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TV Tropes

� Social media site

� Catalog of “tropes”
� Functionally like Wikipedia, but . . .
� Less formal
� No notability requirement
� Focused on popular culture

Absent-Minded Professor

� “Doc” Emmett Brown from Back to
the Future.

� The drunk mathematician in
Strangers on a Train becomes a
plot point, because of his
forgetfulness, Guy is suspected of
a murder he didn’t commit.

� The Muppet Show: Dr. Bunsen
Honeydew.
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Spoilers

� What makes neat is that the dataset is annotated by users for spoilers.

� A spoiler: “A published piece of information that divulges a surprise,
such as a plot twist in a movie.”

Spoiler

� Han Solo arriving just in time to save Luke from Vader
and buy Luke the vital seconds needed to send the
proton torpedos into the Death Star’s thermal exhaust
port.

� Leia, after finding out that despite her (feigned)
cooperation, Tarkin intends to destroy Alderaan anyway.

� Luke rushes to the farm, only to find it already raided
and his relatives dead harkens to an equally distressing
scene in The Searchers.

Not a spoiler

� Diving into the garbage chute gets them out of the
firefight, but the droids have to save them from the
compacter.

� They do some pretty evil things with that Death Star, but
we never hear much of how they affect the rest of the
Galaxy. A deleted scene between Luke and Biggs
explores this somewhat.

� Luke enters Leia’s cell in a Stormtrooper uniform, and
she calmly starts some banter.
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The dataset

� Downloaded the pages associated with a show. Took complete
sentences from the text and split them into ones with spoilers and those
without

� Created a balanced dataset (50% spoilers, 50% not)
� Split into training, development, and test shows

� Why is this important?

� I’ll show results using SVM; similar results apply to other classifiers
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Step 1: The obvious

� Take every sentence, and split on on-characters.

� Input: “These aren’t the droids you’re looking for.”

Features

These:1 aren:1 t:1 the:1
droids:1 you:1 re:1 looking:1
for:1

False True
False 56 34
True 583 605

Accuracy: 0.517

What’s wrong with this?
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Step 2: Normalization

� Normalize the words
� Lowercase everything
� Stem the words (not always a good idea!)

� Input: “These aren’t the droids you’re looking for.”

Features

these:1 are:1 t:1 the:1 droid:1
you:1 re:1 look:1 for:1

False True
False 52 27
True 587 612

Accuracy: 0.520
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Step 3: Remove Usless Features

� Use a “stoplist”

� Remove features that appear in > 10% of observations (and aren’t
correlated with label)

� Input: “These aren’t the droids you’re looking for.”

Features

droid:1 look:1

False True
False 59 20
True 578 621

Accuracy: 0.532
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Step 4: Add Useful Features

� Use bigrams (“these_are”) instead of unigrams (“these”, “are”)

� Creates a lot of features!

� Input: “These aren’t the droids you’re looking for.”

Features

these_are:1 aren_t:1 t_the:1
the_droids:1 you_re:1
re_looking:1 looking_for:1

False True
False 203 104
True 436 535

Accuracy: 0.578
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Step 5: Prune (Again)

� Not all bigrams appear often

� SVM has to search a long time and might not get to the right answer

� Helps to prune features

� Input: “These aren’t the droids you’re looking for.”

Features

these_are:1 the_droids:1
re_looking:1 looking_for:1

False True
False 410 276
True 229 363

Accuracy: 0.605
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How do you find new features?

� Make predictions on the development set.

� Look at contingency table; where are the errors?

� What do you miss?

Error analysis!

� What feature would the classifier need to get this right?
� What features are confusing the classifier?
� If it never appears in the development set, it isn’t useful
� If it doesn’t appear often, it isn’t useful
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How do you know something is a good feature?

� Make a contingency table / scatter plot for that feature (should give you
good information gain and be random)

� Throw it into your classifier (accuracy should improve)
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