



# Ranking

Jordan Boyd-Graber University of Colorado Boulder LECTURE 16

- Combining rankings: taking advantage of multiple weak rankers
- Maximum margin ranking: support vector machines
- Reduction to classification: optimizing

- Web search (Google uses > 200 features)
- Movie rankings
- Dating

## Plan

An Efficient Boosting Algorithm for Combining Preferences Freund, Iyer, Schapire, Singer. JMLR, 2003.

- Feedback function:  $\Phi : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ 
  - $\phi(x_0, x_1) > 0$ :  $x_1$  is preferred to  $x_0$
  - $\phi(x_0, x_1) < 0$ :  $x_0$  is preferred to  $x_1$
  - $\phi(x_0, x_1) == 0$ : no preference
- Want to learn distribution  $D(x_0, x_1) \equiv c \cdot \max\{0, \Phi(x_0, x_1)\}$  s.t.

$$\sum_{x,x'} D(x,x') = 1$$
 (1)

• Minimize the number of misranked pairs under final ranking

$$\sum_{x,x'} D(x,x') \cdot \mathbb{1} \left[ H(x') \le H(x) \right] = \Pr_{(x,y) \sim D} \left[ H(y) \le H(x) \right] \quad (2)$$

• Choose entries with high weight in *D* to be *important* (can't get them wrong)

- Weak rankings of the form  $h_t : \mathcal{X} \mapsto \mathbb{R}$
- Could be different systems / users / feature sets
- Will combine them into a final ranking of the same form

RankBoost

#### What's a weak ranking?

• A function of the form

$$h(x) = \begin{cases} 1 & \text{if } f_i(x) > \theta \\ 0 & \text{if } f_i(x) \le \theta \\ q_{\mathsf{def}} & \text{if } f_i(x) == \bot \end{cases}$$
(3)

#### What's a weak ranking?

• A function of the form

$$h(x) = \begin{cases} 1 & \text{if } f_i(x) > \theta \\ 0 & \text{if } f_i(x) \le \theta \\ q_{\mathsf{def}} & \text{if } f_i(x) == \bot \end{cases}$$
(3)

- How to find  $q_{def}$  and  $\theta$ ?
- Binary search over how much it improves ranking implied by D (i.e., gets high D weights right)

# Algorithm

- Initialize D<sub>1</sub>
- For *t* = 1 . . . *T*:
  - $\circ$  Get weak ranking  $h_t:\mathcal{X}\mapsto\mathbb{R}$
  - Choose  $\alpha_t$
  - Update distribution

$$D_{t+1}(x,y) \propto D_t(x,y) \cdot \exp\left\{\alpha_t \left[h_t(x) - h_t(y)\right]\right\}$$
(4)

• Final ranking is

$$H(x) = \sum_{1}^{T} \alpha_t h_t(x)$$
(5)

- $\alpha_t$  encodes importance of individual weak learner
- In general decreases over iterations
- Find weighted discrepancy

$$r = \sum_{x,y} D(x,y) [h(y) - h(x)]$$
(6)

• Use 
$$\alpha = \frac{1}{2} \ln \left( \frac{1+r}{1-r} \right)$$

- $\alpha_t$  encodes importance of individual weak learner
- In general decreases over iterations
- Find weighted discrepancy

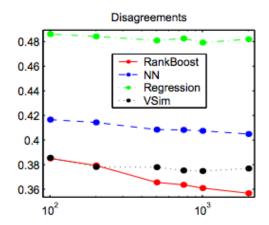
$$r = \sum_{x,y} D(x,y) [h(y) - h(x)]$$
(6)

• Use 
$$\alpha = \frac{1}{2} \ln \left( \frac{1+r}{1-r} \right)$$

• As r gets smaller, weak learner t will have lower weight

#### Performance

Works better than individual features or nearest neighbor



# Plan

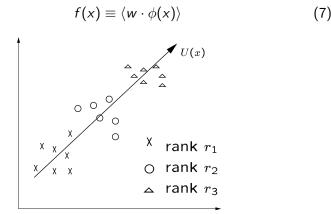
#### Examples as feature vectors

# Every example has a feature vector f(x)

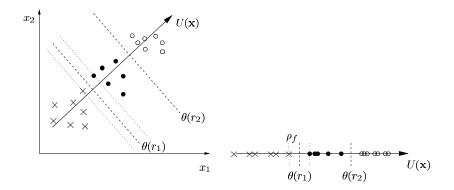
| example        | docID | query                  | cosine score | ω | judgment    |
|----------------|-------|------------------------|--------------|---|-------------|
| Φ <sub>1</sub> | 37    | linux operating system | 0.032        | 3 | relevant    |
| $\Phi_2$       | 37    | penguin logo           | 0.02         | 4 | nonrelevant |
| $\Phi_3$       | 238   | operating system       | 0.043        | 2 | relevant    |
| $\Phi_4$       | 238   | runtime environment    | 0.004        | 2 | nonrelevant |
| $\Phi_5$       | 1741  | kernel layer           | 0.022        | 3 | relevant    |
| $\Phi_6$       | 2094  | device driver          | 0.03         | 2 | relevant    |
| $\Phi_7$       | 3191  | device driver          | 0.027        | 5 | nonrelevant |

#### Turning features to rank

- Have a series of "levels" or ranks  $y = 1 \dots$
- We want to find a function to separate examples



#### Maximizing the margin



## Using SVM-light

- Each example has a rank
- and a query id
- and lots of features

# Using SVM-light

| # | query | 1   |     |     |       |     |
|---|-------|-----|-----|-----|-------|-----|
| 3 | qid:1 | 1:1 | 2:1 | 3:0 | 4:0.2 | 5:0 |
| 2 | qid:1 | 1:0 | 2:0 | 3:1 | 4:0.1 | 5:1 |
| 1 | qid:1 | 1:0 | 2:1 | 3:0 | 4:0.4 | 5:0 |
| 1 | qid:1 | 1:0 | 2:0 | 3:1 | 4:0.3 | 5:0 |
| # | query | 2   |     |     |       |     |
| 1 | qid:2 | 1:0 | 2:0 | 3:1 | 4:0.2 | 5:0 |
| 2 | qid:2 | 1:1 | 2:0 | 3:1 | 4:0.4 | 5:0 |
| 1 | qid:2 | 1:0 | 2:0 | 3:1 | 4:0.1 | 5:0 |
| 1 | qid:2 | 1:0 | 2:0 | 3:1 | 4:0.2 | 5:0 |
| # | query | 3   |     |     |       |     |
| 2 | qid:3 | 1:0 | 2:0 | 3:1 | 4:0.1 | 5:1 |
| 3 | qid:3 | 1:1 | 2:1 | 3:0 | 4:0.3 | 5:0 |
| 4 | qid:3 | 1:1 | 2:0 | 3:0 | 4:0.4 | 5:1 |
| 1 | qid:3 | 1:0 | 2:1 | 3:1 | 4:0.5 | 5:0 |

### Plan

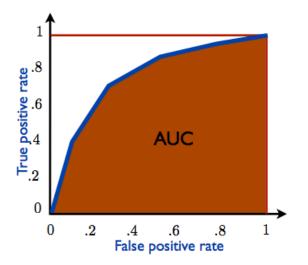
#### Are all pairs important?

- Often we care about the *top* of the result list
- Regression (as in previous section) not robust when there's one right answer and many wrong ones
- Measured by the AUC: area under the curve
  - Imagine two classes: winners and losers
  - We want there to be a consecutive run of winners before losers in the results (extends to greater number of classes)
  - Want to minimize probability of losers before winners in an ordering  $\pi$  on a set of examples  $S = (x_1, y_1) \dots$

$$I(\pi, S) = \frac{\sum_{i \neq j} \mathbb{1} [y_i > y_j] \pi(x_i, x_j)}{\sum_{i < j} \mathbb{1} [y_i \neq y_j]}$$
(8)

#### **Classification and Other Objectives**

#### roc curve



Robust Reductions from Ranking to Classification Maria-Florina Blcan, Nikhil Bansal, Alina Beygelzimer, Don Coppersmith, John Langford, Gregory B. Sorkin. JMLR, 2008.

- Produces a ranking using a classifier
- If regret of classifier is r, loss of classifier is at most 2r
- Thus, if binary error rate is 20% due to inherent noise and 5% due to errors made by the classifier
- Then AUC regret is at most 10%

# Algorithm

- Learn a classifier
  - Given a random pair of examples, learn a classifier c to predict whether it should prefer  $x_1$  to  $x_2$
  - Return the classifier c
- Get a ranking from the resulting classifier tournament
  - For an example x, define the degree

$$\deg(x) = |\{x' : c(x, x') = = 1, x' \in U|$$
(9)

• Sort by the degree of the node (number of matches it won)

#### Efficiency

- For ranking a large list, complexity  $O(n^2)$  is unnacceptable
- Possible to use variant of QuickSort O(n log n)
- Has the same regret performance, but is randomized

- How do you balance positive and negative classes?
- Requires cross-validation: try many options on held out data
- Weighting positive classes is important:
  - Some frameworks allow you to weight examples
  - In other cases, you can just duplicate positive

# Recap

- Ranking is an important problem
- Multiple approaches
  - Combining weak rankers
  - Max-margin
  - Tournament classification