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Reminder: Logistic Regression

]
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* Discriminative prediction: p(y|x)
¢ Classification uses: ad placement, spam detection
* What we didn’t talk about is how to learn 8 from data
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Logistic Regression: Objective Function

ZL=Inp(Y|X,B) Zlnp D 1x0), B) (3)
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Convexity

e Convex function

e Doesn’t matter where you start, if
you “walk up” objective
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Convexity

e Convex function

e Doesn’t matter where you start, if
you “walk up” objective

e Gradient!
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Gradient Descent (non-convex)

Goal
Optimize log likelihood with respect to variables W and b

A
Obijective

»

Parameter
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Gradient Descent (non-convex)

Goal
Optimize log likelihood with respect to variables W and b
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Gradient Descent (non-convex)

Goal
Optimize log likelihood with respect to variables W and b
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Gradient Descent (non-convex)

Goal
Optimize log likelihood with respect to variables W and b
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Gradient Descent (non-convex)

Goal
Optimize log likelihood with respect to variables W and b
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Gradient for Logistic Regression

Gradient
Ve (B)= af/f),.-.,afff) (5)

Update
AB=nVp<L(f) (6)
Bi <—/5,-’+nw;(ﬁ) (7)

P
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Gradient for Logistic Regression

Gradient
V< (B)= afﬂ(f),.-.,afff) (5)

Update
AB=nVp<(B) (6)
Bi Hﬁ{+nafg§ ) (7)

Why are we adding? What would well do if we wanted to do descent?
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Gradient for Logistic Regression

Gradient
VL (B)= a’j/gf),...,afff) (5)

Update
AB=nVp<L(B) (6)
ﬁ,-<—/3,-’+nw(ﬁ) (7)

2B

7 step size, must be greater than zero
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Gradient for Logistic Regression

Gradient
V< (B)= afﬂ(f),.-.,afff) (5)

Update
AB=nVp<(B) (6)
Bi Hﬁ{+nafg§ ) (7)

NB: Conjugate gradient is usually better, but harder to implement
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Choosing Step Size

\Objective

Parameter
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Choosing Step Size

\Objective

Parameter
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Remaining issues

¢ When to stop?
* What if B keeps getting bigger?
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Regularized Conditional Log Likelihood

Unregularized

ﬁ*:argmﬁgxln [p(y(j) |X(j),/5)] (8)

Regularized
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Regularized Conditional Log Likelihood

Unregularized

p" = argmaxin [p(y?1xD,B)] ®

Regularized

p* = argmaxin [p(yV) |x1, )] —MZ/D’,-Z ©)

u is “regularization” parameter that trades off between likelihood and having
small parameters
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Approximating the Gradient

e Qur datasets are big (to fit into memory)

e ...or data are changing / streaming
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Approximating the Gradient

Our datasets are big (to fit into memory)

...or data are changing / streaming

Hard to compute true gradient
ZL(B)=E«[VL(B,x)] (10)

* Average over all observations
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Approximating the Gradient

Our datasets are big (to fit into memory)

...or data are changing / streaming

Hard to compute true gradient
Z(B)=Ex[VL(B,x)] (10)

* Average over all observations

What if we compute an update just from one observation?
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Getting to Union Station

Pretend it's a pre-smartphone world and you want to get to Union Station
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Stochastic Gradient for Logistic Regression

Given a single observation x chosen at random from the dataset,

—

Bi =B +n(-uh+x[y—ply=11%5"]) (1)
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Stochastic Gradient for Logistic Regression

Given a single observation x chosen at random from the dataset,

—

Bi =B +n(-uh+x[y—ply=11%5"]) (1)

Examples in class.
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Stochastic Gradient for Regularized Regression

2 =logp(y|x:f) -y _p? (12)
j
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Stochastic Gradient for Regularized Regression

2 =logp(y|x:f) -y _p? (12)
j

Taking the derivative (with respect to example x;)

0¥

a—@:(yf—p(yf:w?f;/o’))xf—?uﬁ/ (13)
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Proofs about Stochastic Gradient

¢ Depends on convexity of objective and how close € you want to get to
actual answer

¢ Best bounds depend on changing 1 over time and per dimension (not all
features created equal)

140f 15
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In class

* Your questions!
¢ Working through simple example

e Prepared for logistic regression homework
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