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Set Membership Statements

- Hiding in a crowd

- Ring Signatures

- Confidential Transactions (ala. Monero or ZCash)

Verifym(pk1,σ)=1  or Verifym(pk2,σ)=1 or … or Verifym(pkℓ,σ)=1

SpendVerify(coin1,σ)=1  or … or SpendVerify(coinℓ,σ)=1



Our Contributions

- Framework for Efficient Set Membership in MPC-in-the-Head

- Integration into known MPC-in-the-Head

- Applications: 
- Smallest Symmetric PQ ring signatures 

- Extremely Simple RingCT Transactions
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Com(Preprocessing Seeds), 
Com(Views)

Preprocessing Challenge
Views Challenge(s)

Open(Prepreocessing)
Open(Views)

1. Verify Correctness of Preprocessing
2. Verify Consistency of Views

a = Com(Views)

MPC over Relation Circuit

Preprocessing Coordinator
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[KKW18] PQ Ring Signatures 

LowMC PRF

sk 0128

pk

Set Membership Authentication 
via Merkle Tree
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Dominates the Circuit Size

Circuit Component
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Also in the Paper

- Non-Black Box Integration into existing MPC-in-the-Head protocols

- Super Simple & Efficient PQ RingCT
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Super Simple PQ RingCT Transactions

Parts of a PQ RingCT Construction:
1. Demonstrating authorization to spend hidden coin (ring signature)
2. Double-spend protection (LowMC as PRF)
3. Output coin well formed (Trivial addition)
4. Range proofs (Do addition without overflow)

Existing Approaches:

Take independent approaches 
and duct tape together

Our Approach:

Throw it into a ZK Proof and 
don’t worry about it


