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Reminder: Logistic Regression
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• Discriminative prediction: p(y |x)

• Classification uses: ad placement, spam detection

• What we didn’t talk about is how to learn β from data
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Logistic Regression: Objective Function

L ≡ lnp(Y |X ,β) =
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lnp(y(j) |x(j),β) (3)
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Convexity

• Convex function

• Doesn’t matter where you start, if
you “walk up” objective

• Gradient!
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Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables W and b

0

Parameter

Objective
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Gradient Descent (non-convex)

Goal

Optimize log likelihood with respect to variables W and b
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Gradient for Logistic Regression

Gradient

∇βL (~β) =

�

∂L (~β)

∂ β0
, . . . ,

∂L (~β)

∂ βn

�

(5)

Update

∆β ≡η∇βL (~β) (6)

βi ←β ′i +η
∂L (~β)

∂ βi
(7)
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∆β ≡η∇βL (~β) (6)

βi ←β ′i +η
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Why are we adding? What would well do if we wanted to do descent?
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Gradient for Logistic Regression

Gradient
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Update

∆β ≡η∇βL (~β) (6)

βi ←β ′i +η
∂L (~β)

∂ βi
(7)

η: step size, must be greater than zero
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Gradient for Logistic Regression

Gradient

∇βL (~β) =
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∂L (~β)
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∂ βn
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(5)

Update

∆β ≡η∇βL (~β) (6)

βi ←β ′i +η
∂L (~β)

∂ βi
(7)

NB: Conjugate gradient is usually better, but harder to implement
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Choosing Step Size

Parameter

Objective
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Remaining issues

• When to stop?

• What if β keeps getting bigger?
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Regularized Conditional Log Likelihood

Unregularized

β ∗= argmax
β

ln
�

p(y(j) |x(j),β)
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Regularized
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µ is “regularization” parameter that trades off between likelihood and having
small parameters
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Approximating the Gradient

• Our datasets are big (to fit into memory)

• . . . or data are changing / streaming

• Hard to compute true gradient

L (β)≡Ex [∇L (β ,x)] (10)

• Average over all observations

• What if we compute an update just from one observation?
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Getting to Union Station

Pretend it’s a pre-smartphone world and you want to get to Union Station
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Stochastic Gradient for Logistic Regression

Given a single observation x chosen at random from the dataset,

βi ←β ′i +η
�

−µβ ′i + xi

�

y −p(y = 1 |~x , ~β ′)
��

(11)

Examples in class.
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Stochastic Gradient for Regularized Regression

L = logp(y |x;β)−µ
∑

j

β 2
j (12)

Taking the derivative (with respect to example xi )

∂L
∂ βj

=(yi −p(yi = 1 |~xi ;β))xj −2µβj (13)
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Proofs about Stochastic Gradient

• Depends on convexity of objective and how close ε you want to get to
actual answer

• Best bounds depend on changing η over time and per dimension (not all
features created equal)
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In class

• Your questions!

• Working through simple example

• Prepared for logistic regression homework
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