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questions from last time…

• audio on recorded lectures???????? idk, 
communicating w/ the echo360 ppl now 

• could you go slower / repeat important 
concepts that aren’t on the slides? yes, 
sorry! 

• is it possible to do the project alone? in a 
team of 3, one person ends up doing nothing 
eventually! unfortunately not, but we will 
evaluate team members separately
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POS Tagging
• Input:       Plays          well                  with  others 

• Ambiguity:  NNS/VBZ    UH/JJ/NN/RB     IN    NNS 

• Output:     Plays/VBZ well/RB with/IN others/NNS

Penn 
Treebank 
POS tags
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HMM Recapitulation

HMM Definition

Assume K parts of speech, a lexicon size of V , a series of observations
{x1, . . . , xN}, and a series of unobserved states {z1, . . . , zN}.

⇡ A distribution over start states (vector of length K ):
⇡i = p(z1 = i)

✓ Transition matrix (matrix of size K by K ):
✓i ,j = p(zn = j |zn�1 = i)

� An emission matrix (matrix of size K by V ):
�j ,w = p(xn = w |zn = j)

Two problems: How do we move from data to a model? (Estimation)
How do we move from a model and unlabled data to labeled data?
(Inference)
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today: inference!



probability of a tag sequence
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P(x = x1, x2, ⋯, xn, z = z1, z2, ⋯, zn) =

P(z1) * P(x1 |z1) * p(z2 |z1) * p(x2 |z2) * ⋯

initial prob π emission prob β transition prob θ



let’s quickly review 
estimation before 

continuing….
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HMM Estimation

Reminder: How do we estimate a probability?

• For a multinomial distribution (i.e. a discrete distribution, like over
words):

✓i =
ni + ↵iP
k nk + ↵k

(1)

• ↵i is called a smoothing factor, a pseudocount, etc.

• When ↵i = 1 for all i , it’s called “Laplace smoothing” and
corresponds to a uniform prior over all multinomial distributions.
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just like in naive Bayes, we’ll be 
counting to estimate these probabilities!
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HMM Estimation

Training Sentences

x here come old flattop
z MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO V

and I love her
CONJ PRO V PRO
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x = tokens 
z = POS tags
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HMM Estimation

Initial Probability ⇡

POS Frequency Probability
MOD 1.1 0.234
DET 1.1 0.234
CONJ 1.1 0.234
N 0.1 0.021

PREP 0.1 0.021
PRO 0.1 0.021
V 1.1 0.234

Remember, we’re taking MAP estimates, so we add 0.1 (arbitrarily
chosen) to each of the counts before normalizing to create a
probability distribution. This is easy; one sentence starts with an
adjective, one with a determiner, one with a verb, and one with a
conjunction.
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let’s use add-alpha smoothing with alpha = 0.1
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HMM Estimation

Transition Probability ✓

• We can ignore the words; just look at the parts of speech. Let’s
compute one row, the row for verbs.

• We see the following transitions: V ! MOD, V ! CONJ, V ! V,
V ! PRO, and V ! PRO

POS Frequency Probability
MOD 1.1 0.193
DET 0.1 0.018
CONJ 1.1 0.193
N 0.1 0.018

PREP 0.1 0.018
PRO 2.1 0.368
V 1.1 0.193

• And do the same for each part of speech ...
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HMM Estimation

Training Sentences
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HMM Estimation

Emission Probability �

Let’s look at verbs . . .
Word a and come crowd flattop

Frequency 0.1 0.1 1.1 0.1 0.1
Probability 0.0125 0.0125 0.1375 0.0125 0.0125

Word get gotta her here i
Frequency 1.1 1.1 0.1 0.1 0.1
Probability 0.1375 0.1375 0.0125 0.0125 0.0125

Word into it life love my
Frequency 0.1 0.1 0.1 1.1 0.1
Probability 0.0125 0.0125 0.0125 0.1375 0.0125

Word of old people stared stopped
Frequency 0.1 0.1 0.1 1.1 1.1
Probability 0.0125 0.0125 0.0125 0.1375 0.1375
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now… given that we’ve estimated 
an HMM, how do we use it to get 

POS tags for unlabeled data?
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Finding Tag Sequences

Viterbi Algorithm

• Given an unobserved sequence of length L, {x1, . . . , x
L

}, we want
to find a sequence {z1 . . . z

L

} with the highest probability.

• It’s impossible to compute KL possibilities.

• So, we use dynamic programming to compute most likely tags for
each token subsequence from 0 to t that ends in state k .

• Memoization: fill a table of solutions of sub-problems

• Solve larger problems by composing sub-solutions

• Base case:
�1(k) = ⇡

k

�
k,x

i

(1)

• Recursion:
�
n

(k) = max
j

(�
n�1(j)✓

j ,k)�k,x
n

(2)
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how many different possible tag sequences exist?
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what is the complexity of this algorithm?
K2L



need to keep backpointers!
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Finding Tag Sequences

• The complexity of this is now K 2L.

• In class: example that shows why you need all O(KL) table cells
(garden pathing)

• But just computing the max isn’t enough. We also have to
remember where we came from. (Breadcrumbs from best previous
state.)

 
n

= argmax
j

�
n�1(j)✓

j ,k (3)

• Let’s do that for the sentence “come and get it”
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let’s do an example for the sentence come and get it
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Viterbi Algorithm

POS ⇡
k

�
k,x1 log �1(k)

MOD 0.234 0.024 -5.18
DET 0.234 0.032 -4.89
CONJ 0.234 0.024 -5.18
N 0.021 0.016 -7.99

PREP 0.021 0.024 -7.59
PRO 0.021 0.016 -7.99
V 0.234 0.121 -3.56

come and get it

Why logarithms?

1. More interpretable than a float with lots of zeros.

2. Underflow is less of an issue

3. Addition is cheaper than multiplication

log(ab) = log(a) + log(b) (4)
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= log(πkβk,x1
)
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Viterbi Algorithm

POS log �1(j)

log �1(j)✓
j ,CONJ

log �2(CONJ)

MOD -5.18

-8.48

DET -4.89

-7.72

CONJ -5.18

-8.47 ??? -6.02

N -7.99

 �7.99

PREP -7.59

 �7.59

PRO -7.99

 �7.99

V -3.56

-5.21

come and get it

log
⇣
�0(V)✓V, CONJ

⌘
= log �0(k) + log ✓V, CONJ = �3.56 +�1.65

log �1(k) = �5.21� log �CONJ, and =

� 5.21� 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Inference and Estimation for HMMs | 7 of 21
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Viterbi Algorithm

POS �1(k) �2(k) b2 �3(k) b3 �4(k) b4
MOD -5.18

-0.00 X -0.00 X -0.00 X

DET -4.89

-0.00 X -0.00 X -0.00 X

CONJ -5.18 -6.02 V

-0.00 X -0.00 X

N -7.99

-0.00 X -0.00 X -0.00 X

PREP -7.59

-0.00 X -0.00 X -0.00 X

PRO -7.99

-0.00 X -0.00 X -14.6 V

V -3.56

-0.00 X -9.03 CONJ -0.00 X

WORD come and get it
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most probable POS seq: V CONJ V PRO



let’s talk about projects!



Timeline

• Project proposal: 2-4 pages, due Oct 19 
• Progress report: 4-6 pages, due Nov 16 
• Poster presentations: near end of classes 
• Final report: 12+ pages, due Dec 20

 44



Project

• Either build natural language processing systems, 
or apply them for some task.

• Use or develop a dataset.  Report empirical 
results or analyses with it.

• Different possible areas of focus

• Implementation & development of algorithms

• Defining a new task or applying a linguistic 
formalism

• Exploring a dataset or task

 45



Formulating a proposal

• What is the research question?

• What’s been done before?

• What experiments will you do?

• How will you know whether it worked?

• If data: held-out accuracy

• If no data: manual evaluation of system output.  
Or, annotate new data

 46
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The Heilmeier Catechism

• What are you trying to do? Articulate your objectives 

using absolutely no jargon.

• How is it done today, and what are the limits of 

current practice?

• What is new in your approach and why do you think it 

will be successful?

• Who cares? If you are successful, what difference will 

it make?

• What are the risks?

• How much will it cost?

• How long will it take?

• What are the mid-term and final “exams” to check for 

success? 
https://en.wikipedia.org/wiki/George_H._Heilmeier#Heilmeier.27s_Catechism



An example proposal

• Introduction / problem statement 
• Motivation (why should we care? why is this 

problem interesting?) 
• Literature review (what has prev. been done?) 
• Possible datasets 
• Evaluation  
• Tools and resources 
• Project milestones / tentative schedule
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NLP Research
• All the best publications in NLP are open access!

• Conference proceedings:  ACL, EMNLP,  NAACL  
(EACL, LREC...)

• Journals:  TACL, CL

• “aclweb”: ACL Anthology-hosted papers 
http://aclweb.org/anthology/

• NLP-related work appears in other journals/conferences too: data mining (KDD), 
machine learning (ICML, NIPS), AI (AAAI), information retrieval (SIGIR, CIKM), 
social sciences (Text as Data), etc.

• Reading tips

• Google Scholar

• Find papers

• See paper’s number of citations (imperfect but useful correlate of paper quality) and 
what later papers cite it

• [... or SemanticScholar...]

• For topic X: search e.g. [[nlp X]], [[aclweb X]], [[acl X]], [[X research]]...

• Authors’ webpages 
find researchers who are good at writing and whose work you like

• Misc. NLP research reading tips:  
http://idibon.com/top-nlp-conferences-journals/
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A few examples
• Detection tasks

• Sentiment detection

• Sarcasm and humor detection

• Emoticon detection / learning

• Structured linguistic prediction

• Targeted sentiment analysis (i liked __ 
but hated __)

• Relation, event extraction (who did 
what to whom)

• Narrative chain extraction

• Parsing (syntax, semantics, discourse...)

• Text generation tasks

• Machine translation

• Document summarization

• Poetry / lyrics generation  (e.g. recent 
work on hip-hop lyrics)

• Text normalization (e.g. translate 
online/Twitter text to standardized 
English)
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• End to end systems

• Question answering

• Conversational dialogue systems 
(hard to eval?)

• Predict external things from text

• Movie revenues based on movie 
reviews ... or online buzz?  http://
www.cs.cmu.edu/~ark/movie$-data/

• Visualization and exploration  (harder 
to evaluate)

• Temporal analysis of events, show 
on timeline

• Topic models: cluster and explore 
documents

• Figure out a task with a cool dataset

• e.g. Urban Dictionary

http://www.cs.cmu.edu/~ark/movie$-data/
http://www.cs.cmu.edu/~ark/movie$-data/


Sources of data
• All projects must use (or make, and use) a textual dataset.  Many 

possibilities.

• For some projects, creating the dataset may be a large portion of the work; 
for others, just download and more work on the system/modeling side

• SemEval and CoNLL Shared Tasks:  
dozens of datasets/tasks with labeled NLP annotations

• Sentiment, NER, Coreference, Textual Similarity, Syntactic Parsing, Discourse 
Parsing, and many other things...

• e.g. SemEval 2015 ... CoNLL Shared Task 2015 ...

• https://en.wikipedia.org/wiki/SemEval (many per year)

• http://ifarm.nl/signll/conll/ (one per year)

• General text data  (not necessarily task specific)

• Books (e.g. Project Gutenberg)

• Reviews  (e.g. Yelp Academic Dataset https://www.yelp.com/academic_dataset)

• Web

• Tweets
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Tools

• Tagging, parsing, NER, coref, ...

• Stanford CoreNLP http://nlp.stanford.edu/software/corenlp.shtml

• spaCy (English-only, no coref) http://spacy.io/

• Twitter-specific tools (ARK, GATE)

• Many other tools and resources 
tools ... word segmentation ... morph analyzers ...  
resources ... pronunciation dictionaries ... wordnet, word embeddings, word 
clusters ...

• Long list of NLP resources 
https://medium.com/@joshdotai/a-curated-list-of-speech-and-natural-language-processing-
resources-4d89f94c032a

• Deep learning? Try out AllenNLP, PyTorch, 
Tensorflow (https://allennlp.org, https://pytorch.org/, https://www.tensorflow.org/)
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