
Part of Speech Tagging

Natural Language Processing: Jordan
Boyd-Graber
University of Maryland
HIDDEN MARKOV MODELS

Adapted from material by Ray Mooney

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 1 / 30

Roadmap

Ñ Identify common classes of part of speech tags
Ñ Understand why pos tags can help
Ñ How to add features to improve classification
Ñ Joint labeling: Hidden Markov Models (high level)
Ñ Hidden Markov Model (rigorous definition)
Ñ Estimating HMM

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 2 / 30

What is POS Tagging and why do we care?

POS Tagging: Task Definition

Ñ Annotate each word in a sentence with a part-of-speech marker.
Ñ Lowest level of syntactic analysis.

John saw the saw and decided to take it to the table
NNP VBD DT NN CC VBD TO VB PRP IN DT NN

Ñ Useful for subsequent syntactic parsing and word sense disambiguation.

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 3 / 30

What is POS Tagging and why do we care?

What are POS Tags?

Ñ Original Brown corpus used a large set of 87 POS tags.
Ñ Most common in NLP today is the Penn Treebank set of 45 tags. Tagset

used in these slides for “real” examples. Reduced from the Brown set
for use in the context of a parsed corpus (i.e. treebank).

Ñ The C5 tagset used for the British National Corpus (BNC) has 61 tags.

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 4 / 30

What is POS Tagging and why do we care?

Tag Examples

Ñ Noun (person, place or thing)
É Singular (NN): dog, fork
É Plural (NNS): dogs, forks
É Proper (NNP, NNPS): John, Springfields

Ñ Personal pronoun (PRP): I, you, he, she, it
Ñ Wh-pronoun (WP): who, what
Ñ Verb (actions and processes)
É Base, infinitive (VB): eat
É Past tense (VBD): ate
É Gerund (VBG): eating
É Past participle (VBN): eaten
É Non 3rd person singular present tense (VBP): eat
É 3rd person singular present tense: (VBZ): eats
É Modal (MD): should, can
É To (TO): to (to eat)

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 5 / 30

What is POS Tagging and why do we care?

Tag Examples (cont.)

Ñ Adjective (modify nouns)
É Basic (JJ): red, tall
É Comparative (JJR): redder, taller
É Superlative (JJS): reddest, tallest

Ñ Adverb (modify verbs)
É Basic (RB): quickly
É Comparative (RBR): quicker
É Superlative (RBS): quickest

Ñ Preposition (IN): on, in, by, to, with
Ñ Determiner:
É Basic (DT) a, an, the
É WH-determiner (WDT): which, that

Ñ Coordinating Conjunction (CC): and, but, or,
Ñ Particle (RP): off (took off), up (put up)

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 6 / 30

What is POS Tagging and why do we care?

Open vs. Closed Class

Ñ Closed class categories are composed of a small, fixed set of
grammatical function words for a given language.
É Pronouns, Prepositions, Modals, Determiners, Particles, Conjunctions

Ñ Open class categories have large number of words and new ones are
easily invented.
É Nouns (Googler, textlish), Verbs (Google), Adjectives (geeky), Abverb

(chompingly)

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 7 / 30

What is POS Tagging and why do we care?

Ambiguity

“Like" can be a verb or a preposition
Ñ I like/VBP candy.
Ñ Time flies like/IN an arrow.

“Around” can be a preposition, particle, or adverb
Ñ I bought it at the shop around/IN the corner.
Ñ I never got around/RP to getting a car.
Ñ A new Prius costs around/RB $25K.

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 8 / 30

What is POS Tagging and why do we care?

How hard is it?

Ñ Usually assume a separate initial tokenization process that separates
and/or disambiguates punctuation, including detecting sentence
boundaries.

Ñ Degree of ambiguity in English (based on Brown corpus)
É 11.5% of word types are ambiguous.
É 40% of word tokens are ambiguous.

Ñ Average POS tagging disagreement amongst expert human judges for
the Penn treebank was 3.5%

Ñ Based on correcting the output of an initial automated tagger, which was
deemed to be more accurate than tagging from scratch.

Ñ Baseline: Picking the most frequent tag for each specific word type
gives about 90% accuracy 93.7% if use model for unknown words for
Penn Treebank tagset.

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 9 / 30

What is POS Tagging and why do we care?

What about classification / feature engineering?

Ñ Let’s view the context as input
Ñ pos tag is the label
Ñ How can we select better features?

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 10 / 30

What is POS Tagging and why do we care?

Baseline

Ñ Just predict the most frequent class
Ñ 0.38 accuracy

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 11 / 30

What is POS Tagging and why do we care?

Prefix and Suffixes

Ñ Take what characters start a word (un, re, in)
Ñ Take what characters end a word (ly, ing)
Ñ Use as features

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 12 / 30

What is POS Tagging and why do we care?

Prefix and Suffixes

Ñ Take what characters start a word (un, re, in)
Ñ Take what characters end a word (ly, ing)
Ñ Use as features (Accuracy: 0.55)

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 12 / 30

What is POS Tagging and why do we care?

Prefix and Suffixes

Ñ Take what characters start a word (un, re, in)
Ñ Take what characters end a word (ly, ing)
Ñ Use as features (Accuracy: 0.55)
Ñ What can you do to improve the set of features?

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 12 / 30

What is POS Tagging and why do we care?

Error Analysis

Ñ Look at predictions of the models
Ñ Look for patterns in frequent errors

Errors from prefix / suffix model

said (372), back (189), get (153), then (147), know (144), Mr. (87), Mike
(78)

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 13 / 30

What is POS Tagging and why do we care?

Error Analysis

Ñ Look at predictions of the models
Ñ Look for patterns in frequent errors

Errors from prefix / suffix model

said (372), back (189), get (153), then (147), know (144), Mr. (87), Mike
(78)

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 13 / 30

What is POS Tagging and why do we care?

Confusion Matrix: Only Capitalization

Accuracy: 0.45

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 14 / 30

What is POS Tagging and why do we care?

Incorporating Knowledge

Ñ Use WordNet, an electronic
dictionary in nltk

Ñ (We’ll talk more about it later)
Ñ Now getting 0.82 accuracy

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 15 / 30

What is POS Tagging and why do we care?

Error Analysis

back then now there here still long thought want even
223 145 140 116 115 100 99 88 79 67

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 16 / 30

What is POS Tagging and why do we care?

A more fundamental problem . . .

Ñ Each classification is independent . . .
Ñ This isn’t right!
Ñ If you have a noun, it’s more likely to be preceeded by an adjective
Ñ Determiners are followed by either a noun or an adjective
Ñ Determiners don’t follow each other

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 17 / 30

What is POS Tagging and why do we care?

Approaches

Ñ Rule-Based: Human crafted rules based on lexical and other linguistic
knowledge.

Ñ Learning-Based: Trained on human annotated corpora like the Penn
Treebank.
É Statistical models: Hidden Markov Model (HMM), Maximum Entropy

Markov Model (MEMM), Conditional Random Field (CRF)
É Rule learning: Transformation Based Learning (TBL)
É Deep learning: RNN / LSTM

Ñ Generally, learning-based approaches have been found to be more
effective overall, taking into account the total amount of human
expertise and effort involved.

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 18 / 30

What is POS Tagging and why do we care?

Approaches

Ñ Rule-Based: Human crafted rules based on lexical and other linguistic
knowledge.

Ñ Learning-Based: Trained on human annotated corpora like the Penn
Treebank.
É Statistical models: Hidden Markov Model (HMM), Maximum Entropy

Markov Model (MEMM), Conditional Random Field (CRF)
É Rule learning: Transformation Based Learning (TBL)
É Deep learning: RNN / LSTM

Ñ Generally, learning-based approaches have been found to be more
effective overall, taking into account the total amount of human
expertise and effort involved.

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 18 / 30

HMM Intuition

HMM Definition

Ñ A finite state machine with probabilistic state transitions.
Ñ Makes Markov assumption that next state only depends on the current

state and independent of previous history.

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 19 / 30

HMM Intuition

Generative Model

Ñ Probabilistic generative model for sequences.
Ñ Assume an underlying set of hidden (unobserved) states in which the

model can be (e.g. parts of speech).
Ñ Assume probabilistic transitions between states over time (e.g.

transition from POS to another POS as sequence is generated).
Ñ Assume a probabilistic generation of tokens from states (e.g. words

generated for each POS).

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 20 / 30

HMM Intuition

Cartoon

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 21 / 30

HMM Intuition

Cartoon

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 21 / 30

HMM Recapitulation

HMM Definition

Assume K parts of speech, a lexicon size of V , a series of observations
{x1, . . . ,xN}, and a series of unobserved states {z1, . . . ,zN}.
⇡ A distribution over start states (vector of length K): ⇡i = p(z1 = i)

✓ Transition matrix (matrix of size K by K): ✓i ,j = p(zn = j |zn�1 = i)

� An emission matrix (matrix of size K by V): �j ,w = p(xn =w |zn = j)

Two problems: How do we move from data to a model? (Estimation) How
do we move from a model and unlabled data to labeled data? (Inference)

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 22 / 30

HMM Recapitulation

HMM Definition

Assume K parts of speech, a lexicon size of V , a series of observations
{x1, . . . ,xN}, and a series of unobserved states {z1, . . . ,zN}.
⇡ A distribution over start states (vector of length K): ⇡i = p(z1 = i)

✓ Transition matrix (matrix of size K by K): ✓i ,j = p(zn = j |zn�1 = i)

� An emission matrix (matrix of size K by V): �j ,w = p(xn =w |zn = j)

Two problems: How do we move from data to a model? (Estimation) How
do we move from a model and unlabled data to labeled data? (Inference)

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 22 / 30

HMM Estimation

Reminder: How do we estimate a probability?

Ñ For a multinomial distribution (i.e. a discrete distribution, like over
words):

✓i =
ni +↵iP
k nk +↵k

(1)

Ñ ↵i is called a smoothing factor, a pseudocount, etc.

Ñ When ↵i = 1 for all i , it’s called “Laplace smoothing” and corresponds to
a uniform prior over all multinomial distributions.

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 23 / 30

HMM Estimation

Reminder: How do we estimate a probability?

Ñ For a multinomial distribution (i.e. a discrete distribution, like over
words):

✓i =
ni +↵iP
k nk +↵k

(1)

Ñ ↵i is called a smoothing factor, a pseudocount, etc.
Ñ When ↵i = 1 for all i , it’s called “Laplace smoothing” and corresponds to

a uniform prior over all multinomial distributions.

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 23 / 30

HMM Estimation

Training Sentences

here come old flattop
MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO V

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 24 / 30

HMM Estimation

Training Sentences

x here come old flattop
MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO V

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 24 / 30

HMM Estimation

Training Sentences

x here come old flattop
z MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO V

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 24 / 30

HMM Estimation

Initial Probability ⇡

POS Frequency Probability
MOD 1.1 0.234
DET 1.1 0.234

CONJ 1.1 0.234
N 0.1 0.021

PREP 0.1 0.021
PRO 0.1 0.021

V 1.1 0.234

Remember, we’re taking MAP estimates, so we add 0.1 (arbitrarily chosen)
to each of the counts before normalizing to create a probability distribution.
This is easy; one sentence starts with an adjective, one with a determiner,
one with a verb, and one with a conjunction.

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 25 / 30

HMM Estimation

Training Sentences

here come old flattop
MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO N

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 26 / 30

HMM Estimation

Training Sentences

here come old flattop
MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO N

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 26 / 30

HMM Estimation

Training Sentences

here come old flattop
MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO N

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 26 / 30

HMM Estimation

Transition Probability ✓

Ñ We can ignore the words; just look at the parts of speech. Let’s compute
one row, the row for verbs.

Ñ We see the following transitions: V! MOD, V! CONJ, V! V,
V! PRO, and V! PRO

POS Frequency Probability
MOD 1.1 0.193
DET 0.1 0.018

CONJ 1.1 0.193
N 0.1 0.018

PREP 0.1 0.018
PRO 2.1 0.368

V 1.1 0.193

Ñ And do the same for each part of speech ...

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 27 / 30

HMM Estimation

Training Sentences

here come old flattop
MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO N

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 28 / 30

HMM Estimation

Training Sentences

here come old flattop
MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO N

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 28 / 30

HMM Estimation

Emission Probability �

Let’s look at verbs . . .
Word a and come crowd flattop

Frequency 0.1 0.1 1.1 0.1 0.1
Probability 0.0125 0.0125 0.1375 0.0125 0.0125

Word get gotta her here i
Frequency 1.1 1.1 0.1 0.1 0.1
Probability 0.1375 0.1375 0.0125 0.0125 0.0125

Word into it life love my
Frequency 0.1 0.1 0.1 1.1 0.1
Probability 0.0125 0.0125 0.0125 0.1375 0.0125

Word of old people stared stopped
Frequency 0.1 0.1 0.1 1.1 1.1
Probability 0.0125 0.0125 0.0125 0.1375 0.1375

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 29 / 30

HMM Estimation

Next time . . .

Ñ Viterbi algorithm: dynamic algorithm discovering the most likely pos
sequence given a sentence

Ñ em algorithm: what if we don’t have labeled data?

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 30 / 30

Sequence Models

Natural Language Processing: Jordan

Boyd-Graber

University of Maryland

RNNS

Slides adapted from Richard Socher

Natural Language Processing: Jordan Boyd-Graber | UMD Sequence Models | 1 / 1

N-Gram Language Models

Ñ Given: a string of English words W =w1, w2, w3, ..., wn

Ñ Question: what is p (W)?
Ñ Sparse data: Many good English sentences will not have been seen

before

! Decomposing p (W) using the chain rule:

p (w1, w2, w3, ..., wn) =
p (w1) p (w2|w1) p (w3|w1, w2) . . . p (wn |w1, w2, ...wn�1)

(not much gained yet, p (wn |w1, w2, ...wn�1) is equally sparse)

Natural Language Processing: Jordan Boyd-Graber | UMD Sequence Models | 3 / 1

Markov Chain

Ñ Markov independence assumption:

É only previous history matters

É limited memory: only last k words are included in history

(older words less relevant)

! k th order Markov model

Ñ For instance 2-gram language model:

p (w1, w2, w3, ..., wn)' p (w1) p (w2|w1) p (w3|w2)...p (wn |wn�1)

Ñ What is conditioned on, here wi�1 is called the history. Estimated

from counts.

Natural Language Processing: Jordan Boyd-Graber | UMD Sequence Models | 4 / 1

Recurrent Neural Networks

Recurrent	Neural	Networks!

4/21/16Richard	Socher9

• RNNs	tie	the	weights	at	each	time	step

• Condition	the	neural	network	on	all	previous	words

• RAM	requirement	only	scales	with	number	of	words

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1

Ñ Condition on all previous words

Ñ Hidden state at each time step

Ñ RAM requirement scales with number of wordsNatural Language Processing: Jordan Boyd-Graber | UMD Sequence Models | 5 / 1

RNN parameters

ht = f (W (hh)ht�1+W (h x)xt) (1)

ŷt =softmax(W (S)ht) (2)

P (xt+1 = vj | xt , . . . x1) = ŷt , j (3)

Ñ Learn parameter h0 to initialize hidden layer

Ñ xt is representation of input (e.g., word embedding)

Ñ ŷ is probability distribution over vocabulary

Natural Language Processing: Jordan Boyd-Graber | UMD Sequence Models | 6 / 1

Training Woes

Multiplying same matrix over and over

Natural Language Processing: Jordan Boyd-Graber | UMD Sequence Models | 7 / 1

Training Woes

Multiplying same matrix over and over

Natural Language Processing: Jordan Boyd-Graber | UMD Sequence Models | 7 / 1

Training Woes

Multiplying same matrix over and over

Natural Language Processing: Jordan Boyd-Graber | UMD Sequence Models | 7 / 1

Training Woes

Multiplying same matrix over and over

Natural Language Processing: Jordan Boyd-Graber | UMD Sequence Models | 7 / 1

Vanishing / Exploding Gradient

Ñ Work out the math:

É Define �W / �h as upper bound of norms of W , h
É Bengio et al 1994: Partial derivative is (�W �h)t�k

É This can be very small or very big

Ñ If it’s big, SGD jumps too far

Ñ If it’s small, we don’t learn what we need: “Jane walked into the room.

John walked in too. It was late in the day. Jane said hi to ____”

Natural Language Processing: Jordan Boyd-Graber | UMD Sequence Models | 8 / 1

Gradient Clipping

Trick	for	exploding	gradient:	clipping	trick

• The	solution	first	introduced	by	Mikolov is	to	clip	gradients
to	a	maximum	value.	

• Makes	a	big	difference	in	RNNs.

24

On the di�culty of training Recurrent Neural Networks

region of space. It has been shown that in practice
it can reduce the chance that gradients explode, and
even allow training generator models or models that
work with unbounded amounts of memory(Pascanu
and Jaeger, 2011; Doya and Yoshizawa, 1991). One
important downside is that it requires a target to be
defined at every time step.

In Hochreiter and Schmidhuber (1997); Graves et al.
(2009) a solution is proposed for the vanishing gra-
dients problem, where the structure of the model is
changed. Specifically it introduces a special set of
units called LSTM units which are linear and have a
recurrent connection to itself which is fixed to 1. The
flow of information into the unit and from the unit is
guarded by an input and output gates (their behaviour
is learned). There are several variations of this basic
structure. This solution does not address explicitly the
exploding gradients problem.

Sutskever et al. (2011) use the Hessian-Free opti-
mizer in conjunction with structural damping, a spe-
cific damping strategy of the Hessian. This approach
seems to deal very well with the vanishing gradient,
though more detailed analysis is still missing. Pre-
sumably this method works because in high dimen-
sional spaces there is a high probability for long term
components to be orthogonal to short term ones. This
would allow the Hessian to rescale these components
independently. In practice, one can not guarantee that
this property holds. As discussed in section 2.3, this
method is able to deal with the exploding gradient
as well. Structural damping is an enhancement that
forces the change in the state to be small, when the pa-
rameter changes by some small value ��. This asks for
the Jacobian matrices �xt

�� to have small norm, hence
further helping with the exploding gradients problem.
The fact that it helps when training recurrent neural
models on long sequences suggests that while the cur-
vature might explode at the same time with the gradi-
ent, it might not grow at the same rate and hence not
be su�cient to deal with the exploding gradient.

Echo State Networks (Lukoševičius and Jaeger, 2009)
avoid the exploding and vanishing gradients problem
by not learning the recurrent and input weights. They
are sampled from hand crafted distributions. Because
usually the largest eigenvalue of the recurrent weight
is, by construction, smaller than 1, information fed in
to the model has to die out exponentially fast. This
means that these models can not easily deal with long
term dependencies, even though the reason is slightly
di�erent from the vanishing gradients problem. An
extension to the classical model is represented by leaky
integration units (Jaeger et al., 2007), where

xk = �xk�1 + (1 � �)�(Wrecxk�1 + Winuk + b).

While these units can be used to solve the standard
benchmark proposed by Hochreiter and Schmidhu-
ber (1997) for learning long term dependencies (see
(Jaeger, 2012)), they are more suitable to deal with
low frequency information as they act as a low pass
filter. Because most of the weights are randomly sam-
pled, is not clear what size of models one would need
to solve complex real world tasks.

We would make a final note about the approach pro-
posed by Tomas Mikolov in his PhD thesis (Mikolov,
2012)(and implicitly used in the state of the art re-
sults on language modelling (Mikolov et al., 2011)).
It involves clipping the gradient’s temporal compo-
nents element-wise (clipping an entry when it exceeds
in absolute value a fixed threshold). Clipping has been
shown to do well in practice and it forms the backbone
of our approach.

3.2. Scaling down the gradients

As suggested in section 2.3, one simple mechanism to
deal with a sudden increase in the norm of the gradi-
ents is to rescale them whenever they go over a thresh-
old (see algorithm 1).

Algorithm 1 Pseudo-code for norm clipping the gra-
dients whenever they explode

ĝ � �E
��

if �ĝ� � threshold then
ĝ � threshold

�ĝ� ĝ
end if

This algorithm is very similar to the one proposed by
Tomas Mikolov and we only diverged from the original
proposal in an attempt to provide a better theoretical
foundation (ensuring that we always move in a de-
scent direction with respect to the current mini-batch),
though in practice both variants behave similarly.

The proposed clipping is simple to implement and
computationally e�cient, but it does however in-
troduce an additional hyper-parameter, namely the
threshold. One good heuristic for setting this thresh-
old is to look at statistics on the average norm over
a su�ciently large number of updates. In our ex-
periments we have noticed that for a given task and
model size, training is not very sensitive to this hyper-
parameter and the algorithm behaves well even for
rather small thresholds.

The algorithm can also be thought of as adapting
the learning rate based on the norm of the gradient.
Compared to other learning rate adaptation strate-
gies, which focus on improving convergence by col-
lecting statistics on the gradient (as for example in

Gradient	clipping	intuition

4/21/16Richard	Socher25

• Error	surface	of	a	single	hidden	unit	RNN,	

• High	curvature	walls

• Solid	lines:	standard	gradient	descent	trajectories	

• Dashed	lines	gradients	rescaled	to	fixed	size

On the di�culty of training Recurrent Neural Networks

Figure 6. We plot the error surface of a single hidden unit
recurrent network, highlighting the existence of high cur-
vature walls. The solid lines depicts standard trajectories
that gradient descent might follow. Using dashed arrow
the diagram shows what would happen if the gradients is
rescaled to a fixed size when its norm is above a threshold.

explode so does the curvature along v, leading to a
wall in the error surface, like the one seen in Fig. 6.

If this holds, then it gives us a simple solution to the
exploding gradients problem depicted in Fig. 6.

If both the gradient and the leading eigenvector of the
curvature are aligned with the exploding direction v, it
follows that the error surface has a steep wall perpen-
dicular to v (and consequently to the gradient). This
means that when stochastic gradient descent (SGD)
reaches the wall and does a gradient descent step, it
will be forced to jump across the valley moving perpen-
dicular to the steep walls, possibly leaving the valley
and disrupting the learning process.

The dashed arrows in Fig. 6 correspond to ignoring
the norm of this large step, ensuring that the model
stays close to the wall. The key insight is that all the
steps taken when the gradient explodes are aligned
with v and ignore other descent direction (i.e. the
model moves perpendicular to the wall). At the wall, a
small-norm step in the direction of the gradient there-
fore merely pushes us back inside the smoother low-
curvature region besides the wall, whereas a regular
gradient step would bring us very far, thus slowing or
preventing further training. Instead, with a bounded
step, we get back in that smooth region near the wall
where SGD is free to explore other descent directions.

The important addition in this scenario to the classical
high curvature valley, is that we assume that the val-
ley is wide, as we have a large region around the wall
where if we land we can rely on first order methods
to move towards the local minima. This is why just
clipping the gradient might be su�cient, not requiring
the use a second order method. Note that this algo-

rithm should work even when the rate of growth of the
gradient is not the same as the one of the curvature
(a case for which a second order method would fail
as the ratio between the gradient and curvature could
still explode).

Our hypothesis could also help to understand the re-
cent success of the Hessian-Free approach compared
to other second order methods. There are two key dif-
ferences between Hessian-Free and most other second-
order algorithms. First, it uses the full Hessian matrix
and hence can deal with exploding directions that are
not necessarily axis-aligned. Second, it computes a
new estimate of the Hessian matrix before each up-
date step and can take into account abrupt changes in
curvature (such as the ones suggested by our hypothe-
sis) while most other approaches use a smoothness as-
sumption, i.e., averaging 2nd order signals over many
steps.

3. Dealing with the exploding and
vanishing gradient

3.1. Previous solutions

Using an L1 or L2 penalty on the recurrent weights can
help with exploding gradients. Given that the parame-
ters initialized with small values, the spectral radius of
Wrec is probably smaller than 1, from which it follows
that the gradient can not explode (see necessary condi-
tion found in section 2.1). The regularization term can
ensure that during training the spectral radius never
exceeds 1. This approach limits the model to a sim-
ple regime (with a single point attractor at the origin),
where any information inserted in the model has to die
out exponentially fast in time. In such a regime we can
not train a generator network, nor can we exhibit long
term memory traces.

Doya (1993) proposes to pre-program the model (to
initialize the model in the right regime) or to use
teacher forcing. The first proposal assumes that if
the model exhibits from the beginning the same kind
of asymptotic behaviour as the one required by the
target, then there is no need to cross a bifurcation
boundary. The downside is that one can not always
know the required asymptotic behaviour, and, even if
such information is known, it is not trivial to initial-
ize a model in this specific regime. We should also
note that such initialization does not prevent cross-
ing the boundary between basins of attraction, which,
as shown, could happen even though no bifurcation
boundary is crossed.

Teacher forcing is a more interesting, yet a not very
well understood solution. It can be seen as a way of
initializing the model in the right regime and the right

Figure	 from	paper:	
On	the	difficulty	of	
training	Recurrent	Neural	
Networks,	Pascanuet	al.	
2013

From Pascanu et al. 2013

Ñ If they get too big, stop at boundary

Ñ Prevents (dashed) values from jumping around (solid)

Natural Language Processing: Jordan Boyd-Graber | UMD Sequence Models | 9 / 1

Fixing Vanishing Gradients

Ñ ReLU activation

Ñ Initialize W to identity matrix

Natural Language Processing: Jordan Boyd-Graber | UMD Sequence Models | 10 / 1

RNN Recap

Ñ Simple model

Ñ Complicated training (but good toolkits available)

Ñ Do we need to remember everything?

Natural Language Processing: Jordan Boyd-Graber | UMD Sequence Models | 11 / 1

Sequence Models

Natural Language Processing: Jordan
Boyd-Graber
University of Maryland
LSTMS

Slides adapted from Christopher Olah

Natural Language Processing: Jordan Boyd-Graber | UMD Sequence Models | 1 / 1

The Model of Laughter and Forgetting

Ñ RNN is great: can remember anything
Ñ RNN stinks: remembers everything
Ñ Sometimes important to forget: LSTM

Natural Language Processing: Jordan Boyd-Graber | UMD Sequence Models | 2 / 1

RNN transforms Input into Hidden

(Can be other nonlinearities)

Natural Language Processing: Jordan Boyd-Graber | UMD Sequence Models | 3 / 1

LSTM has more complicated innards

Built on gates!

Natural Language Processing: Jordan Boyd-Graber | UMD Sequence Models | 4 / 1

LSTM has more complicated innards

Built on gates!

Natural Language Processing: Jordan Boyd-Graber | UMD Sequence Models | 4 / 1

Gates

Ñ Multiply vector dimension by value
in [0, 1]

Ñ Zero means: forget everything
Ñ One means: carry through

unchanged
Ñ LSTM has three different gates

Natural Language Processing: Jordan Boyd-Graber | UMD Sequence Models | 5 / 1

Cell State

Can pass through (memory)

Natural Language Processing: Jordan Boyd-Graber | UMD Sequence Models | 6 / 1

Deciding When to Forget

Based on previous hidden state ht�1, can decide to forget past cell state

Natural Language Processing: Jordan Boyd-Graber | UMD Sequence Models | 7 / 1

Updating representation

Compute new contribution to cell state based on hidden state ht�1 and
input xt

Natural Language Processing: Jordan Boyd-Graber | UMD Sequence Models | 8 / 1

Updating representation

Compute new contribution to cell state based on hidden state ht�1 and
input xt . Strength of contribution is it

Natural Language Processing: Jordan Boyd-Graber | UMD Sequence Models | 9 / 1

Updating representation

Interpolate new cell value

Natural Language Processing: Jordan Boyd-Graber | UMD Sequence Models | 10 / 1

Output hidden

Hidden layer is function of cell Ct , not ht�1

Natural Language Processing: Jordan Boyd-Graber | UMD Sequence Models | 11 / 1

