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Update Timing

 Well-defined update points make it easier to 
reason about update correctness

 Good candidates are quiescent points in loops 
which have little in-flight state
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DSU and Threading

 Timeliness in multithreaded updates:

 Full quiescence – all threads hit update point

 Concern - Updating at only specific points has the risk of 
delaying an update for too long, even indefinitely
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Goals & Approach:

 Questions:

 Quick full quiescence in multithreaded programs?
 What blocking calls impede quick quiescence?

 Created library: QBench

 Interrupt blocking to facilitate quiescence with minimal 
delay

 Measures time from update request to full quiescence
 Idioms we develop in QBench we can roll into DSU 

systems
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Update at Quiescent Points

 Update point 'qbench_update':
 No update requested: call is a no-op
 Update requested: calling thread blocks 

 Request an update by sending a SIGUSR2 signal
 QBench installs a signal handler indicating update requested. 
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Threats to Quiescence

 Blocking calls in our experiments: 

 

Condition Variables: 
Threads sharing a mutex 

I/O: 
Socket blocking on data 
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Blocking on I/O

Under normal circumstances an accept call will block 
until a connection is accepted. 
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Blocking on I/O

Under normal circumstances an accept call will block 
until a connection is accepted. 
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return -1, and 
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UNIX Signals

 Signals are usually handled by main thread
 Main thread signals all threads not blocked by 

condition variables



12

Blocking on Condition Variables

Programmers guard against spurious wake-ups by placing 
pthread_cond_wait in a loop
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Allows thread to be signaled for
update even when waiting on a
condition variable
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Waking a Blocked Thread

 Condition Variables: Another thread must be 
available to signal
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Waking a Blocked Thread

 Condition Variables: Another thread must be 
available to signal
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Experiments
 We chose programs covering a wide range of domains. 

 On average, 22 lines of code changed (including update points).

 Manual changes: changes beyond adding calls to QBench.
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Results
 Two Workloads:

 Server idle (i.e., no connected clients) 
 Performing program-dependent work

 Nearly all programs quiesced in under 1ms 
 Some would not quiesce without changes

DNQ = Does Not Quiesce
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Summary & Future Work

 Demonstrated multithreaded quiescence quickly and 
with little implementation complexity for many 
programs with fixed update points 

 Time to quiescence ranged from 0.155 to 107.558 ms; 
most were below 1 ms

 We plan to integrate the multi-threaded quiescent 
functionality back into Kitsune
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