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What’s Necessary for (Data/Information/Computer)
Science: Scepticism

• We’ve assumed
É Our models are right
É Our parameter estimates are good

• Not always true
É Learning the mindset
É Not trusting your data
É Communicating uncertainty
É How do we know if distributions / parameters are any good?
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Lincoln Moses

• Stanford Statistician

• Learn one thing: Use Error
Bars

• After visiting US government:
Use data
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Point Estimates Lie
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So how can you make a decision?

• Error bars help, but not systematic

• Make the point that decisions need to not just look at single
estimates but distributions

• Statistical Test: Deciding whether a hypothesis is true or not

5



Lingo

• Confidence interval

• Null hypothesis

• test statistic

• p-value

• p-hacking
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Confidence Intervals
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Null hypothesis

Null Hypothesis

A statement that can be validated
through a statistic derived from
observations.

• Often status quo

• Goal prove false: “reject the
null”

• Phrased in terms of
distributions

Examples

• Average body temperature
98.6?

• Voting republican and
education independent?
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Test Statistic

• Measurement of how far observations deviate from null hypothesis
(e.g., x̄ far from µ)

• Test statistic is paired with a distribution that measures deviation

• Lower probability test statistics let you reject the null
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What can happen
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Boy who cried wolf

• Null hypothesis (status quo):
no wolf

• First error, Type I: villagers
believed there was wolf (but
there wasn’t), False Positive

• Second error, Type II: villagers
believed there was no wolf
(when there was), False
Negative

• The villagers had Type I and
Type II in that order
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p-value

• Probability of null hypothesis
being true

• Lower is better

• Common critical values α:
0.05, 0.01

• We’ll see examples in a bit
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p-hacking
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Bonferroni Correction

• If you conduct multiple statistical tests, you must divide α by
number of tests

• If you have m tests and reject null at 0.05 for any of them, chance
of Type I error is multiplied by m
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What does this have to do with deep learning / natural
language processing / what I care about?

• You collect a lot of data

• Run a bunch of experience

• There’s some natural varience
É How do you know if what you did is better?
É How do you know if two populations are different?
É Modern methods often have hundreds or thousands of experiments
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Courses, Lectures, Exercises and More

http://boydgraber.org
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Normal Distribution Confidence Interval

• You observe {x1 . . .xN}
• Obtain mean x̄

• Sample standard deviation (standard deviation is square root of
variance σ2)

S =

√

√

∑

i(xi − x̄)2

N −1
(1)
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Example Data

Name,Birth Date,Inaug,End,Age
1 George Washington,"Feb 22, 1732","Apr 30, 1789","Mar 4, 1797",57
2 John Adams,"Oct 30, 1735","Mar 4, 1797","Mar 4, 1801",61
3 Thomas Jefferson,"Apr 13, 1743","Mar 4, 1801","Mar 4, 1809",57
4 James Madison,"Mar 16, 1751","Mar 4, 1809","Mar 4, 1817",57
5 James Monroe,"Apr 28, 1758","Mar 4, 1817","Mar 4, 1825",58
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President CI

Pandas: For reading data from CSV file
import pandas
import numpy
from scipy import stats
import matplotlib.pyplot as plt
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President CI

if __name__ == "__main__":
p = pandas.read_csv("../data/presidents.csv")

# Compute sample standard deviation
mu = numpy.mean(p["Age"])
s = numpy.std(p["Age"], ddof=1)

print(stats.norm.interval(0.95, loc=mu, scale = s))

# Plot distribution
x = numpy.linspace(mu - 4*s, mu + 4*s, 100)
plt.plot(x, stats.norm.pdf(x, mu, s))
plt.show()
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Bootstrap Sample

(From Banjanovic and Osborne)

• Compute CI of more complicated distributions
• Example: Effect of Tweets on DL system
É You have 10k tweets
É Sample 10k tweets with replacement
É Train complicated system
É Repeat
É Compute CI using the result
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Goodness of Fit

Suppose we see a die rolled 36 times with the following totals.

1 2 3 4 5 6
8 5 9 2 7 5

• H0: fair die

• How far does it deviate from uniform distribution?

• χ2 distribution
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Chi-Square Definition

Let Z1, . . .Zn be independent random variables distributed N(0,1). The
χ2 distribution with n degrees of freedom can be defined by

χ2
n ≡ Z 2

1 + Z 2
2 + · · ·+ Z 2

n (2)
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Chi-Square Definition
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Chi-Square Distributions
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• γ(s,x)≡
∫ x

0 ts−1exp{−t}dt

• Γ (x)≡
∫∞

0 tx−1exp{−t}dt , Γ (n) = (n−1)!
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Goodness of Fit

1 2 3 4 5 6
Observed 8 5 9 2 7 5
Expected 6 6 6 6 6 6

• If this were a fair die, all observed counts would be close to
expected

• We can summarize this with a test statistic

∑ (Oi −Ei)
2

Ei
(3)

• In our example, 5.33

• Approximately distributed as χ2 with k −1 degrees of freedom
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Degrees of Freedom

• We condition on the number of observations (36) into each of the
cells (one for each type of observation)

• So after filling in the cells for five observations, one is known

• So total of k −1 = 5 degrees of freedom

• Important because it specifies which χ2 distribution to use
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Test Statistic and p-value

• Expected value of χ2 with df=5 is 5

• 5.33 is not that far away

• 0.38 probability of rejecting the null
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Independence

Random variables X and Y are independent if and only if
P(X = x ,Y = y) = P(X = x)P(Y = y).
Mathematical examples:

• If I flip a coin twice, is the second outcome independent from the
first outcome?

• If I draw two socks from my (multicolored) laundry, is the color of
the first sock independent from the color of the second sock?
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Independence

Intuitive Examples:

• Independent:
É you use a Mac / the Green Line is on schedule
É snowfall in the Himalayas / your favorite color is blue

• Not independent:
É you vote for Larry Hogan / you are a Republican
É there is a traffic jam Baltimore / there’s a home game
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Independence

Sometimes we make convenient assumptions.

• the values of two dice (ignoring gravity!)

• whether it is raining and the number of taxi licenses

• whether it is raining and the amount of time it takes me to hail a cab

• the first two words in a sentence
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Distributional Independence

• If x and y are independent, P(x ,y) = P(x)P(y).

• Can we test of two distributions are independent?

• This also is a χ2 test
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Example: Collocations

• Selectional preferences: “strong tea”, not “powerful tea”

• Phrases: “intents and purposes”, “helter skelter”

• Some words just go together more than others

• I.e., they’re not independent
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Can’t use frequency to find Collocations

Most frequent bigrams are just the
most frequent words. (Independent
distribution.)

80871 of the

58841 in the

26430 to the

21842 on the

21839 for the

18568 and the

16121 that the

15630 at the

15494 to be

13899 in a

13689 of a

13361 by the
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Contingency tables
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Joint distribution

• Typically, we consider collections of random variables.

• The joint distribution is a distribution over the configuration of all
the random variables in the ensemble.

• For example, imagine flipping 4 coins. The joint distribution is over
the space of all possible outcomes of the four coins.

P(HHHH) = 0.0625

P(HHHT ) = 0.0625

P(HHTH) = 0.0625

. . .

• You can think of it as a single random variable with 16 values.
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Marginalization

If we know a joint distribution of multiple variables, what if we want to
know the distribution of only one of the variables?

We can compute the distribution of P(X) from P(X ,Y ,Z) through
marginalization:

∑

y

∑

z

P(X = x ,Y = y ,Z = z) = P(X)
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We can compute the distribution of P(X) from P(X ,Y ,Z) through
marginalization:

∑
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We’ll explain this notation more next week for now the formula is the
most important part.
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Marginalization (from Leyton-Brown)

Joint distribution

temperature (T) and weather (W)
T=Hot T=Mild T=Cold

W=Sunny .10 .20 .10
W=Cloudy .05 .35 .20

Marginalization allows us to compute
distributions over smaller sets of variables:

• P(X ,Y ) =
∑

z P(X ,Y ,Z = z)

• Corresponds to summing out a table
dimension

• New table still sums to 1

• Marginalize out
weather

• Marginalize out
temperature
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Joint distribution

temperature (T) and weather (W)
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Contingency tables
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Contingency tables: degrees of freedom

• Given row and column totals, one cell can fill in the rest (as you did
in first quiz)

• In general, for a contingency table with r rows and c columns,
(r −1)(c−1) degrees of freedom
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Observed
w1 = new w1 6= new

w2 = companies 8 4667
w2 6= companies 15820 14287181

Expected

w1 = new w1 6= new
w2 = companies 5.17 1669.83
w2 6= companies 15822.83 14287178.17

χ2 =
(8−5.17)2

5.17
+

(4667−1669.83)2

4667
+

(15820−15822.83)2

15820
(4)

+
(14287181−14287178.17)2

14287181
(5)
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Can we reject the null?
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Two-tailed vs. one-tailed tests

• Two tail: Alternative µ 6=µ0

• One tail: Alternative µ>µ0
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What if you don’t know variance?

• t-test allows you to test
hypothesis if you don’t know
variance

• Sometimes called “small
sample test”: same as z test
with enough observations

• William Gossett: check that
yeast content matched
Guiness’s standard (but
couldn’t publish)

• I.e., checking whether yeast
content equal to µ0
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t-test statistic

• Need to estimate variance

s2 =
∑

i

(xi − x̄)2

N −1
(6)

• n−1 removes bias (expected value is less than truth)

• Test statistic looks similar

T ≡
x̄ −µ0

sp
N

(7)
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Degrees of Freedom

• Like χ2, t-distribution parameterized by degrees of freedom

• ν= N −1 degress of freedom
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Shape of t-distribution
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Example

• Suppose observe {0,1,2,3,4,5}
• Test whether µ 6= 1

• x̄ = 2.5, s2 = 3.5

• T =
x̄−µ0
Ç

s2
N

= 2.5−1.0
q

3.5
6

= 1.9640

• Double area under the at two tailed CDF
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