language-processing-resources-4d89f94c032a

