
Logistic regression classifiers

[slides adapted from Brendan O’Connor & Jordan Boyd-Graber]

CS 585, Fall 2018

Introduction to Natural Language Processing

http://people.cs.umass.edu/~miyyer/cs585/

Mohit Iyyer

College of Information and Computer Sciences

University of Massachusetts Amherst

http://people.cs.umass.edu/~miyyer/cs585/

get an exercise at the front!

 2

questions from last class….

• what is add-1 smoothing again??????????????????
• how many hours will each assignment take?
• i’m gonna miss class because of <insert reason>, how can

i make up the in-class exercise that i missed?
• can you post the in-class exercise answers?
• what python version should we use for the assignments?

 3

Logistic regression

•Log Linear Model - a.k.a. Logistic regression classifier
•Kinda like Naive Bayes, but:
•Doesn’t assume features are independent
• Correlated features aren’t overcounted

•Discriminative training: optimize p(y | text), not p(y, text)
•Tends to work better - state of the art for doc classification, 

widespread hard-to-beat baseline for many tasks
•Good off-the-shelf implementations (e.g. scikit-learn, vowpal

wabbit)

 4

• Input document d (a string...)

• Engineer a feature function, f(d), to generate feature vector x 

 5

f(d) x

• Not just word counts. Anything that might be useful!

• Feature engineering: when you spend a lot of time trying and testing new

features. Very important!!! This is a place to put linguistics in.

f(d) =

Count of “happy”,

(Count of “happy”) / (Length of doc),

log(1 + count of “happy”),

Count of “not happy”,

Count of words in my pre-specified
word list, “positive words according
to my favorite psychological theory”,

Count of “of the”,

Length of document,

...

Typically these use feature templates:

Generate many features at once

for each word w:

 - ${w}_count

 - ${w}_log_1_plus_count

 - ${w}_with_NOT_before_it_count

 -

✓ ◆

Features

step 1: featurization
1. Given an input text X, compute feature vector x

 6

x = < count(nigerian), count(prince), count(nigerian prince) >

step 2: dot product w/ weights
1. Given an input text X, compute feature vector x

2. Take dot product of x with weights β to get z

 7

x = < count(nigerian), count(prince), count(nigerian prince) >

β = < -1, -1, 4>

● compute features (x’s)
● given weights (betas)
● compute the dot product

Classification: LogReg (I)

step 3: compute class probability
1. Given an input text X, compute feature vector x

2. Take dot product of x with weights β to get z

3. Apply logistic function to z

 8

x = < count(nigerian), count(prince), count(nigerian prince) >

β = < -1, -1, 4>

● compute features (x’s)
● given weights (betas)
● compute the dot product

Classification: LogReg (I)

● compute the dot product

● compute the logistic function

Classification: LogReg (II)

why dot product?

 9

Intuition: weighted sum of features

All linear models have this form!

Classification: Dot Product

What does this function look like?

What properties does it have?

Logistic Function

Logistic Function

● logistic function

● decision boundary is dot product = 0 (2 class)

● comes from linear log odds

Logistic Function

How to get class probabilities?

 13

p(Y = 1 |X) =
1

1 + e−∑i βixi
=

1
1 + e−βx

= σ(βx)

p(Y = 0 |X) = 1 − p(Y = 1 |X) =
e−βx

1 + e−βx
= 1 − σ(βx)

σ(x) =
1

1 + e−xsigmoid / logistic function:

examples!

 14

 15

labels:
Y = 0 (not spam)

Y = 1 (spam)

feature coefficient weight

bias 0.1

“viagra” 2.0

“mother” -1.0

“work” -0.5

“nigeria” 3.0

β0

β1

β2

β3

β4

 16

input 1: empty document
X = {}

labels:
Y = 0 (not spam)

Y = 1 (spam)

p(Y = 0) = ???
p(Y = 1) = ???

feature coefficient weight

bias 0.1

“viagra” 2.0

“mother” -1.0

“work” -0.5

“nigeria” 3.0

β0

β1

β2

β3

β4

 17

feature coefficient weight

bias 0.1

“viagra” 2.0

“mother” -1.0

“work” -0.5

“nigeria” 3.0

β0

β1

β2

β3

β4

input 1: empty document
X = {}

labels:
Y = 0 (not spam)

Y = 1 (spam)

our bias feature always fires!

p(Y = 1) =
1

1 + e−0.1
= 0.52

p(Y = 0) =
e−0.1

1 + e−0.1
= 0.48

 18

feature coefficient weight

bias 0.1

“viagra” 2.0

“mother” -1.0

“work” -0.5

“nigeria” 3.0

β0

β1

β2

β3

β4

input 1: empty document
X = {}

labels:
Y = 0 (not spam)

Y = 1 (spam)

our bias feature always fires!

p(Y = 1) =
1

1 + e−0.1
= 0.52

p(Y = 0) =
e−0.1

1 + e−0.1
= 0.48

bias encodes prior probabilities!

 19

feature coefficient weight

bias 0.1

“viagra” 2.0

“mother” -1.0

“work” -0.5

“nigeria” 3.0

β0

β1

β2

β3

β4

input 2:
X = {mother, nigeria}

labels:
Y = 0 (not spam)

Y = 1 (spam)

p(Y = 0) = ???

p(Y = 1) = ???

 20

feature coefficient weight

bias 0.1

“viagra” 2.0

“mother” -1.0

“work” -0.5

“nigeria” 3.0

β0

β1

β2

β3

β4

input 2:
X = {mother, nigeria}

labels:
Y = 0 (not spam)

Y = 1 (spam)

p(Y = 1) =
1

1 + e−(0.1−1.0+3)
= 0.89

p(Y = 0) = 0.11

 21

feature coefficient weight

bias 0.1

“viagra” 2.0

“mother” -1.0

“work” -0.5

“nigeria” 3.0

β0

β1

β2

β3

β4

input 2:
X = {mother, nigeria}

labels:
Y = 0 (not spam)

Y = 1 (spam)

p(Y = 1) =
1

1 + e−(0.1−1.0+3)
= 0.89

p(Y = 0) = 0.11

bias + sum of other weights!

 22

feature coefficient weight

bias 0.1

“viagra” 2.0

“mother” -1.0

“work” -0.5

“nigeria” 3.0

tokens 4.5

β0

β1

β2

β3

β4

input 2:
X = {mother, nigeria}

labels:
Y = 0 (not spam)

Y = 1 (spam)

what if i added a new feature for
the # of tokens in the input?

β5

 23

feature coefficient weight

bias 0.1

“viagra” 2.0

“mother” -1.0

“work” -0.5

“nigeria” 3.0

tokens 4.5

β0

β1

β2

β3

β4

input 2:
X = {mother, nigeria}

labels:
Y = 0 (not spam)

Y = 1 (spam)

what if i added a new feature for
the # of tokens in the input?

β5

p(Y = 1) =
1

1 + e−(0.1−1.0+3+2*4.5)

NB as Log-Linear Model
● What are the features in Naive Bayes?

● What are the weights in Naive Bayes?

NB as Log-Linear Model

NB as Log-Linear Model

xi = count
of word in D

NB as Log-Linear Model

·

xi = count
of word in D

xi are
features

log probs
are weights!

naive Bayes vs. logistic regression

• naive Bayes is easier to implement
• naive Bayes better on small datasets
• logistic regression better on medium-sized datasets
• on huge datasets, both perform comparably
• biggest difference: logistic regression allows

arbitrary features

 28

now you know everything about logistic
regression except….

how do we learn the weights????

 29

• in naive Bayes, we just counted to get conditional probabilities
• in logistic regression, we perform stochastic gradient ascent

Learning Weights
● given: a set of feature vectors and labels

● goal: learn the weights.

Learning Weights
We know:

So let’s try to maximize probability of the entire
dataset - maximum likelihood estimation

Learning Weights
So let’s try to maximize probability of the entire

dataset - maximum likelihood estimation

Learning Weights
So let’s try to maximize probability of the entire

dataset - maximum likelihood estimation

equivalent to minimizing
the negative log likelihood
as in your reading!

 34

Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables �

Parameter

Objective

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 18

gradient ascent (non-convex)

 35

Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables �

Parameter

Objective

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 18

Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables �

0

Undiscovered
Country

Parameter

Objective

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 18

gradient ascentgradient ascent (non-convex)

 36

Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables �

Parameter

Objective

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 18

Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables �

0

Undiscovered
Country

Parameter

Objective

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 18

gradient ascentgradient ascent (non-convex)

 37

Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables �

Parameter

Objective

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 18

Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables �

1

0

Undiscovered
Country

Parameter

Objective

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 18

gradient ascentgradient ascent (non-convex)

 38

Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables �

Parameter

Objective

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 18

Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables �

1

0

Undiscovered
Country

Parameter

Objective

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 18

gradient ascentgradient ascent (non-convex)

 39

Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables �

Parameter

Objective

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 18

Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables �

1

0

2

Undiscovered
Country

Parameter

Objective

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 18

gradient ascentgradient ascent (non-convex)

 40

Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables �

Parameter

Objective

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 18

Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables �

1

0

2

Undiscovered
Country

Parameter

Objective

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 18

gradient ascentgradient ascent (non-convex)

 41

Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables �

Parameter

Objective

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 18

Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables �

1

0

2

3

Undiscovered
Country

Parameter

Objective

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 18

gradient ascentgradient ascent (non-convex)

good news! the log-likelihood in LR
is concave, which means that it has
just one local (and global) maximum

 42

 43

Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables �

Parameter

Objective

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 18

Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables �

1

0

2

3

Undiscovered
Country

Parameter

Objective

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 18

Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables �

0

β ij
(l+1)

Jα
∂
∂β

β ij
(l)

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 18

gradient ascent

∂L
∂β

= gradient

gradient ascent (non-convex)

Gradient for Logistic Regression

To ease notation, let’s define

⇡
i

=

exp�T

x

i

1+exp�T

x

i

(5)

Our objective function is

L =

X

i

logp(y

i

|x
i

) =

X

i

L
i

=

X

i

®
log⇡

i

if y

i

= 1

log(1�⇡
i

) if y

i

= 0
(6)

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 6 / 18

 44

Gradient for Logistic Regression

To ease notation, let’s define

⇡
i

=

exp�T

x

i

1+exp�T

x

i

(5)

Our objective function is

L =

X

i

logp(y

i

|x
i

) =

X

i

L
i

=

X

i

®
log⇡

i

if y

i

= 1

log(1�⇡
i

) if y

i

= 0
(6)

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 6 / 18

log likelihood!

σ(β ⋅ xi)

 45

Taking the Derivative

Apply chain rule:

@L
@ �

j

=

X

i

@L
i

(

~�)

@ �
j

=

X

i

(
1
⇡

i

@ ⇡
i

@ �
j

if y

i

= 1
1

1�⇡
i

Ä
� @ ⇡i

@ �
j

ä
if y

i

= 0
(7)

If we plug in the derivative,

@ ⇡
i

@ �
j

=⇡
i

(1�⇡
i

)x

j

, (8)

we can merge these two cases

@L
i

@ �
j

= (y

i

�⇡
i

)x

j

. (9)

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 7 / 18

∂
∂x

log(x) =
1
x

βj = jth dimension of β

∂
∂x

σ(x) = σ(x)(1 − σ(x))

 46

Taking the Derivative

Apply chain rule:

@L
@ �

j

=

X

i

@L
i

(

~�)

@ �
j

=

X

i

(
1
⇡

i

@ ⇡
i

@ �
j

if y

i

= 1
1

1�⇡
i

Ä
� @ ⇡i

@ �
j

ä
if y

i

= 0
(7)

If we plug in the derivative,

@ ⇡
i

@ �
j

=⇡
i

(1�⇡
i

)x

j

, (8)

we can merge these two cases

@L
i

@ �
j

= (y

i

�⇡
i

)x

j

. (9)

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 7 / 18

∂
∂x

log(x) =
1
x

βj = jth dimension of β

∂
∂x

σ(x) = σ(x)(1 − σ(x))
∂πi

∂βj
= πi(1 − πi)xij

 47

Taking the Derivative

Apply chain rule:

@L
@ �

j

=

X

i

@L
i

(

~�)

@ �
j

=

X

i

(
1
⇡

i

@ ⇡
i

@ �
j

if y

i

= 1
1

1�⇡
i

Ä
� @ ⇡i

@ �
j

ä
if y

i

= 0
(7)

If we plug in the derivative,

@ ⇡
i

@ �
j

=⇡
i

(1�⇡
i

)x

j

, (8)

we can merge these two cases

@L
i

@ �
j

= (y

i

�⇡
i

)x

j

. (9)

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 7 / 18

∂
∂x

log(x) =
1
x

βj = jth dimension of β

∂
∂x

σ(x) = σ(x)(1 − σ(x))

(yi − πi)xij

∂πi

∂βj
= πi(1 − πi)xij

 48

Taking the Derivative

Apply chain rule:

@L
@ �

j

=

X

i

@L
i

(

~�)

@ �
j

=

X

i

(
1
⇡

i

@ ⇡
i

@ �
j

if y

i

= 1
1

1�⇡
i

Ä
� @ ⇡i

@ �
j

ä
if y

i

= 0
(7)

If we plug in the derivative,

@ ⇡
i

@ �
j

=⇡
i

(1�⇡
i

)x

j

, (8)

we can merge these two cases

@L
i

@ �
j

= (y

i

�⇡
i

)x

j

. (9)

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 7 / 18

∂
∂x

log(x) =
1
x

βj = jth dimension of β

∂
∂x

σ(x) = σ(x)(1 − σ(x))

 = ground-truth label

 = predicted probability

yi

πi

(yi − πi)xij

∂πi

∂βj
= πi(1 − πi)xij

 49

Gradient for Logistic Regression

Gradient

r�L (

~�) =


@L (

~�)

@ �0
, . . . ,

@L (

~�)

@ �
n

�
(10)

Update

�� ⌘⌘r�L (

~�) (11)

� 0
i

 �
i

+⌘
@L (

~�)

@ �
i

(12)

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 8 / 18

gradient = partial
derivative of log
likelihood WRT each
weight

is the learning rateη

LogReg Exercise

= (1.0, -3.0, 2.0)

features: (count “nigerian”, count “prince”, count “nigerian prince”)

63% accuracy

LogReg Exercise

= (1.0, -3.0, 2.0)

features: (count “nigerian”, count “prince”, count “nigerian prince”)

63% accuracy

= (0.5, -1.0, 3.0) 75% accuracy

LogReg Exercise

= (1.0, -3.0, 2.0)

features: (count “nigerian”, count “prince”, count “nigerian prince”)

63% accuracy

= (0.5, -1.0, 3.0)

= (-1.0, -1.0, 4.0)

75% accuracy

81% accuracy

 53

Regularized Conditional Log Likelihood

Unregularized

� ⇤=argmax

�
ln

î
p(y

(j) |x(j),�)
ó

(13)

Regularized

� ⇤=argmax

�
ln

î
p(y

(j) |x(j),�)
ó
�µ
X

i

� 2
i

(14)

µ is “regularization” parameter that trades off between likelihood and
having small parameters

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 11 / 18

exercise!

 54

