Locating Processes In

Memory Images

Karla Saur &
Julian Grizzard

Sponsored By:
Wright-Patterson Air Force Base — AFRL
Johns Hopkins University Applied Physics Lab

<r

Project Background

e Critical Challenge: Detecting Malware in Memory Images
* Digital memory forensics allows an investigator to
discover intrusions that may have occurred

* Our research advances the understanding of malware by
uncovering some of its fundamental weaknesses

e QOur Approach:
 Static memory image forensic analysis for Windows and
Linux systems

* Algorithms are anomaly based; search for malware

independent of pre-existing assumptions

Memory Forensics

* Memory resident in data:
* Processes

* Open Sockets/Sessions
 Memory Mapped Files
e User Data

* Our Focus: Hidden Processes
e Operating system keeps a list of all running processes

* Processes hidden by malware/rootkits

« Direct Kernel Object Manipulation — common hiding
technique

<r

Hidden Processes

e Common Method To Find Hidden Processes:
» Search for kernel objects hidden 1n memory

* Problem: kernel objects are OS specific; may be
unpredicably altered

e QOur Alternative Method:

* Bring the search down to the hardware layer and
search for x86 paging structures in memory

 Hardware layer 1s OS independent and much more

difficult to tamper with

Useful Observations for

Forensics

» All user processes have page tables

* Note: it 1s possible for an advanced attacker to change the mode of
the CPU so that paging is disabled

* Page directories and page tables can be 1dentified
using a set of known rules/patterns

* Other x86 data structures can also be identified with
similar methods

* Key point: page table identification can be used

to locate hidden processes

x86 Paging

* x86 paging structures directly correlate with
processes.

* Page tables 1solate each process in a separate virtual
address space

* Page tables contain a mapping from “virtual”
addresses to physical addresses

* Paging structures have unique CR3 register values
containing a physical address pointing to a page
directory. This can be used to identify the process.

<r

Page Table Overview

page tables
page

directory

* CR3 Register: 32 bits

* Page Directory: 4KB.
e Contains 1024-4 byte entries that can point to page
tables or 4MB pages

* Page Table: 4KB. Contains 1024-4byte entries

* Page: 4KB of Data (or 4MB for large page) |

Page-Directory Entry (4-KByte Page Table)
1211 9876543210

Page-Directory

w2]= <

Page-Table Base Address Avail

G

=}
S

A
v

L

A

Available for system programmer’s use J

Global page (Ignored)
Page size (0 indicates 4 KBytes)

Available

Accessed

Cache disabled
Write-through

User/Supervisor

Read/\Write

Present

1022

1023

* Plan: Detect Kernel Mappings 1in Page Directory
* All processes must map in the kernel to interact with

kernel

* Traverse memory in 4K blocks looking for kernel

mappings

e There will be roughly
1/4%*(size of memory
in MB) mappings
because of the 4MB
pages

Figure 2: Page-Directory Entry

(Linux Kernel Mapping)

1/1{1/10/00/111

|~~~

Ox1 OxE 0x3

Values for a 4MB Page

Entry Flags & Results

Table 1: Algorithm Parameters for Different Operating Systems

Platform Flag Values Flag Threshold Count Flag Location”
Linux (Non-PAE) 0x1E3 ~ max (; * (mem_size MB), 1 % 896) pg.dir entries 768-1023
Linux (PAE) 0x1E3 ~ max (35 * (mem_size MB), 5 *896) pg.dir 3

Windows (Non-PAE) 0x63 (350 - 500) pg_dir entries 512-1023
Windows (PAE) 0x63 (350 - 500) pg_dir 2 and 3

° Zero Indexed (Page Directories Entries from 0-1023, PAE Page Directories from (-3)

Table 2: Example Test Results for Clean Memory Images

Distribution Kernel Vers. Size Mode CR3s Missed Expired
Centos 5.1 2.6.18-53.elb H12MB Non-PAE 43 () 3
Fedora 7 2.6.21-1.3194 .7 256MB Non-PAE 93 () §)
Ubuntu Server 6.06.2 2.6.15-51-server 128MB PAE 30 () 10
Ubuntu Server 8.04 2.6.24-19-server 128MB PAE 25 () T
Ubuntu 8.04 2.6.24-19-generic 512MB Non-PAE 88 0 12
Windows XP SP1 N/A 512MB Non-PAE 63 0 N/A
Windows XP SP2 N/A 2560MB PAE) () N/A

Terminated Processes

* For forensics purposes, we can compare our reported process list
with a list of expected processes, as reported by the operating
system.

* Processes that have been legitimately terminated by the OS may
still be resident in memory
e Ex: In Linux systems, the OS will write a pointer in entry O of
the page directory. (If the page directory 1s live, entry 0 will

always be 0x00000000)

e Finding an unexpected process in memory that was not
legitimately terminated 1s suspicious

e Comparing our algorithm’s
findings with the kernel task
structures helps locate o
Suspicious processes Match: 0x0DA39000 - dd. terminated = F

Match: 0xODA15000 - sshd. terminated = F
WARNING!: process at 0xOD9BEBOOO; no match.

° Our algorithm aISO findS # userspace entries: 3 terminated = F
. Match: 0x0ODS59000 - sshd. terminated
terminated processes that have Match: 0x0D954000 - hald. terminated
been legltlmately removed from Match: OxOD8ABOOO - sshd. terminated
Process at 0x0D888000; no match.
the task structure list by the # userspace entries: 1 terminated
kernel Match: 0xOD87AOQ00 - bash. terminated

* Processes that are not in the task
structure list and have not been
deleted the kernel are flagged
for further analysis.

Background on

Virtualization

* “Virtualize” all of the hardware resources of an x86-
based computer, including a separate memory space

* Allows multiple operating systems to run on the
same physical machine

» Used for cross-platform development, special
security schemes, controlled environments

« Examples: VMWare, Xen, VirtualBox, Parallels

<r

Application: Detect

Virtualization

 In virtualization, a guest kernel will look different than the host
kernel, allowing us to easily locate and separate all processes

* Processes for both host & guest can be analyzed simultaneously

e This could potentially be used to detect hypervisor rootkits

Table 3: Partial Output of Processing a Linux Memory Im-

age with a Running Linux Virtual Machine (VMWare)
Physical Num. 0x1E3 Num. User
Address* Entries Space Entries
0Ox1EDE1000 127 48
0x1ES0F00 127]

0x1D83B00 127
127
79
79
79

79

All Together:

197: page-directory-pointer table base address (CR3): Ox1747A0Q00

O:addr: Ox1FSFCO00, num flags: O mum_4k_ent: 3 num_2M_ent: O (userspace)
1:addr: O0x1FES3000, num_flags: 0O mum_4k_ent: 25 num_2M_ent: 0 (userspace)
2iaddr: OxO0C7E2000, num flags: 480 num 4k _ent: 467 num 2M _ent: 13 Windows
Jiaddr: Ox1FSF9000, num flags: 3891 num 4k _ent: 391 num_2M_ent: O Windows

199: page-directory-pointer table base address (CR3): O0x146B6000
O:addr: Ox18300000, num flags: O mum_4k_ent: T num_2M_ent: O (userspace)
1:addr: O0x1818E000, mnum_flags: O mum_4k_ent: 20 num_2M_ent: 0 (userspace)
2:addr: Ox1B830F000, num_flags: 480 num_4k_ent: 467 num_2M_ent: 13 Windows
Jiaddr: Ox1830C000, num flags: 3890 num 4k _ent: 390 num 2M_ent: O Windows

197: page-directory-pointer table base address (CR3): 0x1038BC00O0
O:addr: Oxl1BDDFOO0, num flags: O mum_4k_snt: 8 num_2M_ent: 0 (userspace)
1:addr: 0x18D60000, num_flags: O num_4k_ent: 9 num_2M_ent: 0 (userspace)
2iaddr: Ox1BEG1000, num_flags: 480 num_4k_ent: 467 num_2M_ent: 13 Windows
J:addr: Oxl1BCDECOD, num_flags: 389 num_4k_ent: 389 num_2M_ent: O Windows

490 pg_dir_base_addr: 0x37163000, num flags: 224 num_userspace_ent: 14 Linnx

491 pg_dir_base_addr: 0x37130000, num_flags: 224 (terminated) Linnx

492 pg_dir_base_addr: 0x3712C000, num_flags: 224 num_userspace_ent: Linunx

493 pg_dir_base_addr: 0x37127000, num_flags: 224 num_userspace_ant: Linnx

494 pg_dir_base_addr: 0x37122000, num_flags: 224 num_userspace_ent: Linnx

495 pg_dir_base_addr: O0x370CA000, mnum_flags: 224 num_userspace_ent: Linunx

496 pg_dir_base_addr: O0x370BDO00, num_flags: 224 (terminated) Limux

Figure 3: This partial output contains the analysis of a 1GB memory image with a Non-PAE Linux (Ubuntu 8.04) host
containing a 512MB PAE Windows (XP SP2) guest virtual machine. The Windows XP entries show the page directory pointer
table and four corresponding page directories. The Linux entries marked “terminated” have a pointer in entry () and no other
userspace entries.

Assumptions & Limitations

 We assume no false page directories have been
intentionally 1nserted that match our expected
pattern.

 We assume paging is turned on. It 1s possible to

create a process that runs with paging turned oft, but
this 1s much more difficult than using the existing

support for process creation.

Current Status & Future

Work

Current;:

e Publication in Journal of Digital Investigation (Elsevier) in next issue
* Filed an IP Disclosure with JHU/APL Office of Technology Transfer

Future Work:

e Hypervisor Detection — Model common hypervisor’s page tables
(Xen, Virtual Box) and research hypervisor rootkit detection

* Expand Windows research to Vista/7

e Continue rootkit and malware detection as it evolves

<r

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

