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Linear Regression
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Data are the set of inputs and outputs, D =
�

(xi ,yi)
	n

i=1
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Linear Regression
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In linear regression, the goal is to predict y from x using a linear function
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Examples of linear regression:

• given a child’s age and gender, what is his/her height?

• given unemployment, inflation, number of wars, and economic
growth, what will the president’s approval rating be?

• given a browsing history, how long will a user stay on a page?
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Linear Regression
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(xi, yi )

f (x) = !0 +!1x
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Multiple Covariates

Often, we have a vector of inputs where each represents a different
feature of the data

x= (x1, . . . ,xp)

The function fitted to the response is a linear combination of the
covariates

f (x) =β0 +
p
∑

j=1

βjxj
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Multiple Covariates

• Often, it is convenient to represent x as (1,x1, . . . ,xp)

• In this case x is a vector, and so is β (we’ll represent them in bold
face)

• This is the dot product between these two vectors

• This then becomes (this should be familiar!)

f (x) =
p
∑

j=1

βjxj (1)

(2)
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Hyperplanes: Linear Functions in Multiple Dimensions
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Covariates

• Do not need to be raw value of x1,x2, . . .

• Can be any feature or function of the data:
É Transformations like x2 = log(x1) or x2 =cos(x1)
É Basis expansions like x2 = x2

1 , x3 = x3
1 , x4 = x4

1 , etc
É Indicators of events like x2 = 1{−1≤x1≤1}
É Interactions between variables like x3 = x1x2

• Because of its simplicity and flexibility, it is one of the most widely
implemented regression techniques
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Training, Validation, and Testing

• Training Data: Data with x and y , build your model on this

• Validation Data: Data with x and y , see how well your model did
(you’ll do this many times)

• Test Data:As far as you’re concerned, data with only x

11



Fitting a Linear Regression
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Idea: minimize the Euclidean distance between data and fitted line

RSS(β) =
1

2

n
∑

i=1

�

yi − ~β ·xi

�2
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Fitting a Linear Regression
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Fitting a Linear Regression
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Fitting a Linear Regression
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Fitting a Linear Regression
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Fitting a Linear Regression
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How to Find β

• Use calculus to find the value of β that minimizes the RSS

• The optimal value is

β̂ =

∑n
i=1 yixi

∑n
i=1 x2

i

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−
6

−
4

−
2

0
2

4
6

x

y

13



Prediction

• After finding β̂ , we would like to predict an output value for a new
set of covariates

• We just find the point on the line that corresponds to the new input:

ŷ =β0 +β1x (3)
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Prediction

• After finding β̂ , we would like to predict an output value for a new
set of covariates

• We just find the point on the line that corresponds to the new input:
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Prediction

• After finding β̂ , we would like to predict an output value for a new
set of covariates

• We just find the point on the line that corresponds to the new input:

ŷ = 1.0+0.5x (3)

y=1.0 + 0.5x
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Prediction

• After finding β̂ , we would like to predict an output value for a new
set of covariates

• We just find the point on the line that corresponds to the new input:

ŷ = 1.0+0.5 ∗5 (3)

y=1.0 + 0.5x

x=5.0
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Prediction

• After finding β̂ , we would like to predict an output value for a new
set of covariates

• We just find the point on the line that corresponds to the new input:

ŷ = 3.5 (3)

y=1.0 + 0.5x

x=5.0
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Probabilistic Interpretation

• Our analysis so far has not included any probabilities

• Linear regression does have a probabilisitc (probability
model-based) interpretation
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Probabilistic Interpretation

• Linear regression assumes that response values have a Gaussian
distribution around the linear mean function,

Yi |xi ,β ∼N(xiβ ,σ2)

• This is a discriminative model, where inputs x are not modeled
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• Minimizing RSS is equivalent to maximizing conditional likelihood
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Courses, Lectures, Exercises and More

http://boydgraber.org
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What are we talking about?

• Statistical classification: p(y |x)
• Classification uses: ad placement, spam detection

• Building block of other machine learning methods

19



Logistic Regression: Definition

• Weight vector βi

• Observations Xi

• “Bias” β0 (like intercept in linear regression)

P(Y = 0|X) =
1

1+exp
�

β0 +
∑

i βiXi

� (4)

P(Y = 1|X) =
exp

�

β0 +
∑

i βiXi

�

1+exp
�

β0 +
∑

i βiXi

� (5)

• For shorthand, we’ll say that

P(Y = 0|X) =σ(−(β0 +
∑

i

βiXi)) (6)

P(Y = 1|X) = 1−σ(−(β0 +
∑

i

βiXi)) (7)

• Where σ(z) = 1
1+exp[−z]

20



What’s this “exp” doing?

Exponential

Logistic

• exp[x] is shorthand for ex

• e is a special number, about 2.71828
É ex is the limit of compound interest

formula as compounds become
infinitely small
É It’s the function whose derivative is

itself

• The “logistic” function is σ(z) = 1
1+e−z

• Looks like an “S”

• Always between 0 and 1.

É Allows us to model probabilities
É Different from linear regression

21



What’s this “exp” doing?

Exponential

Logistic

• exp[x] is shorthand for ex

• e is a special number, about 2.71828
É ex is the limit of compound interest

formula as compounds become
infinitely small
É It’s the function whose derivative is

itself

• The “logistic” function is σ(z) = 1
1+e−z

• Looks like an “S”

• Always between 0 and 1.
É Allows us to model probabilities
É Different from linear regression
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Logistic Regression Example

feature coefficient weight
bias β0 0.1

“viagra” β1 2.0
“mother” β2 −1.0
“work” β3 −0.5

“nigeria” β4 3.0

• What does Y = 1
mean?

Example 1: Empty Document?

X = {}

• P(Y = 0) = 1
1+exp[0.1] =

• P(Y = 1) = exp[0.1]
1+exp[0.1] =

• Bias β0 encodes the prior
probability of a class

22
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Logistic Regression Example

feature coefficient weight
bias β0 0.1

“viagra” β1 2.0
“mother” β2 −1.0
“work” β3 −0.5

“nigeria” β4 3.0

• What does Y = 1
mean?

Example 1: Empty Document?

X = {}

• P(Y = 0) = 1
1+exp[0.1] = 0.48

• P(Y = 1) = exp[0.1]
1+exp[0.1] = 0.52

• Bias β0 encodes the prior
probability of a class
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Logistic Regression Example

feature coefficient weight
bias β0 0.1

“viagra” β1 2.0
“mother” β2 −1.0
“work” β3 −0.5

“nigeria” β4 3.0

• What does Y = 1
mean?

Example 2

X = {Mother,Nigeria}
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Logistic Regression Example

feature coefficient weight
bias β0 0.1

“viagra” β1 2.0
“mother” β2 −1.0
“work” β3 −0.5

“nigeria” β4 3.0

• What does Y = 1
mean?

Example 2

X = {Mother,Nigeria}

• P(Y = 0) =
1

1+exp[0.1−1.0+3.0] =

• P(Y = 1) =
exp[0.1−1.0+3.0]

1+exp[0.1−1.0+3.0] =

• Include bias, and sum the
other weights

22



Logistic Regression Example

feature coefficient weight
bias β0 0.1

“viagra” β1 2.0
“mother” β2 −1.0
“work” β3 −0.5

“nigeria” β4 3.0

• What does Y = 1
mean?

Example 2

X = {Mother,Nigeria}

• P(Y = 0) =
1

1+exp[0.1−1.0+3.0] = 0.11

• P(Y = 1) =
exp[0.1−1.0+3.0]

1+exp[0.1−1.0+3.0] = 0.88

• Include bias, and sum the
other weights
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Logistic Regression Example

feature coefficient weight
bias β0 0.1

“viagra” β1 2.0
“mother” β2 −1.0
“work” β3 −0.5

“nigeria” β4 3.0

• What does Y = 1
mean?

Example 3

X = {Mother,Work,Viagra,Mother}
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Logistic Regression Example

feature coefficient weight
bias β0 0.1

“viagra” β1 2.0
“mother” β2 −1.0
“work” β3 −0.5

“nigeria” β4 3.0

• What does Y = 1
mean?

Example 3

X = {Mother,Work,Viagra,Mother}

• P(Y = 0) =
1

1+exp[0.1−1.0−0.5+2.0−1.0] =

• P(Y = 1) =
exp[0.1−1.0−0.5+2.0−1.0]

1+exp[0.1−1.0−0.5+2.0−1.0] =

• Multiply feature presence by
weight
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Logistic Regression Example

feature coefficient weight
bias β0 0.1

“viagra” β1 2.0
“mother” β2 −1.0
“work” β3 −0.5

“nigeria” β4 3.0

• What does Y = 1
mean?

Example 3

X = {Mother,Work,Viagra,Mother}

• P(Y = 0) =
1

1+exp[0.1−1.0−0.5+2.0−1.0] =
0.60

• P(Y = 1) =
exp[0.1−1.0−0.5+2.0−1.0]

1+exp[0.1−1.0−0.5+2.0−1.0] =
0.30

• Multiply feature presence by
weight

22



How is Logistic Regression Used?

• Given a set of weights ~β , we know how to compute the conditional
likelihood P(y |β ,x)

• Find the set of weights ~β that maximize the conditional likelihood
on training data (next week)

• Intuition: higher weights mean that this feature implies that this
feature is a good this is the class you want for this observation

• Naïve Bayes is a special case of logistic regression that uses
Bayes rule and conditional probabilities to set these weights

argmax
cj∈C

[ln P̂(cj)+
∑

1≤i≤nd

ln P̂(wi |cj)]
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Contrasting Naïve Bayes and Logistic Regression

• Naïve Bayes easier

• Naïve Bayes better on smaller datasets

• Logistic regression better on medium-sized datasets

• On huge datasets, it doesn’t really matter (data always win)
É Optional reading by Ng and Jordan has proofs and experiments

• Logistic regression allows arbitrary features (biggest difference!)

• Don’t need to memorize (or work through) previous slide—just
understand that naïve Bayes is a special case of logistic regression
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Next time . . .

• How to learn the best setting of weights

• Regularizing logistic regression to encourage sparse vectors

• Extracting features

25



Courses, Lectures, Exercises and More

http://boydgraber.org
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Regression: Linear, Logistic, and Otherwise

INST 808: Jordan Boyd-Graber

University of Maryland

Fall 2020

Slides adapted from Emily Fox
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Reminder: Logistic Regression

P(Y = 0|X) =
1

1+exp
�

β0 +
∑

i βiXi

� (8)

P(Y = 1|X) =
exp

�

β0 +
∑

i βiXi

�

1+exp
�

β0 +
∑

i βiXi

� (9)

• Discriminative prediction: p(y |x)
• Classification uses: ad placement, spam detection

• What we didn’t talk about is how to learn β from data
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Objective for Logistic Regression

To ease notation, let’s define

πi =
expβT xi

1+expβT xi
(10)

Our objective function is

L =
∑

i

logp(yi |xi) =
∑

i

Li =
∑

i

¨

log(1−πi) if yi = 0

logπi if yi = 1
(11)
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Chain Rule to the Rescue

Chain Rule

If
f (x) = u(v(x)), (12)

then
d

dx
f =

du

dv

dv

dx
(13)

• We know derivatives of individual functions, but not when they’re
put together

• Chain rule lets us compute overall derivatives anyway

• Derivative for logistic function

∂ πi

∂ βj
=πi(1−πi)xj , (14)
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Chain Rule for Logistic Regression

Objective function:

L =
∑

i

logp(yi |xi) =
∑

i

Li =
∑

i

¨

log(1−πi) if yi = 0

logπi if yi = 1
(15)

• In this case the objective function

f (x) = u(v(x)) = log(πi) (16)

• Logarithm has nice derivative

d log(v)

dv
=

1

v
(17)

• So does logistic function

∂ πi

∂ βj
=πi(1−πi)xj . (18)
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Chain Rule for Logistic Regression

Apply chain rule:

∂L
∂ βj

=
∑

i

∂Li( ~β)

∂ βj
=
∑

i

(

1
1−πi

�

− ∂ πi
∂ βj

�

if yi = 0
1
πi

∂ πi
∂ βj

if yi = 1
(19)

y == 0

(20)

y == 1

(21)
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Chain Rule for Logistic Regression

Apply chain rule:

∂L
∂ βj

=
∑

i

∂Li( ~β)

∂ βj
=
∑

i

(

1
1−πi

�

− ∂ πi
∂ βj

�

if yi = 0
1
πi

∂ πi
∂ βj

if yi = 1
(19)

y == 0

−πi(1−πi)

1−πi
xj (20)

−πixj (21)

y == 1

1

πi
πi(1−πi)xj (22)

(1−πi)xj (23)

Merge these two cases

∂Li

∂ βj
= (yi −πi)xj . (24)
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Convexity

• Convex function

• Doesn’t matter where you
start, if you “walk up” objective

• Gradient!
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Gradient for Logistic Regression

Gradient

∇βL ( ~β) =

�

∂L ( ~β)

∂ β0
, . . . ,

∂L ( ~β)

∂ βn

�

(25)

Update

∆β ≡λ∇βL ( ~β) (26)

β ′i ←βi +λ
∂L ( ~β)

∂ βi
(27)
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Gradient for Logistic Regression

Gradient

∇βL ( ~β) =

�

∂L ( ~β)

∂ β0
, . . . ,

∂L ( ~β)

∂ βn

�

(25)

Update

∆β ≡λ∇βL ( ~β) (26)

β ′i ←βi +λ
∂L ( ~β)

∂ βi
(27)

We’re doing gradient ascent here, flip sign for descent
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Gradient for Logistic Regression

Gradient

∇βL ( ~β) =

�

∂L ( ~β)

∂ β0
, . . . ,

∂L ( ~β)

∂ βn

�

(25)

Update

∆β ≡λ∇βL ( ~β) (26)

β ′i ←βi +λ
∂L ( ~β)

∂ βi
(27)

λ: step size, must be greater than zero

34



Gradient for Logistic Regression

Gradient

∇βL ( ~β) =

�

∂L ( ~β)

∂ β0
, . . . ,

∂L ( ~β)

∂ βn

�

(25)

Update

∆β ≡λ∇βL ( ~β) (26)

β ′i ←βi +λ
∂L ( ~β)

∂ βi
(27)

NB: Conjugate gradient is usually better, but harder to implement
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Choosing Step Size

Parameter

Objective
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Regularized Conditional Log Likelihood

Unregularized

β ∗=argmax
β

ln
�

p(y(j) |x(j),β)
�

(28)

Regularized

β ∗=argmax
β

ln
�

p(y(j) |x(j),β)
�

−µ
∑

i

β 2
i (29)
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Regularized Conditional Log Likelihood

Unregularized

β ∗=argmax
β

ln
�

p(y(j) |x(j),β)
�

(28)

Regularized

β ∗=argmax
β

ln
�

p(y(j) |x(j),β)
�

−µ
∑

i

β 2
i (29)

µ is “regularization” parameter that trades off between likelihood and
having small parameters
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Stochastic Gradient for Regularized Regression

L =logp(y |x;β)−µ
∑

j

β 2
j (30)

Taking the derivative (with respect to example xi )

∂L
∂ βj

=(yi −πi)xj −2µβj (31)
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Approximating the Gradient

• Our datasets are big (to fit into memory)

• . . . or data are changing / streaming

• Hard to compute true gradient

L (β)t =L (β)t +λEx [∇L (β ,x)] (32)

• Average over all observations (batch)

• What if we compute an update just from a few or even one
observation? (mini-batch)
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Getting to Union Station

Pretend it’s a pre-smartphone world and you want to get to Union
Station

39



Stochastic Gradient for Logistic Regression

Given a single observation (mini-batch k=1) xi chosen at random from
the dataset,

βj ←β ′j +λ
�

xij [yi −πi ]
�

) (33)
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Stochastic Gradient for Logistic Regression

Given a single observation (mini-batch k=1) xi chosen at random from
the dataset,

βj ←β ′j +λ
�

xij [yi −πi ]
�

−µβ ′j ) (33)
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Algorithm (Unregularized)

1. Initialize a vector ~β to be all zeros

2. For t = 1, . . . ,T
É For each example ~xi ,yi and feature j :

É Compute πi ≡ Pr(yi = 1 | ~xi)
É Set β [j] =β [j]′+λ(yi −πi)xi

3. Output the parameters β1, . . . ,βd .
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Courses, Lectures, Exercises and More

http://boydgraber.org
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