
https://eprint.iacr.org/2021/1656.pdf

Aarushi Goel (JHU), Mathias Hall-Andersen (Aarhus), Gabriel Kaptchuk (BU), and Matthew Green (JHU)

Efficient Set Membership Proofs using
MPC-in-the-Head

Set Membership Statements

x1∈ L or x2∈ L or … or xℓ∈ L

Set Membership Statements

x1∈ L or x2∈ L or … or xℓ∈ L

R(x1,w)=1 or R(x2,w)=1 or … or R(xℓ,w)=1

Set Membership Statements

x1∈ L or x2∈ L or … or xℓ∈ L

R(x1,w)=1 or R(x2,w)=1 or … or R(xℓ,w)=1

α ∈ [ℓ] is the “active branch”

Set Membership Statements

- Hiding in a crowd

Set Membership Statements

- Hiding in a crowd

- Ring Signatures

Verifym(pk1,σ)=1 or Verifym(pk2,σ)=1 or … or Verifym(pkℓ,σ)=1

Set Membership Statements

- Hiding in a crowd

- Ring Signatures

- Confidential Transactions (ala. Monero or ZCash)

Verifym(pk1,σ)=1 or Verifym(pk2,σ)=1 or … or Verifym(pkℓ,σ)=1

SpendVerify(coin1,σ)=1 or … or SpendVerify(coinℓ,σ)=1

Our Contributions

- Framework for Efficient Set Membership in MPC-in-the-Head

- Integration into known MPC-in-the-Head

- Applications:
- Smallest Symmetric PQ ring signatures

- Extremely Simple RingCT Transactions

MPC-in-the-head [IKOS07]
Prover Verifierx,w

x

MPC-in-the-head [IKOS07]
Prover Verifierx,w

x

MPC over Relation Circuit

MPC-in-the-head [IKOS07]
Prover Verifier

a

x,w
x

a = Com(Views)

MPC over Relation Circuit

MPC-in-the-head [IKOS07]
Prover Verifier

a

c
c ← Random

Subset of Parties

x,w
x

a = Com(Views)

MPC over Relation Circuit

MPC-in-the-head [IKOS07]
Prover Verifier

a

c

z

c ← Random
Subset of Parties

x,w
x

a = Com(Views)

MPC over Relation Circuit

MPC-in-the-head [IKOS07]
Prover Verifier

a

c

z Verify Consistency
of Views

c ← Random
Subset of Parties

x,w
x

a = Com(Views)

MPC over Relation Circuit

Representation 1: Naive Repetition

R

w x1

0/1

Witness

Public Input

Cascading OR

Circuit Component

R

w x2

0/1

R

w xℓ

0/1

…

R(x1,w)=1 or R(x2,w)=1 or … or R(xℓ,w)=1

Representation 1: Naive Repetition

R

w x1

0/1

Witness

Public Input

Cascading OR

Circuit Component

R

w x2

0/1

R

w xℓ

0/1

…

R(x1,w)=1 or R(x2,w)=1 or … or R(xℓ,w)=1

ℓ |R| gates!

Representation 2: Equality Check

R

w xα

0/1

Witness

Public Input

R(x1,w)=1 or R(x2,w)=1 or … or R(xℓ,w)=1

Circuit Component

=

xα x1

=

xα xℓ

…=

xα x2

Cascading OR

0/1 0/1 0/1

AND

Representation 2: Equality Check

R

w xα

0/1

Witness

Public Input

R(x1,w)=1 or R(x2,w)=1 or … or R(xℓ,w)=1

Circuit Component

=

xα x1

=

xα xℓ

…=

xα x2

Cascading OR

0/1 0/1 0/1

AND

ℓ equality checks!

Representation 3: Merkle Tree

R

w xα

0/1

Witness

Public Input

R(x1,w)=1 or R(x2,w)=1 or … or R(xℓ,w)=1

Circuit Component

Merkle Path Authenticator

xα RootPath

0/1

AND

Representation 3: Merkle Tree

R

w xα

0/1

Witness

Public Input

R(x1,w)=1 or R(x2,w)=1 or … or R(xℓ,w)=1

Circuit Component

Merkle Path Authenticator

xα RootPath

0/1

AND
log(ℓ) hashes!

Our Approach

R

w xα

0/1

Witness

Public Input

Circuit Component

Merkle Path Authenticator

xα RootPath

0/1

AND

Our Approach

R

w xα

0/1

Witness

Public Input

Circuit Component

Merkle Path Authenticator

xα RootPath

0/1

AND

Move Outside Circuit!

Our Approach: 1. Integrate Preprocessing [KKW18]

MPC over Relation Circuit

Preprocessing Coordinator

Our Approach: 1. Integrate Preprocessing [KKW18]

Com(Preprocessing Seeds),
Com(Views)

a = Com(Views)

MPC over Relation Circuit

Preprocessing Coordinator

Our Approach: 1. Integrate Preprocessing [KKW18]

Com(Preprocessing Seeds),
Com(Views)

Preprocessing Challenge
Views Challenge(s)

a = Com(Views)

MPC over Relation Circuit

Preprocessing Coordinator

Our Approach: 1. Integrate Preprocessing [KKW18]

Com(Preprocessing Seeds),
Com(Views)

Preprocessing Challenge
Views Challenge(s)

Open(Prepreocessing)
Open(Views)

1. Verify Correctness of Preprocessing
2. Verify Consistency of Views

a = Com(Views)

MPC over Relation Circuit

Preprocessing Coordinator

Our Approach: 2. Move Set Membership To Privacy Free Preprocessing

Witness

Public Input

Circuit Component

Protocol Computation

Preprocessing (Validated via. Cut-and-Choose)

Online (Validated via Consistency Check)

Preprocessing for Protocol x1 x2 xℓ…

Our Approach: 2. Move Set Membership To Privacy Free Preprocessing

Witness

Public Input

Circuit Component

Protocol Computation

Preprocessing (Validated via. Cut-and-Choose)

Online (Validated via Consistency Check)

Preprocessing for Protocol x1 x2 xℓ…

R

w

0/1

xα

Reconstruct

Our Approach: 2. Move Set Membership To Privacy Free Preprocessing

Witness

Public Input

Circuit Component

Protocol Computation

Preprocessing (Validated via. Cut-and-Choose)

Online (Validated via Consistency Check)

Preprocessing for Protocol x1 x2 xℓ…

Not ZK!

R

w

0/1

xα

Reconstruct

Our Approach: 3. Getting Soundness and Zero-Knowledge

Witness

Public Input

Circuit Component

Protocol Computation

Preprocessing (Validated via. Cut-and-Choose)

Online (Validated via Consistency Check)

Preprocessing for Protocol x1 x2 xℓ…

Shuffle()

R

w

0/1

xα

Reconstruct

Our Approach: 3. Getting Soundness and Zero-Knowledge

Witness

Public Input

Circuit Component

Protocol Computation

Preprocessing (Validated via. Cut-and-Choose)

Online (Validated via Consistency Check)

Preprocessing for Protocol x1 x2 xℓ…

Shuffle()

R

w

0/1

xα

Reconstruct

Each party sees one
share of each xi and

uses one of them
(linear complexity)

Shuffle()

Our Approach: 4. Binding Efficiently with Accumulator

Witness

Public Input

Circuit Component

Protocol Computation

Preprocessing (Validated via. Cut-and-Choose)

Online (Validated via Consistency Check)

Preprocessing for Protocol
r+x1 r+x2 r+xℓ…

r

Accumulator

Shuffle()

Our Approach: 4. Binding Efficiently with Accumulator

Witness

Public Input

Circuit Component

Protocol Computation

Preprocessing (Validated via. Cut-and-Choose)

Online (Validated via Consistency Check)

Preprocessing for Protocol
r+x1 r+x2 r+xℓ…

r

Accumulator

r+xα Root Path

Shuffle()

Our Approach: 4. Binding Efficiently with Accumulator

Witness

Public Input

Circuit Component

Protocol Computation

Preprocessing (Validated via. Cut-and-Choose)

Online (Validated via Consistency Check)

Preprocessing for Protocol
r+x1 r+x2 r+xℓ…

r

Accumulator

r+xα Root Path

Verify Path

Shuffle()

Our Approach: 4. Binding Efficiently with Accumulator

Witness

Public Input

Circuit Component

Protocol Computation

Preprocessing (Validated via. Cut-and-Choose)

Online (Validated via Consistency Check)

Preprocessing for Protocol
r+x1 r+x2 r+xℓ…

r

Accumulator

r+xα Root Path

Verify Pathxα

Reconstruct

-

Shuffle()

Our Approach: 4. Binding Efficiently with Accumulator

Witness

Public Input

Circuit Component

Protocol Computation

Preprocessing (Validated via. Cut-and-Choose)

Online (Validated via Consistency Check)

Preprocessing for Protocol
r+x1 r+x2 r+xℓ…

R

w xα

Reconstruct

r

Accumulator

r+xα Root Path

- Verify Path

Shuffle()

Our Approach: 4. Binding Efficiently with Accumulator

Witness

Public Input

Circuit Component

Protocol Computation

Preprocessing (Validated via. Cut-and-Choose)

Online (Validated via Consistency Check)

Preprocessing for Protocol
r+x1 r+x2 r+xℓ…

R

w

0/1

xα

Reconstruct

r

Accumulator

r+xα Root Path

- Verify Path

Shuffle()

Our Approach: 4. Binding Efficiently with Accumulator

Witness

Public Input

Circuit Component

Protocol Computation

Preprocessing (Validated via. Cut-and-Choose)

Online (Validated via Consistency Check)

Preprocessing for Protocol
r+x1 r+x2 r+xℓ…

R

w

0/1

xα

Reconstruct

r

Accumulator

r+xα Root Path

- Verify Path

Logarithmic
Communication

Complexity!

NIZK-based PQ Signatures [GMO16, CDGORRSZ17,KKW18]

NIPoK{(sk) : m and pk = PRFsk(0)}

NIPoK{(sk,pk’) : m and pk’ = PRFsk(0) and pk’ ∈ {pk1, pk2, … , pkℓ} }

NIZK-based PQ Ring Signatures [KKW18]

NIZK-based PQ Signatures [GMO16, CDGORRSZ17,KKW18]

NIPoK{(sk) : m and pk = PRFsk(0)}

NIPoK{(sk,pk’) : m and pk’ = PRFsk(0) and pk’ ∈ {pk1, pk2, … , pkℓ} }

NIZK-based PQ Ring Signatures [KKW18]

Set Membership

[KKW18] PQ Ring Signatures

LowMC PRF

sk 0128

pk

Set Membership Authentication
via Merkle Tree

Merkle Path

Merkle Root
Witness

Public Input

Dominates the Circuit Size

Circuit Component

Shuffle()

Witness

Public Input

Circuit Component

Protocol Computation

Preprocessing (Validated via. Cut-and-Choose)

Online (Validated via Consistency Check)

Preprocessing for Protocol
r+pk1 …

LowMC

sk

pk

pkα

Reconstruct

r

Accumulator

Root Path

- Verify Path

Our PQ Ring Signatures

r+pkℓ

r+pkα

0128

Equality Check

Also in the Paper

- Non-Black Box Integration into existing MPC-in-the-Head protocols

- Super Simple & Efficient PQ RingCT

Thanks!
https://eprint.iacr.org/2021/1656.pdf

Aarushi Goel (JHU), Mathias Hall-Andersen (Aarhus), Gabriel Kaptchuk (BU), and Matthew Green (JHU)

Server: Xeon E5-2695 (18 Cores, 2.10 GHz)

Server: Xeon E5-2666 (10 Cores, 2.60 GHz)

Super Simple PQ RingCT Transactions

Parts of a PQ RingCT Construction:
1. Demonstrating authorization to spend hidden coin
2. Double-spend protection
3. Output coin well formed
4. Range proofs

Super Simple PQ RingCT Transactions

Parts of a PQ RingCT Construction:
1. Demonstrating authorization to spend hidden coin
2. Double-spend protection
3. Output coin well formed
4. Range proofs

Existing Approaches:

Take independent approaches
and duct tape together

Super Simple PQ RingCT Transactions

Parts of a PQ RingCT Construction:
1. Demonstrating authorization to spend hidden coin
2. Double-spend protection
3. Output coin well formed
4. Range proofs

Existing Approaches:

Take independent approaches
and duct tape together

Our Approach:

Throw it into a ZK Proof and
don’t worry about it

Super Simple PQ RingCT Transactions

Parts of a PQ RingCT Construction:
1. Demonstrating authorization to spend hidden coin
2. Double-spend protection
3. Output coin well formed
4. Range proofs

Existing Approaches:

Take independent approaches
and duct tape together

Our Approach:

Throw it into a ZK Proof and
don’t worry about it

Super Simple PQ RingCT Transactions

Parts of a PQ RingCT Construction:
1. Demonstrating authorization to spend hidden coin (ring signature)
2. Double-spend protection
3. Output coin well formed
4. Range proofs

Existing Approaches:

Take independent approaches
and duct tape together

Our Approach:

Throw it into a ZK Proof and
don’t worry about it

Super Simple PQ RingCT Transactions

Parts of a PQ RingCT Construction:
1. Demonstrating authorization to spend hidden coin (ring signature)
2. Double-spend protection (LowMC as PRF)
3. Output coin well formed
4. Range proofs

Existing Approaches:

Take independent approaches
and duct tape together

Our Approach:

Throw it into a ZK Proof and
don’t worry about it

Super Simple PQ RingCT Transactions

Parts of a PQ RingCT Construction:
1. Demonstrating authorization to spend hidden coin (ring signature)
2. Double-spend protection (LowMC as PRF)
3. Output coin well formed (Trivial addition)
4. Range proofs

Existing Approaches:

Take independent approaches
and duct tape together

Our Approach:

Throw it into a ZK Proof and
don’t worry about it

Super Simple PQ RingCT Transactions

Parts of a PQ RingCT Construction:
1. Demonstrating authorization to spend hidden coin (ring signature)
2. Double-spend protection (LowMC as PRF)
3. Output coin well formed (Trivial addition)
4. Range proofs (Do addition without overflow)

Existing Approaches:

Take independent approaches
and duct tape together

Our Approach:

Throw it into a ZK Proof and
don’t worry about it

