# Math Review:

#### Functions, Distributions, Vectors, and Matrices

Jordan Boyd-Graber

University of Maryland

Fall 2020



#### **Function Notation**

- Take a number a double it
- Mathematical notation

$$f(x) = 2x \tag{1}$$

Python notation

def double(x):
 return 2 \* x



 $f(x) = \exp(x)$ 



f(x) = 2x



f(x) = |x|



f(x) = 2x



f(x) = 2x





f(x) = 2(-x)



 $f(x) = \exp(-x)$ 

$$f(x) = \exp(-x) \tag{2}$$

$$g(x) = 1 + x \tag{3}$$

$$h(x) = \frac{1}{x} \tag{4}$$



$$g(x) = 1 + x \tag{3}$$

$$h(x) = \frac{1}{x} \tag{4}$$



$$f(x) = \exp(-x) \tag{2}$$

$$g(x) = 1 + x \tag{3}$$

$$h(x) = \frac{1}{x} \tag{4}$$

$$I(x) = g(f(x)) = \frac{1}{\exp(-x)}$$
(5)

$$f(x) = \exp(-x) \tag{2}$$

$$g(x) = 1 + x \tag{3}$$

$$h(x) = \frac{1}{x} \tag{4}$$

$$I(x) = g(f(x)) = \frac{1}{\exp(-x)}$$
 (5)

#### from math import exp

```
def neg_exp(x):
    return exp(-x)
def composition(x):
    return 1.0 / neg_exp(x)
```

## Properties of the Exponential (and log) Function

$$\exp(a+b) = \exp(a)\exp(b) \tag{6}$$

$$\log(a+b) = \log(a)\log(b) \tag{7}$$

$$\log(a^{o}) = b \cdot \log(a) \tag{8}$$

Composition didn't do as much as we thought!

$$I(x) = g(f(x))$$
(9)  
=  $\frac{1}{\exp(-x)}$ (10)  
=  $\frac{1}{\exp(x)^{-1}}$ (11)  
=  $\frac{1}{\frac{1}{\exp(x)}}$ (12)  
=  $\exp x$ (13)

$$f(x) = \exp(-x) \tag{14}$$

$$g(x) = 1 + x \tag{15}$$

$$h(x) = \frac{1}{x} \tag{16}$$

Putting them together:

(17)

$$f(x) = \exp(-x) \tag{14}$$

$$g(x) = 1 + x \tag{15}$$

$$h(x) = \frac{1}{x} \tag{16}$$

Putting them together:

$$I(x) = h(g(f(x))) \tag{17}$$

(18)

$$f(x) = \exp(-x) \tag{14}$$

$$g(x) = 1 + x \tag{15}$$

$$h(x) = \frac{1}{x} \tag{16}$$

Putting them together:

$$I(x) = h(g(f(x))) \tag{17}$$

$$=h(g(\exp(-x))) \tag{18}$$

(19)

$$f(x) = \exp(-x) \tag{14}$$

$$g(x) = 1 + x \tag{15}$$

$$h(x) = \frac{1}{x} \tag{16}$$

Putting them together:

$$I(x) = h(g(f(x))) \tag{17}$$

$$=h(g(\exp(-x))) \tag{18}$$

$$=h(1+\exp(-x)) \tag{19}$$

(20)

$$f(x) = \exp(-x) \tag{14}$$

$$g(x) = 1 + x \tag{15}$$

$$h(x) = \frac{1}{x} \tag{16}$$

Putting them together:

$$I(x) = h(g(f(x))) \tag{17}$$

$$=h(g(\exp(-x))) \tag{18}$$

$$=h(1+\exp(-x)) \tag{19}$$

$$=\frac{1}{1+\exp(-x)}$$
(20)

Courses, Lectures, Exercises and More



# Math Review:

#### Functions, Distributions, Vectors, and Matrices

Jordan Boyd-Graber

University of Maryland

Fall 2020



## Engineering rationale behind probabilities

- Encoding uncertainty
  - Data are variables
  - We don't always know the values of variables
  - Probabilities let us reason about variables even when we are uncertain

## Engineering rationale behind probabilities

#### • Encoding uncertainty

- Data are variables
- We don't always know the values of variables
- Probabilities let us reason about variables even when we are uncertain
- Encoding confidence
  - The flip side of uncertainty
  - Useful for decision making: should we trust our conclusion?
  - We can construct probabilistic models to boost our confidence
    - E.g., combining polls

#### Random variable

- Random variables take on values in a sample space.
- They can be *discrete* or *continuous*:
  - ► Coin flip: {*H*, *T*}
  - Height: positive real values  $(0, \infty)$
  - Temperature: real values  $(-\infty,\infty)$
  - Number of words in a document: Positive integers {1,2,...}
- We call the outcomes events.
- Denote the random variable with a capital letter; denote a realization of the random variable with a lower case letter.

E.g., X is a coin flip, x is the value (H or T) of that coin flip.

- A discrete distribution assigns a probability to every event in the sample space
- For example, if X is a coin, then

$$P(X = H) = 0.5$$
  
 $P(X = T) = 0.5$ 

- And probabilities have to be greater than or equal to 0
- The probabilities over the entire space must sum to one

- A discrete distribution assigns a probability to every event in the sample space
- For example, if X is a coin, then

$$P(X = H) = 0.5$$
  
 $P(X = T) = 0.5$ 

- And probabilities have to be greater than or equal to 0
- The probabilities over the entire space must sum to one

- A discrete distribution assigns a probability to every event in the sample space
- For example, if X is a coin, then

$$P(X = H) = 0.5$$
  
 $P(X = T) = 0.5$ 

- And probabilities have to be greater than or equal to 0
- The probabilities over the entire space must sum to one

$$\sum P(X=x)=1$$

- A discrete distribution assigns a probability to every event in the sample space
- For example, if X is a coin, then

$$P(X = H) = 0.5$$
  
 $P(X = T) = 0.5$ 

- And probabilities have to be greater than or equal to 0
- The probabilities over the entire space must sum to one

$$\sum_{x} P(X=x) = 1$$

### A Fair Die



#### A Fair Die



- The most common continuous distribution is the <u>normal</u> distribution, also called the <u>Gaussian</u> distribution.
- The density is defined by two parameters:
  - $\mu$ : the <u>mean</u> of the distribution
  - $\sigma^2$ : the <u>variance</u> of the distribution ( $\sigma$  is the <u>standard deviation</u>)
- The normal density has a "bell curve" shape and naturally occurs in many problems.



Carl Friedrich Gauss 1777 – 1855



• The probability density of the normal distribution is:

$$f(x) = \underbrace{\frac{1}{\sqrt{2\pi\sigma^2}}}_{\substack{\text{Does not} \\ \text{depend on } x}} \underbrace{\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)}_{\substack{\text{Largest when } x = \mu; \\ \text{shrinks as } x \text{ moves} \\ \text{away from } \mu}$$

- Notation:  $\exp(x) = e^x$
- If X follows a normal distribution, then  $\mathbb{E}[X] = \mu$ .
- The normal distribution is symmetric around  $\mu$ .

• The probability density of the normal distribution is:

$$f(x) = \underbrace{\frac{1}{\sqrt{2\pi\sigma^2}}}_{\substack{\text{Does not} \\ \text{depend on } x}} \underbrace{\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)}_{\substack{\text{Largest when } x = \mu; \\ \text{shrinks as } x \text{ moves} \\ \text{away from } \mu}$$

- Notation:  $\exp(x) = e^x$
- If X follows a normal distribution, then  $\mathbb{E}[X] = \mu$ .
- The normal distribution is symmetric around  $\mu$ .
• The probability density of the normal distribution is:

$$f(x) = \underbrace{\frac{1}{\sqrt{2\pi\sigma^2}}}_{\substack{\text{Does not} \\ \text{depend on } x}} \underbrace{\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)}_{\substack{\text{Largest when } x = \mu; \\ \text{shrinks as } x \text{ moves} \\ \text{away from } \mu}$$

- Notation:  $\exp(x) = e^x$
- If X follows a normal distribution, then  $\mathbb{E}[X] = \mu$ .
- The normal distribution is symmetric around  $\mu$ .



From Svein Linge and Hans Petter Langtangen

• What is the probability that a value sampled from a normal distribution will be within *n* standard deviations from the mean?

• 
$$P(\mu - n\sigma \le X \le \mu + n\sigma) = ?$$

• What is the probability that a value sampled from a normal distribution will be within *n* standard deviations from the mean?

• 
$$P(\mu - n\sigma \le X \le \mu + n\sigma) = ?$$
  
=  $\int_{x=\mu-n\sigma}^{\mu+n\sigma} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$   
=  $\frac{1}{\sqrt{2\pi\sigma^2}} \int_{x=\mu-n\sigma}^{\mu+n\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ 

 What is the probability that a value sampled from a normal distribution will be within n standard deviations from the mean?

• 
$$P(\mu - n\sigma \le X \le \mu + n\sigma) =?$$
  
=  $\int_{x=\mu - n\sigma}^{\mu + n\sigma} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$   
=  $\frac{1}{\sqrt{2\pi\sigma^2}} \int_{x=\mu - n\sigma}^{\mu + n\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ 

>>> from scipy.stats import norm
>>> norm.cdf(1.0) - norm.cdf(-1.0)
0.6826894921370859





Courses, Lectures, Exercises and More



# Math Review:

# Functions, Distributions, Vectors, and Matrices

Jordan Boyd-Graber

University of Maryland

Fall 2020



### Vectors

Row Vector  $\vec{v} = \begin{bmatrix} 5 & 8 \end{bmatrix}$  (21)



# **Vector Addition**

$$\begin{bmatrix} 5\\2 \end{bmatrix} + \begin{bmatrix} 3\\7 \end{bmatrix} = \begin{bmatrix} 5+3\\2+7 \end{bmatrix} = \begin{bmatrix} 8\\9 \end{bmatrix}$$

(23)

Scalar Multiplication

$$3 \cdot \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \cdot 5 \\ 3 \cdot 2 \end{bmatrix} = \begin{bmatrix} 15 \\ 6 \end{bmatrix}$$

(24)

$$\begin{bmatrix} 4 \\ 3 \end{bmatrix}^{\mathsf{T}} \cdot \begin{bmatrix} 5 \\ 2 \end{bmatrix} =$$

$$\begin{bmatrix} 4 \\ 3 \end{bmatrix}^{1} \cdot \begin{bmatrix} 5 \\ 2 \end{bmatrix} = 4 \cdot 5 + 3 \cdot 2 = 26$$
 (25)

# **Dot Product Definition**



### From Scott Hill

Courses, Lectures, Exercises and More



# Math Review:

# Functions, Distributions, Vectors, and Matrices

Jordan Boyd-Graber

University of Maryland

Fall 2020



$$\begin{bmatrix} 4\\3 \end{bmatrix}^{\mathsf{T}} \cdot \begin{bmatrix} 5\\2 \end{bmatrix} =$$
(28)  
$$\begin{bmatrix} 4 \quad 3 \end{bmatrix} \cdot \begin{bmatrix} 5\\2 \end{bmatrix} =$$
(29)  
$$\begin{bmatrix} 4 \cdot 5 + 2 \cdot 3 \end{bmatrix} =$$
[26] (30)

 $\begin{bmatrix} 4 \\ 3 \end{bmatrix}^{\mathsf{T}} \cdot \begin{bmatrix} 5 \\ 2 \end{bmatrix} =$ 

[26] (30)

$$\begin{bmatrix} 4\\3 \end{bmatrix}^{\mathsf{T}} \cdot \begin{bmatrix} 5\\2 \end{bmatrix} =$$
(28)  
$$\begin{bmatrix} 4 \quad 3 \end{bmatrix} \cdot \begin{bmatrix} 5\\2 \end{bmatrix} =$$
(29)  
$$\begin{bmatrix} 4 \cdot 5 + 2 \cdot 3 \end{bmatrix} =$$
[26] (30)

- Turns *n* by *m* matrix into *m* by *n* matrix
- Swaps element in a<sub>ii</sub> with element in a<sub>ii</sub>



- Turns *n* by *m* matrix into *m* by *n* matrix
- Swaps element in a<sub>ii</sub> with element in a<sub>ii</sub>



- Turns *n* by *m* matrix into *m* by *n* matrix
- Swaps element in a<sub>ii</sub> with element in a<sub>ii</sub>



- Turns *n* by *m* matrix into *m* by *n* matrix
- Swaps element in a<sub>ii</sub> with element in a<sub>ii</sub>



- Turns *n* by *m* matrix into *m* by *n* matrix
- Swaps element in a<sub>ii</sub> with element in a<sub>ii</sub>



- Turns *n* by *m* matrix into *m* by *n* matrix
- Swaps element in a<sub>ii</sub> with element in a<sub>ii</sub>



- Turns *n* by *m* matrix into *m* by *n* matrix
- Swaps element in a<sub>ii</sub> with element in a<sub>ii</sub>



# Matrix Multiplication Rules



From Denis Auroux

### General Formula

$$a_{ij} = \sum_{k} I_{ik} r_{kj} \tag{31}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} \end{bmatrix}$$
(32)

# General Formula $a_{ij} = \sum_{k} l_{ik} r_{kj} \tag{31}$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} ? \\ \end{bmatrix}$$

 $a_{11} = l_{11}r_{11} + l_{12}r_{21} = 3 + 0 = 3$ 

(32)

### General Formula

$$a_{ij} = \sum_{k} I_{ik} r_{kj} \tag{31}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \end{bmatrix}$$
(32)

# General Formula $a_{ij} = \sum_{k} l_{ik} r_{kj} \tag{31}$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ ? \end{bmatrix}$$

(32)

 $a_{21} = l_{21}r_{11} + l_{22}r_{21} = 0 + 4 = 4$ 

### General Formula

$$a_{ij} = \sum_{k} I_{ik} r_{kj} \tag{31}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
(32)

# Selecting a Row

$$\begin{bmatrix} 0\\0\\1\\0\\0\end{bmatrix}^{\mathsf{T}}\cdot\begin{bmatrix} 9&7\\0&8\\6&7\\5&3\\0&9\end{bmatrix} = \begin{bmatrix} ?&\end{bmatrix}$$

(33)

# Selecting a Row

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}^{\top} \cdot \begin{bmatrix} 9 & 7 \\ 0 & 8 \\ 6 & 7 \\ 5 & 3 \\ 0 & 9 \end{bmatrix} = \begin{bmatrix} ? & ? \end{bmatrix}$$

(33)

# Selecting a Row

$$\begin{bmatrix} 0\\0\\1\\0\\0\end{bmatrix}^{\mathsf{T}} \cdot \begin{bmatrix} 9 & 7\\0 & 8\\6 & 7\\5 & 3\\0 & 9 \end{bmatrix} = \begin{bmatrix} & ? \end{bmatrix}$$

(33)
#### Selecting a Row

$$\begin{bmatrix} 0\\0\\1\\0\\0\end{bmatrix}^{\mathsf{T}} \cdot \begin{bmatrix} 9 & 7\\0 & 8\\6 & 7\\5 & 3\\0 & 9 \end{bmatrix} = \begin{bmatrix} 6 & ? \end{bmatrix}$$

(33)

- - T

#### Selecting a Row

$$\begin{bmatrix} 0\\0\\1\\0\\0\end{bmatrix}^{\mathsf{T}} \cdot \begin{bmatrix} 9 & 7\\0 & 8\\6 & 7\\5 & 3\\0 & 9 \end{bmatrix} = \begin{bmatrix} 6 & ? \end{bmatrix}$$

(33)

- - T

#### Selecting a Row

$$\begin{bmatrix} 0\\0\\1\\0\\0\\0\end{bmatrix}^{\top}\cdot\begin{bmatrix} 9&7\\0&8\\6&7\\5&3\\0&9\end{bmatrix} = \begin{bmatrix} 6&7\end{bmatrix}$$

(33)

- - T \_

$$\begin{bmatrix} 1\\1\\0\\0\\1 \end{bmatrix}^{\top} \cdot \begin{bmatrix} 9 & 7\\0 & 8\\6 & 7\\5 & 3\\0 & 9 \end{bmatrix} = \begin{bmatrix} ? \end{bmatrix}$$

$$\begin{bmatrix} 1\\1\\0\\0\\1 \end{bmatrix}^{\mathsf{T}} \cdot \begin{bmatrix} 9 & 7\\0 & 8\\6 & 7\\5 & 3\\0 & 9 \end{bmatrix} = \begin{bmatrix} ? & ? \end{bmatrix}$$

$$\begin{bmatrix} 1\\1\\0\\0\\1 \end{bmatrix}^{\top} \cdot \begin{bmatrix} 9 & 7\\0 & 8\\6 & 7\\5 & 3\\0 & 9 \end{bmatrix} = \begin{bmatrix} & ? \end{bmatrix}$$

(34)

41

$$\begin{bmatrix} 1\\1\\0\\0\\1\end{bmatrix}^{\top} \cdot \begin{bmatrix} 9 & 7\\0 & 8\\6 & 7\\5 & 3\\0 & 9 \end{bmatrix} = \begin{bmatrix} 9+0+0 & ? \end{bmatrix}$$
(34)

$$\begin{bmatrix} 1\\1\\0\\0\\1 \end{bmatrix}^{\top} \cdot \begin{bmatrix} 9 & 7\\0 & 8\\6 & 7\\5 & 3\\0 & 9 \end{bmatrix} = \begin{bmatrix} 9 & ? \end{bmatrix}$$

$$\begin{bmatrix} 1\\1\\0\\0\\1 \end{bmatrix}^{\top} \cdot \begin{bmatrix} 9 & 7\\0 & 8\\6 & 7\\5 & 3\\0 & 9 \end{bmatrix} = \begin{bmatrix} 9 & 7+8+9 \end{bmatrix}$$
(34)

$$\begin{bmatrix} 1\\1\\0\\0\\1 \end{bmatrix}^{\mathsf{T}} \cdot \begin{bmatrix} 9 & 7\\0 & 8\\6 & 7\\5 & 3\\0 & 9 \end{bmatrix} = \begin{bmatrix} 9 & 24 \end{bmatrix}$$