
text classification 3:
neural networks

CS 585, Fall 2018

Introduction to Natural Language Processing

http://people.cs.umass.edu/~miyyer/cs585/

Mohit Iyyer

College of Information and Computer Sciences

University of Massachusetts Amherst

some slides adapted from Jordan Boyd-Graber and Richard Socher

http://people.cs.umass.edu/~miyyer/cs585/

questions from last time…
• PMI vs covariance matrix?
• why do we have two embedding matrices (W

and C) in word2vec?

• what distribution do we draw negative
samples from?

• HW 1 encoding issues?
 2

Goldberg & Levy, 2014

unigram ^ 0.75. why? *shrug*

see https://stats.stackexchange.com/questions/81659/mutual-information-versus-correlation

https://stats.stackexchange.com/questions/81659/mutual-information-versus-correlation

 3

Summary: How to learn word2vec
(skip-gram) embeddings
Start with V random 300-dimensional vectors as
initial embeddings
Use logistic regression, the second most basic
classifier used in machine learning after naïve
bayes
◦ Take a corpus and take pairs of words that co-occur as

positive examples
◦ Take pairs of words that don't co-occur as negative

examples
◦ Train the classifier to distinguish these by slowly adjusting

all the embeddings to improve the classifier performance
◦ Throw away the classifier code and keep the embeddings.

qualitatively evaluating
word embeddings:

 nearest neighbors demo

 4

https://projector.tensorflow.org/

text classification

• input: some text x (e.g., sentence, document)
• output: a label y (from a finite label set)
• goal: learn a mapping function f from x to y

 5

the rise of deep learning in
natural language processing

neural classification

• goal: avoid feature engineering… why?
• general model architectures that work well for

many different datasets (and tasks!)
• for medium-to-large datasets, deep learning

methods generally outperform naive Bayes /
feature-based logistic regression

 7

what is deep learning?

(input) = outputf

what is deep learning?

output

input

Neural Network

 10

Logistic Regression by Another Name: Map inputs to output

Input

Vector x1 . . . x

d

Output

f

ÇX

i

W

i

x

i

+b

å

Activation

f (z)⌘ 1

1+exp(�z)

| UMD Multilayer Networks | 2 / 13

 11

Logistic Regression by Another Name: Map inputs to output

Input

Vector x1 . . . x

d

Output

f

ÇX

i

W

i

x

i

+b

å

Activation

f (z)⌘ 1

1+exp(�z)

| UMD Multilayer Networks | 2 / 13

Logistic Regression by Another Name: Map inputs to output

Input

Vector x1 . . . x

d

inputs encoded as
real numbers

Output

f

ÇX

i

W

i

x

i

+b

å

Activation

f (z)⌘ 1

1+exp(�z)

| UMD Multilayer Networks | 2 / 13

 12

Logistic Regression by Another Name: Map inputs to output

Input

Vector x1 . . . x

d

Output

f

ÇX

i

W

i

x

i

+b

å

multiply inputs by
weights

Activation

f (z)⌘ 1

1+exp(�z)

| UMD Multilayer Networks | 2 / 13

 13

Logistic Regression by Another Name: Map inputs to output

Input

Vector x1 . . . x

d

Output

f

ÇX

i

W

i

x

i

+b

å

add bias

Activation

f (z)⌘ 1

1+exp(�z)

| UMD Multilayer Networks | 2 / 13

 14

Logistic Regression by Another Name: Map inputs to output

Input

Vector x1 . . . x

d

Output

f

ÇX

i

W

i

x

i

+b

å

Activation

f (z)⌘ 1

1+exp(�z)

pass through
nonlinear sigmoid

| UMD Multilayer Networks | 2 / 13

 15

A	neural	network	
=	running	several	logistic	regressions	at	the	same	time
If	we	feed	a	vector	of	inputs	through	a	bunch	of	logistic	regression	
functions,	then	we	get	a	vector	of	outputs	…

But	we	don’t	have	to	decide	
ahead	of	time	what	variables	
these	logistic	regressions	are	
trying	to	predict!

1/18/1840

 16

A	neural	network	
=	running	several	logistic	regressions	at	the	same	time
…	which	we	can	feed	into	another	logistic	regression	function

It	is	the	loss	function	
that	will	direct	what	
the	intermediate	
hidden	variables	should	
be,	so	as	to	do	a	good	
job	at	predicting	the	
targets	for	the	next	
layer,	etc.

1/18/1841

 17

A	neural	network	
=	running	several	logistic	regressions	at	the	same	time
Before	we	know	it,	we	have	a	multilayer	neural	network….

1/18/1842

 18

logistic regression is a linear classifier…
its decision boundary is linear in x

βx

1
1 + e−βx

sigmoid function

what is deep learning?

output

input

nonlinear transformation{Neural Network nonlinear transformation

nonlinear transformation

what is deep learning?

output

input

nonlinear transformation{Neural Network nonlinear transformation

nonlinear transformation

hn = f(Whn−1 + b)

 21

Better name: non-linearity

Ñ Logistic / Sigmoid

f (x) =

1

1+e

�x

(1)

Ñ tanh

f (x) = tanh(x) =

2

1+e

�2x

�1

(2)

Ñ ReLU

f (x) =

⇢
0 for x < 0
x for x � 0

(3)

Ñ SoftPlus: f (x) = ln(1+e

x

)

| UMD Multilayer Networks | 5 / 13

is a multi-layer neural network with no nonlinearities
(i.e., f is the identity f(x) = x)

more powerful than a one-layer network?

No! You can just compile all of the layers into a single
transformation!

y = f(W3 f(W2 f(W1x))) = Wx

is a multi-layer neural network with no nonlinearities
(i.e., f is the identity f(x) = x)

more powerful than a one-layer network?

why nonlinearities?

credit for figure: 
Christopher Olah

 24

 25

Non-linearities (aka	“f”):	Why	they’re	needed

• Example:	function	approximation,	
e.g.,	regression	or	classification
• Without	non-linearities,	deep	neural	networks	
can’t	do	anything	more	than	a	linear	
transform

• Extra	layers	could	just	be	compiled	down	into	
a	single	linear	transform:	
W1	W2	x =	Wx

• With	more	layers,	they	can	approximate	more	
complex	functions!

1/18/1844

why nonlinearities?

 26

Learn the features and the function

a

(2)
1 = f

Ä
W

(1)
11 x1 +W

(1)
12 x2 +W

(1)
13 x3 +b

(1)
1

ä

| UMD Multilayer Networks | 6 / 13

“neuron”

 27

Learn the features and the function

a

(2)
2 = f

Ä
W

(1)
21 x1 +W

(1)
22 x2 +W

(1)
23 x3 +b

(1)
2

ä

| UMD Multilayer Networks | 6 / 13

 28

Learn the features and the function

a

(2)
3 = f

Ä
W

(1)
31 x1 +W

(1)
32 x2 +W

(1)
33 x3 +b

(1)
3

ä

| UMD Multilayer Networks | 6 / 13

 29

Learn the features and the function

h

W ,b(x) = a

(3)
1 = f

Ä
W

(2)
11 a

(2)
1 +W

(2)
12 a

(2)
2 +W

(2)
13 a

(2)
3 +b

(2)
1

ä

| UMD Multilayer Networks | 6 / 13

 30

Learn the features and the function

h

W ,b(x) = a

(3)
1 = f

Ä
W

(2)
11 a

(2)
1 +W

(2)
12 a

(2)
2 +W

(2)
13 a

(2)
3 +b

(2)
1

ä

| UMD Multilayer Networks | 6 / 13

we will be
learning the x’s
and the W’s!

in matrix-vector notation…

 31

Learn the features and the function

a

(2)
1 = f

Ä
W

(1)
11 x1 +W

(1)
12 x2 +W

(1)
13 x3 +b

(1)
1

ä

| UMD Multilayer Networks | 6 / 13

hL2
= f(W1x + b)

hL3
= f(W2hL2

+ b)

Dracula is a really good book!

neural
network

Positive

words as basic building blocks
• from last time: represent words with low-dimensional

vectors called embeddings (Mikolov et al., NIPS 2013)

king =
[0.23, 1.3, -0.3, 0.43]

composing embeddings
• neural networks compose word embeddings into

vectors for phrases, sentences, and documents

 neural
network () =

really good booka

deep averaging networks

really good book

predict Positive

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

affine transformation

nonlinear function

c1 c2 c3 c4

Iyyer et al., ACL 2015 :)

deep averaging networks

really good book

predict Positive

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

affine transformation

nonlinear function

c1 c2 c3 c4

let’s generalize to multi-
class classification!

softmax function
• let’s say I have 3 classes instead of 2 (e.g.,

positive, neutral, negative)
• i want to compute probabilities for each

class. for every class c, i have an associated
weight vector , and then i compute

• sigmoid is a special case of softmax where
number of classes = 2

 37

P(y = c |x) =
eβcx

∑3
k=1 eβkx

βc

 38

in practice, this computation is done more efficiently…

softmax(x) =
ex

∑j exj

x is a vector
xj is dimension j of x

each dimension j of the softmaxed output
represents the probability of class j

deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

affine transformation

nonlinear function

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

what are our model
parameters (i.e.,

weights)?

 41

Training	with	softmax and	cross-entropy	error

• For	each	training	example	{x,y},	our	objective	is	to	maximize	the	
probability	of	the	correct	class	y

• Hence,	we	minimize	the	negative	log	probability	of	that	class:

1/18/187

L =

 42

Background:	Why	“Cross	entropy”	error

• Assuming	a	ground	truth	(or	gold	or	target)	probability	
distribution	that	is	1	at	the	right	class	and	0	everywhere	else:
p	=	[0,…,0,1,0,…0]	and	our	computed	probability	is	q,	then	the	
cross	entropy	is:	

• Because	of	one-hot	p,	the	only	term	left	is	the	negative	log	
probability	of	the	true	class

1/18/188

deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

how do i update
these parameters
given the loss L?

L = cross-entropy(out, ground-truth)

deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

∂L
∂ci

= ???

how do i update
these parameters
given the loss L?

L = cross-entropy(out, ground-truth)

deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

∂L
∂ci

=
∂L

∂out
∂out
∂z2

∂z2

∂z1

∂z1

∂av
∂av
∂ci

chain rule!!!

deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

∂L
∂W2

= ???

L = cross-entropy(out, ground-truth)

deep averaging networks

really good book

z1 = f(W1 · av)

z2 = f(W2 · z1)

a… …

av =
nX

i=1

ci
n

c1 c2 c3 c4

out = softmax(W3 ⋅ z2)

∂L
∂W2

=
∂L

∂out
∂out
∂z2

∂z2

∂W2

L = cross-entropy(out, ground-truth)

backpropagation
• use the chain rule to compute partial

derivatives w/ respect to each parameter
• trick: re-use derivatives computed for higher

layers to compute derivatives for lower layers!

 48

∂L
∂ci

=
∂L

∂out
∂out
∂z2

∂z2

∂z1

∂z1

∂av
∂av
∂ci

∂L
∂W2

=
∂L

∂out
∂out
∂z2

∂z2

∂W2

Rumelhart et al., 1986

Deep Averaging Network

w1, . . . , wN

#
z0 =CBOW(w1, . . . , wN)
z1 =g (z1)
z2 =g (z2)
ŷ =softmax(z3)

Initialization
def __init__(self, n_classes, vocab_size, emb_dim=300,

n_hidden_units=300):
super(DanModel, self).__init__()
self.n_classes = n_classes
self.vocab_size = vocab_size
self.emb_dim = emb_dim
self.n_hidden_units = n_hidden_units
self.embeddings = nn.Embedding(self.vocab_size,

self.emb_dim)
self.classifier = nn.Sequential(

nn.Linear(self.n_hidden_units,
self.n_hidden_units),

nn.ReLU(),
nn.Linear(self.n_hidden_units,

self.n_classes))
self._softmax = nn.Softmax()

Computational Linguistics: Jordan Boyd-Graber | UMD Frameworks | 4 / 7

deep learning frameworks make
building NNs super easy!

really good book

z1 = f(W1 · av)

a

av =
nX

i=1

ci
n

out = softmax(W2 ⋅ z2) set up the network

Deep Averaging Network

w1, . . . , wN

#
z0 =CBOW(w1, . . . , wN)
z1 =g (z1)
z2 =g (z2)
ŷ =softmax(z3)

Forward
def forward(self, batch, probs=False):

text = batch[’text’][’tokens’]
length = batch[’length’]
text_embed = self._word_embeddings(text)
Take the mean embedding. Since padding results

in zeros its safe to sum and divide by length

encoded = text_embed.sum(1)
encoded /= lengths.view(text_embed.size(0), -1)

Compute the network score predictions

logits = self.classifier(encoded)
if probs:

return self._softmax(logits)
else:

return logits

Computational Linguistics: Jordan Boyd-Graber | UMD Frameworks | 5 / 7

deep learning frameworks make
building NNs super easy!

do a forward pass to compute prediction

really good book

z1 = f(W1 · av)

a

av =
nX

i=1

ci
n

out = softmax(W2 ⋅ z2)

Deep Averaging Network

w1, . . . , wN

#
z0 =CBOW(w1, . . . , wN)
z1 =g (z1)
z2 =g (z2)
ŷ =softmax(z3)

Training
def _run_epoch(self, batch_iter, train=True):

self._model.train()
for batch in batch_iter:

model.zero_grad()
out = model(batches)
batch_loss = criterion(out,

batch[’label’])
batch_loss.backward()
self.optimizer.step()

Computational Linguistics: Jordan Boyd-Graber | UMD Frameworks | 6 / 7

deep learning frameworks make
building NNs super easy!

do a backward pass to update weights

really good book

z1 = f(W1 · av)

a

av =
nX

i=1

ci
n

out = softmax(W2 ⋅ z2)

Deep Averaging Network

w1, . . . , wN

#
z0 =CBOW(w1, . . . , wN)
z1 =g (z1)
z2 =g (z2)
ŷ =softmax(z3)

Training
def _run_epoch(self, batch_iter, train=True):

self._model.train()
for batch in batch_iter:

model.zero_grad()
out = model(batches)
batch_loss = criterion(out,

batch[’label’])
batch_loss.backward()
self.optimizer.step()

Computational Linguistics: Jordan Boyd-Graber | UMD Frameworks | 6 / 7

deep learning frameworks make
building NNs super easy!

do a backward pass to update weights

that’s it! no need to compute
gradients by hand!

however, you will have to do
this in HW2 :(

really good book

z1 = f(W1 · av)

a

av =
nX

i=1

ci
n

out = softmax(W2 ⋅ z2)

 53

Classification:	Regularization!

• Really	full	loss	function	in	practice	includes	regularization over	
all	parameters	*:

• Regularization	prevents	overfitting	when	we	have	a	lot	of	
features	(or	later	a	very	powerful/deep	model,++)

1/18/1811 model	power

overfitting

Regularization

L2 regularization

 54

Classification:	Regularization!

• Really	full	loss	function	in	practice	includes	regularization over	
all	parameters	*:

• Regularization	prevents	overfitting	when	we	have	a	lot	of	
features	(or	later	a	very	powerful/deep	model,++)

1/18/1811 model	power

overfitting

represents all of the model’s parameters!θ

L2 regularization

 55

Classification:	Regularization!

• Really	full	loss	function	in	practice	includes	regularization over	
all	parameters	*:

• Regularization	prevents	overfitting	when	we	have	a	lot	of	
features	(or	later	a	very	powerful/deep	model,++)

1/18/1811 model	power

overfitting

represents all of the model’s parameters!θ

penalizing their norm leads to smaller weights >
we are constraining the parameter space >

we are putting a prior on our model

dropout (for neural networks)

 56

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201650

Regularization: Dropout
“randomly set some neurons to zero in the forward pass”

[Srivastava et al., 2014]

randomly set p% of neurons to 0 in the forward pass

why does this make sense?

 57

randomly set p% of neurons to 0 in the forward pass

has an ear

has a tail

is furry

has claws

mischievous look

X
X

X

p(cat)

why does this make sense?

 58

randomly set p% of neurons to 0 in the forward pass

has an ear

has a tail

is furry

has claws

mischievous look

p(cat)
X
X

X

network can’t just rely on one neuron!

exercise!

 59

