
A Study of Dynamic Software 
Update Quiescence for 
Multithreaded Programs

Christopher M. Hayden, Karla Saur, 
Michael Hicks, Jeffrey S. Foster



2

Update Timing

 Well-defined update points make it easier to 
reason about update correctness

 Good candidates are quiescent points in loops 
which have little in-flight state



3

DSU and Threading

 Timeliness in multithreaded updates:

 Full quiescence – all threads hit update point

 Concern - Updating at only specific points has the risk of 
delaying an update for too long, even indefinitely



4

Goals & Approach:

 Questions:

 Quick full quiescence in multithreaded programs?
 What blocking calls impede quick quiescence?

 Created library: QBench

 Interrupt blocking to facilitate quiescence with minimal 
delay

 Measures time from update request to full quiescence
 Idioms we develop in QBench we can roll into DSU 

systems



5

Update at Quiescent Points

 Update point 'qbench_update':
 No update requested: call is a no-op
 Update requested: calling thread blocks 

 Request an update by sending a SIGUSR2 signal
 QBench installs a signal handler indicating update requested. 



6

Threats to Quiescence

 Blocking calls in our experiments: 

 

Condition Variables: 
Threads sharing a mutex 

I/O: 
Socket blocking on data 



7

Blocking on I/O

Under normal circumstances an accept call will block 
until a connection is accepted. 



8

Blocking on I/O

Under normal circumstances an accept call will block 
until a connection is accepted. 

7



9

Blocking on I/O

Under normal circumstances an accept call will block 
until a connection is accepted. 

A signal will 
interrupt accept, 
return -1, and 
set errno to 
EINTR.

7



10

Blocking on I/O

Under normal circumstances an accept call will block 
until a connection is accepted. 

A signal will 
interrupt accept, 
return -1, and 
set errno to 
EINTR.

Returns to top of even loop to 
immediately hit update point

7



11

UNIX Signals

 Signals are usually handled by main thread
 Main thread signals all threads not blocked by 

condition variables



12

Blocking on Condition Variables

Programmers guard against spurious wake-ups by placing 
pthread_cond_wait in a loop



13

Blocking on Condition Variables

Programmers guard against spurious wake-ups by placing 
pthread_cond_wait in a loop

12



14

Allows thread to be signaled for
update even when waiting on a
condition variable

Blocking on Condition Variables

Programmers guard against spurious wake-ups by placing 
pthread_cond_wait in a loop

12



15

Allows thread to be signaled for
update even when waiting on a
condition variable

Reports true if
an update request 
is signaled

Blocking on Condition Variables

Programmers guard against spurious wake-ups by placing 
pthread_cond_wait in a loop

12



16

Allows thread to be signaled for
update even when waiting on a
condition variable

Reports true if
an update request 
is signaled

Blocking on Condition Variables

Returns to top of even loop to 
immediately hit update point

Programmers guard against spurious wake-ups by placing 
pthread_cond_wait in a loop

12



17

Waking a Blocked Thread

 Condition Variables: Another thread must be 
available to signal



18

Waking a Blocked Thread

 Condition Variables: Another thread must be 
available to signal



19

Experiments
 We chose programs covering a wide range of domains. 

 On average, 22 lines of code changed (including update points).

 Manual changes: changes beyond adding calls to QBench.



20

Results
 Two Workloads:

 Server idle (i.e., no connected clients) 
 Performing program-dependent work

 Nearly all programs quiesced in under 1ms 
 Some would not quiesce without changes

DNQ = Does Not Quiesce



21

Results
 Two Workloads:

 Server idle (i.e., no connected clients) 
 Performing program-dependent work

 Nearly all programs quiesced in under 1ms 
 Some would not quiesce without changes

DNQ = Does Not Quiesce



22

Results
 Two Workloads:

 Server idle (i.e., no connected clients) 
 Performing program-dependent work

 Nearly all programs quiesced in under 1ms 
 Some would not quiesce without changes

DNQ = Does Not Quiesce



23

Summary & Future Work

 Demonstrated multithreaded quiescence quickly and 
with little implementation complexity for many 
programs with fixed update points 

 Time to quiescence ranged from 0.155 to 107.558 ms; 
most were below 1 ms

 We plan to integrate the multi-threaded quiescent 
functionality back into Kitsune


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

