A Study of Dynamic Software
Update Quiescence for
Multithreaded Programs

Christopher M. Hayden, Karla Saur,
Michael Hicks, Jeffrey S. Foster

Ll
11/ Languages at

IIIIIIIIIII




Update Timing

= Well-defined update points make it easier to
reason about update correctness

1 void xthread_entry(void =xarg) {

>/ thread init code %/

3 while (1) {

; dsu_update(); /* update point x/

5 /% loop body: typically handles a single program event x/
6}
7}

= Good candidates are quiescent points in loops
which have little in-flight state



DSU and Threading

= [imeliness in multithreaded updates:

= Full quiescence — all threads hit update point

update update update update
point polnt point polint
Thread 1 Thread 2 Thread 3 Thread 4

= Concern - Updating at only specific points has the risk of
delaying an update for too long, even indefinitely

update update update update

Thread 1 Thread 2 Thread 3 Thread 4




Goals & Approach:

= Questions:

= Quick full quiescence in multithreaded programs?
= What blocking calls impede quick quiescence?

= Created library: QBench

= Interrupt blocking to facilitate quiescence with minimal
delay

= Measures time from update request to full quiescence

= |dioms we develop in QBench we can roll into DSU
systems



Update at Quiescent Points

= Update point 'gbench update’:
= No update requested: call is a no-op
= Update requested: calling thread blocks

1 void xthread_entry(void xarg) {
/% thread init code x/
while (1) {
gbench_update(); / update point */
/% loop body: typically handles a single program event =/

1
}

~N S i Rk w M

= Request an update by sending a SIGUSR2 signal

= QBench installs a signal handler indicating update requested.



Threats to Quiescence

= Blocking calls in our experiments:

1/O: Condition Variables:
Socket blocking on data Threads sharing a mutex
update pt
accepf(....)] cond_wait(...);

Thread x Thread x




Blocking on I/O

ﬂnder normal circumstances an accept call will block \
until a connection is accepted.

1 void xthread_entry(void *arg) {
/x thread init code x/
while (1) {

res = accept(sockfd, addr, addrlen);

/+ ... handle connection =/

}

| y

-
K"DO&MD\M-&WM




Blocking on I/O

ﬂnder normal circumstances an accept call will block \
until a connection is accepted.

1 void xthread_entry(void xarg) {
/x thread init code x/
while (1) {
gbench_update();
res = accept(sockfd, addr, addrlen);

/¥ ... handle connection =/

}

| A

-
K"DO&MD\M-&WM




Blocking on I/O

ﬂnder normal circumstances an accept call will block \
until a connection is accepted.

1 void xthread_entry(void xarg) {

> /% thread Init code x/

5 while (1) { JRT——

! qbench_update(); intSeI?rE?)t Va\r”ccept
5 res = accept(sockfd, addr, addrlen); ceturn -1 and
6 if (res == —1 &&errno == EINTR) set ermo to

, continue: N —— EINTR.

8 /* ... handle connection x/

o}

N A




Blocking on I/O

ﬂnder normal circumstances an accept call will block \
until a connection is accepted.

1 void xthread_entry(void *arg) {
/% thread init code */
while (1) { . .
gbench_update(): A signal will
- , _ interrupt accept,
res = accept(sockfd, addr, addrlen); return -1. and
if (res == —1 && errno == EINTR) set ermo to
continue: N EINTR.

/+ ...\ handle connection =/

} Returns to top of even loop to

} immediately hit update point /
7

-
K"DO&MG\M-&WM




UNIX Signals

= Signals are usually handled by main thread

= Main thread signals all threads not blocked by
condition variables

11




Blocking on Condition Variables

Programmers guard against spurious wake-ups by placing
pthread_cond_wait in a loop
1 void xthread_entry(void =xarg) {

/x thread init code x*/
while (1) {
gbench_update();
pthread_mutex_lock(&mutex);
while (linput_is_ready()){
pthread cond wait(&cond, &mutex);
}

pthread_mutex_unlock(&mutex);

L T = e I = T . S -SSR U

oy
=

[,
o

/* ... handle connection */

[
b2

13 }

h Y




Blocking on Condition Variables

Programmers guard against spurious wake-ups by placing
pthread _cond_wait in a loop
1 void xthread_entry(void xarg) {

2 /* thread init code */
;3 while (1) {
4 gbench_update();
5 pthread_mutex_lock(&mutex);
6 while (linput_is_ready() && !gbench_update_requested()) {
7 gbench_pthread_cond_wait(&cond, &mutex);
a8
}
9 pthread_mutex_unlock(&mutex);
10 if (gbench_update_requested())

7 continue; /*x reaches qbench_update x/
2 /% ... handle connection x/
B}

. Y




Blocking on Condition Variables

Programmers guard against spurious wake-ups by placing
pthread_cond_wait in a loop

1 void ~thread_entry(void xarg) { Allows thread to be signaled for
update even when waiting on a

condition variable

> /x thread init code */
3 while (1) {

4 gbench_update();
5 pthread_mutex_lo mutex);

6 while (linpuiA4s_ready() && !gbench_update_requested()) {
7

&8

9

gbench_pthread_cond_wait(&cond, &mutex);
}

pthread_mutex_unlock(&mutex);
10 if (gbench_update_requested())

7 continue; /*x reaches qbench_update x/
2 /% ... handle connection x/
B}

. Y




Blocking on Condition Variables

Programmers guard against spurious wake-ups by placing
pthread _cond_wait in a loop
1 void ~thread_entry(void xarg) { Allows thread to be signaled for

/+ thread init code =/

j while (1) { update even when waiting on a
. gbench_update(): condition variable

5 pthread_mutex_lo mutex);

6 while (linput4s” ready() && !gbench_update_requested()) {

7 gbench_pthread_cond_wait(&cond, &mutex);

8 } Reports true if

9 pthread_mutex_unlock(&mutex);

10 if (gbench_update_requested()) an update request

1 continue; /4 reaches gbench_update x/ is signaled
12 /* ... handle connection x/
3}

. Y




Blocking on Condition Variables

Programmers guard against spurious wake-ups by placing
pthread_cond_wait in a loop
1 void xthread_entry(void xarg) {

Allows thr ignaled for
/x thread init code +/ ows thread to be signaled fo

j while (1) { update even when waiting on a
. gbench_update(): condition variable

5 pthread_mutex_lo mutex);

6 while (linput4s” ready() && !gbench_update_requested()) {

7 gbench_pthread_cond_wait(&cond, &mutex);

8 } Reports true if

9 pthread_mutex_unlock(&mutex);

10 if (gbench_update_requested()) an update request

1 continue; /4 reaches gbench_update x/ is signaled
2 /% ... Wwhandle connection x/
3}

o} Returns to top of even loop to
Immediately hit update point
12




Waking a Blocked Thread

= Condition Variables: Another thread must be
available to signal

recvd
SIGUSR2

blocke

main
thread

17




Waking a Blocked Thread

= Condition Variables: Another thread must be
available to signal

18




= We chose programs covering a wide range of domains.

= On average, 22 lines of code changed (including update points).

= Manual changes: changes beyond adding calls to QBench.

LoC Upd | Changed | Required
Program Total | # of Threads | Points | LoC (f) | Manual Chgs
httpd-2.2.22 232651 |2+c", ¢=3 |5 7 (5) 3 (Cond. Var. Loop)
icecast-2.3.2 17038 | 6 12 3 (3) I (Thread Sleeps)
iperf-2.0.5 3996 | 3+n°, n=1|5 8 (3) I (Cond. Var. Loop)
memcached-1.4.13 9404 | 2+c*, ¢c=4 | 4 27 (4) 2 (libevent changes)
space-tyrant-0.354 8721 |3+ 2n°.n=5|6 8 (6) | (Thread Sleeps)
suricata-1.2.1 260344 |8 +c*, ¢c=3 |7 11 (6) I (libpcap break)

“Configurable: ¢ workers °Varies by n connected clients Calls to QBench excluding update

19




= Two Workloads:
= Server idle (i.e., no connected clients)
= Performing program-dependent work

= Nearly all programs quiesced in under 1ms
= Some would not quiesce without changes

w/Load (ms) w/o Load (ms)
Program All Chgs | UpdPtonly | All Chgs | UpdPt only
httpd-2.2.22 0.185 0.230 0.123 0.150
icecast-2.3.2 105.152 | 954.32 | 107.558 | 986.265
iperf-2.0.5 0.193 DNQ 0.169 DNQ
memcached-1.4.13 0.166 DNQ 0.155 DNQ
space-tyrant-0.354 0.426 | 20.583 0.078 20.304
suricata-1.2.1 0.503 68.098 0.378 DNQ

DNQ = Does Not Quiesce

20




= Two Workloads:
= Server idle (i.e., no connected clients)
= Performing program-dependent work

= Nearly all programs quiesced in under 1ms
= Some would not quiesce without changes

w/Load (ms) w/o Load (ms)
Program All Chgs | UpdPtonly | All Chgs | UpdPt only
httpd-2.2.22 0.185 0.230 0.123 0.150
icecast-2.3.2 105.152 | 954.32 | 107.558 | 986.265
iperf-2.0.5 0.193 DNQ 0.169 DNQ
memcached-1.4.13 0.166 DNQ 0.155 DNQ
space-tyrant-0.354 0.426 | 20.583 0.078 20.304
suricata-1.2.1 0.503 68.098 0.378 DNQ

DNQ = Does Not Quiesce

21




= Two Workloads:
= Server idle (i.e., no connected clients)
= Performing program-dependent work

= Nearly all programs quiesced in under 1ms
= Some would not quiesce without changes

w/Load (ms) w/o Load (ms)
Program All Chgs | UpdPtonly | All Chgs | UpdPt only
httpd-2.2.22 0.185 0.230 0.123 0.150
icecast-2.3.2 105.152 | 954.32 | 107.558 | 986.265
iperf-2.0.5 0.193 DNQ 0.169 DNQ
memcached-1.4.13 0.166 DNQ 0.155 DNQ
space-tyrant-0.354 0.426 | 20.583 0.078 20.304
suricata-1.2.1 0.503 68.098 0.378 DNQ

DNQ = Does Not Quiesce

22




Summary & Future Work

= Demonstrated multithreaded quiescence quickly and
with little implementation complexity for many
programs with fixed update points

= Time to quiescence ranged from 0.155 to 107.558 ms;
most were below 1 ms

= We plan to integrate the multi-threaded quiescent
functionality back into Kitsune

23



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

