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get an exercise at the front!
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questions from last class….

• what is add-1 smoothing again?????????????????? 
• how many hours will each assignment take? 
• i’m gonna miss class because of <insert reason>, how can 

i make up the in-class exercise that i missed? 
• can you post the in-class exercise answers? 
• what python version should we use for the assignments?
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Logistic regression

•Log Linear Model - a.k.a. Logistic regression classifier 
•Kinda like Naive Bayes, but: 
•Doesn’t assume features are independent 
• Correlated features aren’t overcounted 

•Discriminative training:  optimize p(y | text), not p(y, text) 
•Tends to work better - state of the art for doc classification, 

widespread hard-to-beat baseline for many tasks 
•Good off-the-shelf implementations (e.g. scikit-learn, vowpal 

wabbit)
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• Input document d  (a string...)

• Engineer a feature function, f(d), to generate feature vector x 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f(d) x

• Not just word counts.  Anything that might be useful!

• Feature engineering: when you spend a lot of time trying and testing new 

features.  Very important!!!  This is a place to put linguistics in.

f(d) = 

Count of  “happy”,

(Count of “happy”) / (Length of doc),

log(1 + count of “happy”),

Count of “not happy”,

Count of words in my pre-specified 
word list, “positive words according 
to my favorite psychological theory”,

Count of “of the”,

Length of document,

...

Typically these use feature templates:

Generate many features at once


for each word w:

  - ${w}_count

  - ${w}_log_1_plus_count

  - ${w}_with_NOT_before_it_count

  - ....

✓ ◆

Features



step 1: featurization
1. Given an input text X, compute feature vector x
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x = < count(nigerian), count(prince), count(nigerian prince) >



step 2: dot product w/ weights
1. Given an input text X, compute feature vector x 

2. Take dot product of x with weights β to get z
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x = < count(nigerian), count(prince), count(nigerian prince) >

β = < -1, -1, 4>

● compute features (x’s)
● given weights (betas)
● compute the dot product

Classification: LogReg (I)



step 3: compute class probability
1. Given an input text X, compute feature vector x 

2. Take dot product of x with weights β to get z 

3. Apply logistic function to z
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x = < count(nigerian), count(prince), count(nigerian prince) >

β = < -1, -1, 4>

● compute features (x’s)
● given weights (betas)
● compute the dot product

Classification: LogReg (I)

● compute the dot product

● compute the logistic function

Classification: LogReg (II)



why dot product?
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Intuition: weighted sum of features

All linear models have this form!

Classification: Dot Product



What does this function look like?

What properties does it have?

Logistic Function



Logistic Function



● logistic function 

● decision boundary is dot product = 0 (2 class)

● comes from linear log odds

Logistic Function



How to get class probabilities?
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p(Y = 1 |X) =
1

1 + e−∑i βixi
=

1
1 + e−βx

= σ(βx)

p(Y = 0 |X) = 1 − p(Y = 1 |X) =
e−βx

1 + e−βx
= 1 − σ(βx)

σ(x) =
1

1 + e−xsigmoid / logistic function:



examples!
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labels: 
Y = 0 (not spam)

Y = 1 (spam)

feature coefficient weight

bias 0.1

“viagra” 2.0

“mother” -1.0

“work” -0.5

“nigeria” 3.0

β0

β1

β2

β3

β4
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input 1: empty document 
X = {}

labels: 
Y = 0 (not spam)

Y = 1 (spam)

p(Y = 0) = ???
p(Y = 1) = ???

feature coefficient weight

bias 0.1

“viagra” 2.0

“mother” -1.0

“work” -0.5

“nigeria” 3.0

β0

β1

β2

β3

β4
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feature coefficient weight

bias 0.1

“viagra” 2.0

“mother” -1.0

“work” -0.5

“nigeria” 3.0

β0

β1

β2

β3

β4

input 1: empty document 
X = {}

labels: 
Y = 0 (not spam)

Y = 1 (spam)

our bias feature always fires!

p(Y = 1) =
1

1 + e−0.1
= 0.52

p(Y = 0) =
e−0.1

1 + e−0.1
= 0.48
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feature coefficient weight

bias 0.1

“viagra” 2.0

“mother” -1.0

“work” -0.5

“nigeria” 3.0

β0

β1

β2

β3

β4

input 1: empty document 
X = {}

labels: 
Y = 0 (not spam)

Y = 1 (spam)

our bias feature always fires!

p(Y = 1) =
1

1 + e−0.1
= 0.52

p(Y = 0) =
e−0.1

1 + e−0.1
= 0.48

bias encodes prior probabilities!
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feature coefficient weight

bias 0.1

“viagra” 2.0

“mother” -1.0

“work” -0.5

“nigeria” 3.0

β0

β1

β2

β3

β4

input 2: 
X = {mother, nigeria}

labels: 
Y = 0 (not spam)

Y = 1 (spam)

p(Y = 0) = ???

p(Y = 1) = ???
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feature coefficient weight

bias 0.1

“viagra” 2.0

“mother” -1.0

“work” -0.5

“nigeria” 3.0

β0

β1

β2

β3

β4

input 2: 
X = {mother, nigeria}

labels: 
Y = 0 (not spam)

Y = 1 (spam)

p(Y = 1) =
1

1 + e−(0.1−1.0+3)
= 0.89

p(Y = 0) = 0.11
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feature coefficient weight

bias 0.1

“viagra” 2.0

“mother” -1.0

“work” -0.5

“nigeria” 3.0

β0

β1

β2

β3

β4

input 2: 
X = {mother, nigeria}

labels: 
Y = 0 (not spam)

Y = 1 (spam)

p(Y = 1) =
1

1 + e−(0.1−1.0+3)
= 0.89

p(Y = 0) = 0.11

bias + sum of other weights!
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feature coefficient weight

bias 0.1

“viagra” 2.0

“mother” -1.0

“work” -0.5

“nigeria” 3.0

# tokens 4.5

β0

β1

β2

β3

β4

input 2: 
X = {mother, nigeria}

labels: 
Y = 0 (not spam)

Y = 1 (spam)

what if i added a new feature for 
the # of tokens in the input?

β5
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feature coefficient weight

bias 0.1

“viagra” 2.0

“mother” -1.0

“work” -0.5

“nigeria” 3.0

# tokens 4.5

β0

β1

β2

β3

β4

input 2: 
X = {mother, nigeria}

labels: 
Y = 0 (not spam)

Y = 1 (spam)

what if i added a new feature for 
the # of tokens in the input?

β5

p(Y = 1) =
1

1 + e−(0.1−1.0+3+2*4.5)



NB as Log-Linear Model
● What are the features in Naive Bayes?

● What are the weights in Naive Bayes?



NB as Log-Linear Model



NB as Log-Linear Model

xi = count 
of word in D



NB as Log-Linear Model

·

xi = count 
of word in D

xi are 
features

log probs 
are weights!



naive Bayes vs. logistic regression

• naive Bayes is easier to implement 
• naive Bayes better on small datasets 
• logistic regression better on medium-sized datasets 
• on huge datasets, both perform comparably 
• biggest difference: logistic regression allows 

arbitrary features
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now you know everything about logistic 
regression except…. 

how do we learn the weights????
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•    in naive Bayes, we just counted to get conditional probabilities 
• in logistic regression, we perform stochastic gradient ascent



Learning Weights
● given: a set of feature vectors and labels

● goal: learn the weights.



Learning Weights
We know:

So let’s try to maximize probability of the entire 
dataset - maximum likelihood estimation



Learning Weights
So let’s try to maximize probability of the entire 

dataset - maximum likelihood estimation



Learning Weights
So let’s try to maximize probability of the entire 

dataset - maximum likelihood estimation

equivalent to minimizing 
the negative log likelihood 
as in your reading!
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Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables �

Parameter

Objective

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 18

gradient ascent (non-convex)
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Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables �

Parameter

Objective
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Gradient Descent (non-convex)
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gradient ascentgradient ascent (non-convex)



good news! the log-likelihood in LR 
is concave, which means that it has 
just one local (and global) maximum

 42



 43

Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables �

Parameter

Objective

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 18

Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables �

1

0

2

3

Undiscovered
Country

Parameter

Objective

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 18

Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables �

0

β ij
(l+1)

Jα
∂
∂β

β ij
(l)

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 18

gradient ascent

∂L
∂β

= gradient

gradient ascent (non-convex)

Gradient for Logistic Regression

To ease notation, let’s define

⇡
i

=

exp�T

x

i

1+exp�T

x

i

(5)

Our objective function is

L =

X

i

logp(y

i

|x
i
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X

i

L
i

=

X

i

®
log⇡

i

if y

i

= 1

log(1�⇡
i

) if y

i

= 0
(6)
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log likelihood!

σ(β ⋅ xi)
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Taking the Derivative

Apply chain rule:
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∂
∂x

log(x) =
1
x

βj = jth dimension of β

∂
∂x

σ(x) = σ(x)(1 − σ(x))
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∂
∂x

log(x) =
1
x

βj = jth dimension of β

∂
∂x

σ(x) = σ(x)(1 − σ(x))
∂πi

∂βj
= πi(1 − πi)xij
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∂
∂x

log(x) =
1
x

βj = jth dimension of β

∂
∂x

σ(x) = σ(x)(1 − σ(x))

(yi − πi)xij

∂πi

∂βj
= πi(1 − πi)xij
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Taking the Derivative

Apply chain rule:

@L
@ �

j

=

X

i

@L
i

(

~�)

@ �
j

=

X

i

(
1
⇡

i

@ ⇡
i

@ �
j

if y

i

= 1
1

1�⇡
i

Ä
� @ ⇡i

@ �
j

ä
if y

i

= 0
(7)

If we plug in the derivative,

@ ⇡
i

@ �
j

=⇡
i

(1�⇡
i

)x

j

, (8)

we can merge these two cases

@L
i

@ �
j

= (y

i

�⇡
i

)x

j

. (9)

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 7 / 18

∂
∂x

log(x) =
1
x

βj = jth dimension of β

∂
∂x

σ(x) = σ(x)(1 − σ(x))

    = ground-truth label

    = predicted probability

yi

πi

(yi − πi)xij

∂πi

∂βj
= πi(1 − πi)xij
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Gradient for Logistic Regression

Gradient

r�L (

~�) =


@L (

~�)
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, . . . ,
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�
(10)
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gradient = partial 
derivative of log 
likelihood WRT each 
weight 

is the learning rateη



LogReg Exercise

= (1.0,    -3.0,     2.0)

features: (count “nigerian”, count “prince”, count “nigerian prince”)

63% accuracy



LogReg Exercise

= (1.0,    -3.0,     2.0)

features: (count “nigerian”, count “prince”, count “nigerian prince”)

63% accuracy

= (0.5,    -1.0,     3.0) 75% accuracy



LogReg Exercise

= (1.0,    -3.0,     2.0)

features: (count “nigerian”, count “prince”, count “nigerian prince”)

63% accuracy

= (0.5,    -1.0,     3.0)

= (-1.0,    -1.0,     4.0)

75% accuracy

81% accuracy
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Regularized Conditional Log Likelihood

Unregularized

� ⇤=argmax

�
ln

î
p(y

(j) |x(j),�)
ó

(13)

Regularized

� ⇤=argmax

�
ln

î
p(y

(j) |x(j),�)
ó
�µ
X

i

� 2
i

(14)

µ is “regularization” parameter that trades off between likelihood and
having small parameters
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exercise!
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