text classification 3:
neural networks

CS 5685, Fall 2018

Introduction to Natural Language Processing
http://people.cs.umass.edu/~miyyer/cs585/

Mohit lyyer

College of Information and Computer Sciences
University of Massachusetts Amherst

some slides adapted from Jordan Boyd-Graber and Richard Socher

http://people.cs.umass.edu/~miyyer/cs585/

guestions from last time...

see https://stats.stackexchange.com/questions/81659/mutual-information-versus-correlation

e PMI vs covariance matrix?

e why do we have two embedding matrices (W
and C) in word2vec?

2Throughout this note, we assume that the words and the contexts come from distinct
vocabularies, so that, for example, the vector associated with the word dog will be different
from the vector associated with the context dog. This assumption follows the literature, where
it is not motivated. One motivation for making this assumption is the following: consider the
case where both the word dog and the context dog share the same vector v. Words hardly
appear in the contexts of themselves, and so the model should assign a low probability to
p(dog|dog), which entails assigning a low value to v - v which is impossible.

Goldberg & Levy, 2014

e what distribution do we draw negative
samples from? unigram A 0.75. why? *shrug*

e HW 1 encoding issues”

2

https://stats.stackexchange.com/questions/81659/mutual-information-versus-correlation

Summary: How to learn word2vec
(skip-gram) embeddings

Start with V random 300-dimensional vectors as
initial embeddings

Use logistic regression, the second most basic
classifier used in machine learning after naive
bayes

> Take a corpus and take pairs of words that co-occur as
positive examples

> Take pairs of words that don't co-occur as negative
examples

° Train the classifier to distinguish these by slowly adjusting
all the embeddings to improve the classifier performance

> Throw away the classifier code and keep the embeddings.

3

qualitatively evaluating
word embeddings:
nearest neighbors demo

https://projector.tensorflow.org/

text classification

® nput: some text x (e.g., sentence, document)
e output: a label y (from a finite label set)
e goal: learn a mapping function f from xto y

the rise of deep learning In
natural language processing

70 1 mmm ACL
£ BN EMNLP
BN EACL
2 601 EEE NAACL

ing papers in various conference

50 -

40 -

74

30 -

centage (%) of Deep learn

2012 2013 2014 2015 2016 2017
Years

Nneural classification

® goal: avoid feature engineering... why?

® general model architectures that work well for
many different datasets (and tasks!)

e for medium-to-large datasets, deep learning
methods generally outperform naive Bayes /
feature-lbased logistic regression

what is deep learning”

f (input) = output

what is deep learning”

input

v

Neural Network

output

t
t

I I 'I u

Ma

e.

An

u

u u

Is

h vb(x)
—

X1

X,

X3

+1

Logistic Regression by Another Name: Map inputs to output

X1
X;
hw b(x)
& '
+1

Input

Vector xy ... Xy

iInputs encoded as
real numbers

Logistic Regression by Another Name: Map inputs to output

X1

X,
hw,b(x)

X3

+1

Output

Input f(z M/,X,—I—b)

Vector x; ... Xy

multiply inputs by

Logistic Regression by Another Name: Map inputs to output

X1
X;
hw b(x)
X3 '
+1

Output

Input

Vector X1 ... Xy f(z |/ViXi + b)
/

add bias

Logistic Regression by Another Name: Map inputs to output

Input

Vector X ..

- Xd

> hw,b(x)

Activation

.

f(2)

1+ exp(—2)

pass through
nonlinear siagmoid

A neural network
= running several logistic regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs ...

But we don’t have to decide
ahead of time what variables
these logistic regressions are
trying to predict!

A neural network
= running several logistic regressions at the same time

... which we can feed into another logistic regression function

[t is the loss function
that will direct what
the intermediate
hidden variables should
be, so as to do a good
job at predicting the
targets for the next
layer, etc.

R
hyp(X)

Layer L,

A neural network
= running several logistic regressions at the same time

Before we know it, we have a multilayer neural network....

logistic regression Is a linear classifier...
its decision boundary is linear in x

sigmoid function

1- p———
/

1
0.5
1 + e P~ /
/ Claksification
/ boundary
ol o I 1 J
-6 -4 -2 0 2 4 6

what is deep learning”

input

nonlinear transformation

Neural Network

what is deep learning”

input

nonlinear transformation

Better name: non-linearity

m— sigmoid
== thanh

4+t

= RelLU

- softplus

..

Logistic / Sigmoid

0 for x<O
f(X)_{x for x>0

SoftPlus: f(x) = In(1+ &)

IS a multi-layer neural network with no nonlinearities
(.e., fis the identity f(X) = X)
more powerful than a one-layer network??

IS a multi-layer neural network with no nonlinearities
(.e., fis the identity f(X) = X)
more powerful than a one-layer network??

No! You can just compile all of the layers into a single
transformation!

y = f(W3f(W, f(Wx))) = Wx

0.5 F

0.5

why nonlinearities’?

N N N | N N N N | N N N N | N N N
1 -0.5 240 0.5

credit for figure:

| Christopher Olah

why nonlinearities’?

25

/ “neuron”
(2)

)= o9 (W2 - WD+ W+ 7)

we will be
learning the X’s
and the W’s!

Layer L, Layer L,

)= o9 (W2 - WD+ W+ 7)

N matrix-vector notation...

hw.b(x)

hy, = f(Wrh;, + b)

Layer L,

by, = f(Wyx + b)

31

Dracula is a really good book!

neural
network

Positive

words as basic building blocks

e from last time: represent words with low-dimensional
vectors called embeddings (Mikolov et al., NIPS 2013)

man

o
.. ~a woman
king X ‘
‘e
queen
S
Male-Female

walking

King =
[0.23, 1.3, -0.3, 0.43]
;ued
Verb tense

ussia

Country-Capital

composing embeddings

* neural networks compose word embeddings into
vectors for phrases, sentences, and documents

neural a really good book

network (i I I H)=1

deep averaging networks

predict Positive

I

I I 22:f(W2'21)
nonlinear function

l F A

21 — 1 - Qv

X

I _ affine transformation

&7
ayv = _
1=1

/7\\

a really good book
CH Co C3 C4

lyyer et al ,ACL 2015 :)

deep averaging networks

. . let’s generalize to multi-
predict Positive s
class classification!

II 20 = f(Wa - 21)

nonlinear function

4

z1 = f(W7 - av)

affine transformation

a really good book
CH Co C3 C4

softmax function

® |et’'s say | have 3 classes instead of 2 (e.q.,
positive, neutral, negative)

® | want to compute probabillities for each
class. for every class ¢, | have an associated
weight vector f., and then | compute

el

P(y =c|x) =

piX
=1€

® sigmoid Is a special case of softmax where
number of classes = 2

37

In practice, this computation is done more efficiently...

ex
x.
T,

X IS a vector

softmax(x) =

X IS dimension j of X

each dimension j of the softmaxed output
represents the probabillity of class

38

deep averaging networks

out = softmax(W; - z,)

I I 22:f(W2'21)
nonlinear function

l F A

21 — 1 - Qv

X

I _ affine transformation

&7
ayv = _
1=1

/7\\

a really good book
CH Co C3 C4

deep averaging networks

out = softmax(W; - z,)

nat are our model
parameters (i.e.,
weights)?

a really good book
CH Co C3 C4

Training with softmax and cross-entropy error

e For each training example {x,y}, our objective is to maximize the
probability of the correct class y

e Hence, we minimize the negative log probability of that class:

L = —1lo r) = —1lo exp(fy))
) o (F2EE

41

Background: Why “Cross entropy” error

e Assuming a ground truth (or gold or target) probability
distribution that is 1 at the right class and O everywhere else:
p=[0,..,0,1,0,..0] and our computed probability is g, then the

Cross entropy is:
C

H(p,q) = — Y p(c)logg(c)

c=1

e Because of one-hot p, the only term left is the negative log
probability of the true class

deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

how do | update
these parameters
given the loss L7

a really good book
CH Co C3 C4

deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

how do | update
these parameters
given the loss L7

a really good book
CH Co C3 C4

deep averaging networks

out = softmax(W3 2)

chain rulel!!
I 2o = f(Wa - 21)

.
I

/7\'\”

a really good book
CH Co C3 C4

oL JL oout dz, dz; dav
dc; dout 0z, dz dav o,

av = _
n

deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

oL

=979
oW,

a really good book
CH Co C3 C4

deep averaging networks

out = softmax(W; - z,)

L = cross-entropy(out, ground-truth)

oL oL odout oz,

oW, oout 0z, oW,

a really good book
CH Co C3 C4

pbackpropagation

® use the chain rule to compute partial
derivatives w/ respect to each parameter

® trick: re-use derivatives computed for higher
layers to compute derivatives for lower layers!

oL - oL o0out 0Z2 0Z1 oav
oc; dout 0z, dz dav o,

oL oL dout oz

oW, oout 0z, oW,

48 Rumelhart et al., | 986

a

deep learning frameworks make
building NNs super easy!

out = softmax(W, - z,) set up the network

def 1nit (self, n_classes, vocab _size, emb _dim=300,
n _hidden units=300) :
. “1 = f(Wl -an) super (DanModel, self)._ _init__ ()
self.n_classes = n_classes
self.vocab size = vocab size
n ¢; self.emb_dim = emb_dim
— self.n hidden units = n_hidden_ units
self.embeddings = nn.Embedding(self.vocab_size,

=1 self.emb _dim)
f \ self.classifier = nn.Sequential (
nn.Linear(self.n _hidden units,
. . . self.n _hidden_units),
nn.RelLU(),
nn.Linear (self.n_hidden_units,

self.n classes))
self. softmax = nn.Softmax/()

really good book

d

deep learning frameworks make
building NNs super easy!

out = softmax(W, - z,) 40 a forward pass to compute prediction

def forward(self, batch, probs=False):
text = batch[’text’][’ tokens’]
length = batch[’ length’]
. a1 = f(Wh-av) text_embed = self._word_embeddings (text)
Take the mean embedding. Since padding results
1n zeros 1its safe to sum and divide by length
C; encoded = text embed.sum (1)
— encoded /= lengths.view (text_embed.size(0), -1)

ay —
=1 # Compute the network score predictions
logits = self.classifier (encoded)

if probs:
. . . return self._softmax(logits)

else:
really good book return logits

n

a

deep learning frameworks make
building NNs super easy!

out = softmax(W, - z,) do a backward pass to update weights

def _run_epoch(self, batch_iter, train=True) :
self. model.train ()

. z1 = f(W1-av) for batch in batch_iter:
model .zero_grad ()
out = model (batches)
Ci batch loss = criterion (out,
av = — batch[’label’ 1)

batch loss.backward ()

=1 —
/f \\ self.optimizer.step ()

really good book

a

deep learning frameworks make
building NNs super easy!

out = softmax(W, - 2,) do a backward pass to update weights
def _run_epoch(self, batch_iter, train=True) :
self. model.train ()
. z1 = f(W1-av) for batch in batch_iter:
model .zero_grad ()
out = model (batches)
n C; batch loss = criterion (out,

av = — batch[’ label’])

i—1 batch loss.backward/()
/f \\ self.optimizer.step ()

really good book that’s it! no need to compute
gradients by hand!
however, you will have to do
this in HW2 +(

Regularization

e Regularization prevents overfitting when we have a lot of
features (or later a very powerful/deep model,++)

A

overfitting

model power

53

|2 regularization

N
1 efvi
i—1 Zc:1€ ¢ k

0 represents all of the model’s parameters!

54

|2 regularization

N
1 efvi
i—1 Zc:1€ ¢ k

0 represents all of the model’s parameters!

penalizing their norm leads to smaller weights >
we are constraining the parameter space >
we are putting a prior on our model

55

dropout (for neural networks)

of neurons to O in the forward pass

L
Q .““
3 No7ANe7
% XA
> XKD KK
[= @ Qy%».%‘»%»i.

: SN0
O R R
c CHRCHRRC
S 7>\ 2/ ><\
S AN

[Srivastava et al., 2014]

(b) After applying dropout.

ard Neural Net

.
v

a) Stand

o
S

56

why does this make sense”

randomly set p% of neurons to O in the forward pass

ﬁ haS a ta” -

— N3S ClAWS /

— | TiSChievous 100k

57

why does this make sense”

randomly set p% of neurons to O in the forward pass

ﬁ haS a ta” -

— N3S ClAWS /

— | TiSChievous 100k

58 network can't just rely on one neuron!

exercise!

59

